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Abstract 

We propose to verify the Kramers-Kronig Relations (KKR) through comparison of two versions of 

the Distribution of Relaxation Times (DRT), calculated from the real and imaginary part of the 

impedance. 

When checking the integrity of impedance spectroscopy data, this method is useful to interpret 

correctly results when a direct calculation of the KKR integrals shows a deviation from measured 

data. Our method can distinguish cases (i) where a deviation from the KKR indicates genuine 

physical problems during the measurement from (ii) a deviation arising when the frequency range 

accessible by the measurement is insufficiently large.  
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1 Introduction 

Electrochemical Impedance Spectroscopy [1] (EIS) is commonly used to identify the various 

characteristics of an electrochemical system, as for instance electrode phenomena in fuel cells. 

The method consists in measuring the complex impedance Z = Z’ + iZ’’ as a function of AC 

frequency. The data are then usually fitted to a system model based on a so-called electrical 

equivalent circuit, each element of the circuit representing a physical characteristic of the studied 

system. The main difficulty is the prior choice of the equivalent circuit (numbers of elements, 

impedance form) that can reliably represent the physical phenomena. 

Often, EIS measurements are carried out at very high temperatures, sometimes in strongly 

corrosive environments, or other extreme conditions. Hence, a specific difficulty of EIS 

experiments is the stability of the sample, temperature and other conditions during a 

measurement, which can last between some minutes and some hours. Testing the integrity of 

measured data is therefore a crucial part of the analysis.  

1.1 Kramers-Kronig Relations 

The Kramers-Kronig Relations (KKR) between the real and imaginary part of the electrical 

impedance Z = Z’ + i Z’’ are defined as 

(1a)  Z′(ω)  =  𝑅0   +   2 ω / π ∫ ( x/ω Z′′(x) – Z′′(ω)) / (x2 – ω2) ) dx
∞
0   

(1b)  Z′′(ω)  =  2 ω / π ∫ ( x/ω Z′(x) – Z′(ω)) / (x2 – ω2) ) dx
∞
0  

where ω = 2 π f is the radial frequency and R0 is the DC resistance. 

The KKR are used as a check of data integrity in impedance spectroscopy [2-4], by plotting the 

measured data Z’ and Z’’ against those calculated from the integrals. Of course, full precision 

cannot be attained because infinite frequency as in the integral is not accessible. However, the 

direct calculation of the KKR integral yields an approximately correct result if the measured 

frequency range is sufficiently large, in the sense that semi-circles or semi-arcs in the Nyquist plot 

(Z’ vs Z’’) are completed.  
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If this is not the case, and semi-arcs are not completed, the direct calculation of the KKR yields a 

deviation, which is difficult to distinguish from deviations with an intrinsic physical origin (examples 

are shown below, Figs 2 and 3). Extrapolation of the data has been proposed [3] as a possible 

solution, but such an extrapolation is always based on selection of a physical model, and thereby 

on an implicit assumption of data integrity.  

1.2 Distribution of Relaxation Times 

The Distribution of Relaxation Times (DRT) G(τ) is another much-used quantity for interpreting 

measurement data [5-9]. It is related to the impedance via the following equations: 

(2a) Z′(ω)  =  𝑅0 ∫ ( G(τ) / (1 +  ω2τ2) ) dτ
∞
0  

(2b) Z′′(ω)  =  𝑅0 ∫ (ω τ G(τ) / (1 +  ω2τ2) ) dτ
∞
0  

or in complex form  

(3)  Z(ω)  =  𝑅0 ∫ ( G(τ) / (1 +  i ω τ) ) dτ
∞
0  

Hence one can calculate the DRT G(τ) from either the real part Z’ or the imaginary part Z’’ of the 

impedance. By plotting the DRT instead of measured data Z, one can often identify more clearly 

different time constants contributing to the overall impedance of a composite system [9]. The DRT 

analysis thereby helps to identify an equivalent circuit that can be subsequently used to fit the Z 

data.  

The basis of the DRT formalism is the representation of Z as a (finite or infinite) series of R-C 

elements (each with R parallel C), using 𝑍𝑅𝐶 = 𝑅/(1 + 𝑖 ω τ), τ = RC and G(τ) as a weighting 

function. This implies an important limitation of the DRT method: an impedance including inductive 

components cannot be represented as described above [2,9]. Such inductive signals are typically 

generated in EIS measurements by wiring at high frequencies. 

For the purpose of this work, we emphasize that for a given impedance Z = Z’ + i Z’’, the DRT 

function G(τ)  in (2a), (2b) and (3) is, in theory, identical.  
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1.3 Connecting Kramers-Kronig Relations and Distribution of Relaxation Time  

The similar form of the equations (1a-b) and (2a-b) suggests that they are related. And indeed, it 

was shown many years ago [10] that if two functions Z’ and Z’’ are constructed from a single DRT 

via equations (2a) and (2b), they fulfill the KKR.  

We conclude that conversely, if the two DRTs calculated from measured impedance components 

Z’ and Z’’ are identical, we can conclude that Z’ and Z’’ fulfill the KKR. We show in this work that 

this relationship can be used to test the KKR more reliably, compared to a direct integration. 

In the following, we will denote the DRTs calculated from Z’ and Z’’ as GRe and GIm, respectively.  

2 Experimental and Computational Methods 

2.1 Computer simulations and numerical methods 

 

(Figure 1) 

 

Synthetic impedance data Z = Z’ + i Z’’ were produced with the circuit simulation program ngspice 

[11]. Fig. 1 shows the circuit and parameters used for this work. The basic circuit element 

consisted of a resistor in parallel to a capacitor. For the reference circuit, labelled A, three such 

R-C elements were placed in series, with an additional offset R0.  

An outstanding feature of ngspice is the possibility to add user-defined circuit elements. In order 

to mimic a measurement with drifting resistance offset, we added a frequency-dependent 

resistance R4 in one simulation, labelled C below. 

DRTs from both synthetic and experimental impedance data were calculated using the software 

DRTtools [12]. The programme uses Tikhonov regularization and offers to the user choice of a 

number of numerical parameters. The selection of these parameters for this work is discussed in 

detail in the Appendix. While DRTtools provides the output data in the form G(τ) as in eq. 2, we 
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display the DRT data in this work as function of decimal logarithm of frequency f = 1/(2 π τ), which 

facilitates direct comparison with impedance data. 

A crucial feature of DRTtools for our work is the ability to calculate from real and imaginary parts 

of the impedance two separate DRTs, GRe and GIm.  

Another feature of DRTtools is the extrapolation of DRT data beyond the frequency range fmin, 

fmax of the input data. This is problematic as it can lead to spurious peaks or shoulders, as 

discussed below.   

As a quantitative test for comparing the two curves GRe and GIm we employed a variation of the 

coefficient of determination r2 [13]  

(4) 𝑟2 =  1 – ∑ (G𝑟𝑒(i) – G𝑖𝑚(i))2
𝑖  / ∑ (G𝑟𝑒(i) – G𝑟𝑒)2

𝑖  ,  

where G𝑟𝑒 is the mean value of G𝑟𝑒. r2 values close to 1 indicate near-perfect overlap of data sets. 

The data range for calculating r2 was limited to the input frequency range, that is extrapolated 

data of G where not included, for reasons explained above. 

In order to test the Kramers-Kronig relations, the integrals in equations 1a and 1b were calculated 

numerically in a home-made program, by first applying to the data a cubic spline fit [14] and then 

summing over the function values. The singularity in Eq. 1 was treated as described in Ref. [3]. 

2.2 Experimental data 

Data analysis with calculation of Kramers-Kronig integrals and DRTs was also applied to 

experimental data from three different symmetric half-cells. The component materials of the cells, 

and EIS measurement temperatures are summarised in Table 1. 

Two materials were used for the preparation of the dense electrolytes: powder of GDC 

(Ce0.8Gd0.2O1.90) was purchased from Marion Technologies comp., and shaped to discs of roughly 

18.5 mm diameter, thickness 1 mm and relative density > 95% after pressing the powder in a die, 

followed by a sintering step at 1500°C for 3h. Dense Ø25 mm, 90 m thick ceramic discs of TZ3Y 

(3 mol.% Y2O3-ZrO2) were purchased from Indec Company.  
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For TZ3Y electrolytes (samples E and F), PrDC (Ce0.7Pr0.3O2-δ, Praxair) was used as barrier 

interlayer between the electrode and the electrolyte. It was screen-printed on TZ3Y and sintered 

at 1300 °C for 3h in air, with a controlled heating rate of 2 °C/min, resulting in a layer thickness of 

roughly 3 μm. 

The electrodes powder LNO (La2NiO4+δ) and PNO (Pr2NiO4+δ) were purchased from Marion 

Technologies. They were screen-printed on top of PrDC or GDC and sintered in air at 1150 °C, 

1h for PNO, and at 1200 °C,1h for LNO, with a heating rate of 2 °C/min, resulting in an electrode 

layer of around 20 µm. 

An additional layer of LNF (LaNi0.6Fe0.4O3) was screen printed on top of LNO or PNO electrodes 

for samples D and F, in order to improve the overall current collection. It was in-situ sintered in 

the EIS setup at 900 °C for 2h.  

Sample name D E F 

electrolyte GDC TZ3Y TZ3Y 

interlayer - PrDC PrDC 

electrode PNO PNO LNO 

collecting layer LNF - LNF 

EIS Measurement 
temperature 

650 °C 550 °C 700 °C 

Table 1: Half-cell composition and measurement temperatures of selected data sets used for 

data analysis.  See text for exact chemical compositions and other details. 

 

The setup used to perform electrochemical impedance spectroscopy (EIS) measurement has 

been described in detail by Flura et al [15]. Gold grids were used as current collectors. The 

electrochemical experiments were performed from 800 °C down to 500 °C, in air, at idc = 0 A. 

Impedance measurements were carried out with an ac amplitude being fixed at 50 mV in the 

range 105 Hz - 10−1 Hz using an Autolab® PGStat 302 frequency response analyser. Data at 

highest frequencies (105 – 106 Hz) were not considered due to experimental limitations (low value 

of the sample resistance, connection wires, impedance-meter characteristics).  
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3 Results and Discussion 

We first demonstrate our method on synthetic, noise-free data. By using computer simulations, 

we can control the cause of deviations in the KK data, thereby directly testing our main hypothesis. 

We then move to experimental data from SOFC half-cells. Note that the data GRe, GIm shown in 

this section have not been rescaled. 

3.1 Synthetic data 

The simulated data shown in Fig. 2 are based on the simple circuit model detailed in Fig. 1. 

Sample A is the reference with 3 R-C elements, and an offset resistance R0. Sample B is identical 

to A except that part of the data at lowest and highest frequencies were removed. For sample C, 

an additional ‘drift’ of the resistance was added. 

 

(Figure 2) 

 

 Sample A in Fig. 2 demonstrates an ideal case where the Nyquist plot shows well-completed 

arcs Z’ vs Z’’. Here the direct calculation of KKR (red line) via numerical integration (Eq. 1) shows 

perfect alignment with ‘measured’ data. The two versions of the DRT, GRe and GIm, are identical 

as expected (r2 ~ 1 indicates near-perfect overlap of DRT curves.). 

Sample B in Fig. 2 shows impedance data identical to example A except that the data at lowest 

and highest frequencies were removed. As a result of the removal of data, the two outer arcs arc 

in the Nyquist plot are not completed (note that in all the Nyquist plots of Fig. 2, the y-axis is 

scaled from 0 to 1.2 Ohms). As expected, the KKR calculation according to the integral Eq. 1 

shows a deviation from the measured data (red line vs. points). However, the two DRT curves 

calculated from Z’ and Z’’ are nearly identical. The difference at low frequencies occurs mainly 

outside of the range of input data, which is indicated by dotted lines. The discrepancy can be 
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attributed to the numerical extrapolation of DRT data, which adds spurious widening of the peak 

in GRe. 

Sample C, with a drifting R4 added, also shows deviation of KKR integration from the impedance 

data in the Nyquist plot. But here, also the two DRT curves are different: GIm shows not only higher 

main peaks compared to GRe, but also two additional smaller peaks, within the range of input 

data. We conclude that in this case the KKR deviation has a genuine ‘physical’ origin, which was 

of course built-in as part of the simulation.  

Comparison of the Nyquist plots A and B shows that we can create a deviation of the KKR curve 

simply be removing part of the data. Comparison of samples B and C shows that a deviation of 

the KKR curve can look quite similar, even if the cause, insufficient data range or drifting 

resistance during measurement, is very different. 

The DRT calculations support our main hypothesis: misinterpretation of the KKR data can be 

avoided by comparing the DRTs calculated from Z’ and Z’’: if GRe and GIm: are (nearly) identical 

as in sample B, we can conclude that the KK deviation is due to an insufficient data range. If in 

contrast the DRTs are significantly different as in sample C, the deviation of the KK data 

corresponds to a real instability or other problem in the measurement, as discussed in the 

introduction. 

3.2 Experimental data 

 

(Figure 3) 

 

Sample D in Fig. 3 is an example where the Nyquist plot shows well-completed arcs Z’ vs. Z’’. 

The direct calculation of KKR (red line) via numerical integration (Eq. 1) shows very good 

alignment with measured data. On the right-hand side, the two versions of the DRT, GRe and GIm, 

are nearly identical. The differences at low frequencies can again be attributed to numerical 

effects via extrapolation. 
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Fig. 3, for sample E, experimentally measured data with the arcs in the Nyquist plot are not 

completed. As expected, the KKR calculation according to the integral Eq. 1 shows a deviation 

from the measured data (red line vs. points). However, the two DRT curves for sample E, 

calculated from Z’ and Z’’, are nearly identical (r2 = 0.989).within the frequency range of the input 

data, indicated by vertical dotted lines. Once again, the difference at low frequencies, outside of 

the range of input data, can be considered as a numerical artefact due to extrapolation. 

We conclude that the apparent deviation of the KK integral is a purely mathematical effect caused 

by insufficient frequency range, and is not related to problems in the sample or measurement 

equipment. 

Finally, for sample F (Fig. 3) exhibiting another kind of data, we can observe deviations in the KK 

curve, both at low and high frequencies. The DRT curves GRe and GIm are also different, both at 

low and high frequencies, and notably inside the measured frequency range. We thus conclude 

that in this case the KKR deviation is due to instabilities or other problems in the measurement. 

Indeed, we found that the sample showed fissures, indicating possible thermo-mechanical 

instability.  

4. Conclusions 

We have shown that, by calculating two DRT curves separately from the real and imaginary part 

of the impedance, we can determine whether the impedance data fulfill the Kramers-Kronig 

Relations (KKR). This method allows us to interpret correctly a direct KKR calculation via 

numerical integration, because it makes possible to distinguish cases where the KKR integral 

deviates due to physical origins, such as damaged samples, temperature drift, etc., from those 

cases when the deviation has a mathematical origin, caused by insufficient frequency range of 

measured impedance. 

Our work also shows that extrapolating the DRT data beyond the measured frequency range is 

not always beneficial, as it can sometimes add spurious signals and thereby hinder correct 

analysis.   
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Finally, while KKR and DRT are two very popular methods for analyzing data in modern 

impedance spectroscopy, the connection between the two, although known since 1954 [10], has 

found little interest [16]. We believe that the relation between KKR and DRT, combined with 

modern numerical methods, has the potential to lead to other useful results, beyond the very 

specific use proposed in this work. We will explore this possibility in future work. 
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Appendix: Selection of Modelling Parameters for calculation of DRTs 

The computer program DRTtools by Wan et al. [12] implements calculation of DRTs by Tikhonov 

regularization. The user can select a number of parameters for the calculation. Notably, one can 

choose as the data source either the real part of impedance, the imaginary part, or both combined. 

The main interest of the current paper is comparison of the results from real and imaginary parts. 

Wan et al. [12] have described in great detail the influence of the different parameters. Ivers-Tiffée 

et al. [9] focused on the regularization parameter λ, and investigated the influence of noise. For 

the present work, we decided to fix the parameters at given values, as follows: 

Discretization method: Gaussian Functions 

Regularization parameter: λ = 0.1 

Regularization derivative: first order 

Type of shape control: Shape Factor 

Shape Factor:  µ = 0.88 
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This choice of parameters was guided by the following observations: 

1) As we wish to compare different calculations, we are interested not only in the position of the 

peaks, but in their height and shape. The results should also be rather insensitive to noise, and 

independent of the density of data points (number of points per frequency interval). The 

parameters cited above fulfill these conditions, even though they lead to rather broad peaks and 

thus low resolution. 

2) Decreasing the value for λ, and changing ‘type of shape control’ results in narrower peaks, 

increasing the resolution. However, especially in the presence of noise, one often obtains 

spurious peaks [9], which would obscure the main findings of the present paper. Furthermore, 

the height of the peaks then depend on the density of the data. All this indicates that the DRT 

peak shapes are dominated by numerical effects when λ is too small. 

3) As proposed by Wan et al. [12], we used the Havriliak Negami (HN) model [17] in order to 

check the validity of our calculations. The DRT for the HN model is known analytically [18], and 

we confirmed that our calculations of DRTs are indeed correct up to a scaling factor, as shown 

in Fig. 4. 

 

(Figure 4) 

 

(Figure 5) 

 

4) The DRTs GRe and Gim can also be calculated via Fourier Transforms (FT), after transforming 

equations (2a-b) into convolution integrals [5,6]. Fig. 5 shows a comparison of the two methods 

for the case of GRe. In our opinion, the FT method is preferable in principle, because no additional 

numerical parameters, as compared to those above, have to be introduced, unless strong noise 

has to be smoothened (cf. the discussion in Ref.s [8] and [9]). Note that our data from FT 
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calculation in Fig. 5 were not post-treated with filters, as our data did not show oscillations as 

reported by other authors [6,7]. The selection of parameters for the Tikhonov method was guided 

by the objective to reproduce DRTs from the FT method at least approximately, as shown in 

Fig 5. 

5) On the other hand, our preliminary attempts to implement the FT method was showing 

reasonable results only when Z’ is used as data source, and calculation from Z’’ yielded spurious 

results for GIm, even for noise-free, synthetic source data. The ‘ill-posedness’ of the convolution 

integral, and resulting instability of the solution against noise, is often cited [9,12] as a reason to 

prefer the regularization method, but our results indicate that this point requires further 

investigations. 
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Fig. 1  Schematics and parameters used in circuit simulations for samples A, B, C, impedance and DRT 

data shown in Fig. 2 
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Fig 2: left-hand side: Nyquist plot Z’ vs Z’’ of impedance data simulated from a circuit of 3 R-C elements in 

series (see Fig. 1); red line: Kramers Kronig curve according to Eq. 1  

A: reference data, frequency range covers the semi-circles completely 

B: as A but some data at lowest and highest frequencies were removed 

C: as A but a frequency-dependent drift of Z’ was added (see Fig.1 for details) 

Right-hand side: DRT data calculated with DRTtools, from the same data samples A, B, C; with GRe in 

dotted dark blue and and GIm in solid light blue; vertical broken lines indicate frequency limits of input 

data. Note that high frequencies correspond to low resistance 

The parameter r2 was calculated according to Eq. 4, using only data within frequency limits of input.  
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Fig. 3 Left-hand side: Nyquist plot Z’ vs Z’’ of three SOFC half cells; black circles: measured data, red 

lines: Kramers Kronig curve according to Eq. 1 Right-hand side: DRT data calculated with DRTtools, 

from the same data samples D, E, F; with GRe in dotted dark blue and and GIm in solid light blue; vertical 

broken lines indicate frequency limits of input data. The parameter r2 was calculated according to Eq. 4, 

using only data within frequency limits of input. In the third row (example F), the frequency values 

corresponding to the main peaks are indicated for guidance. 
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Fig 4: DRT of a Havriliak Negami distribution with exponents 0.3 and 0.6, black diamonds : theoretical 

curve; blue lines: calculated Gre and Gim from DRTtools using the parameters listed in the text; all curves 

were rescaled so that their integral equals 1  

 

 

 

Fig 5: comparison of DRT calculations from Fourier-tranformation of a convolution equation (in black 

diamonds) and from DRTtools (blue dotted line), using Z’ data and the parameters listed in the text. Both 

curves were rescaled so that their integral is equal to 1, but no filters were applied. 


