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Abstract

Using a method introduced by R. Bamler to study the behavior of scalar cur-

vature under continuous deformations of Riemannian metrics, we prove that if

a sequence of smooth Riemannian metrics gi on a fixed compact manifold M

has isotropic curvature bounded from below by a nonnegative function u, and

if gi converge in C0 norm to a smooth metric g, then g has isotropic curvature

bounded from below by u. The proof also works for various other bounds from

below on the curvature, such has non-negative curvature operator.

A major trend in modern Riemannian geometry is to understand the geometry of a
metric space (X, d) which is a limit of a sequence of smooth manifolds (Mi, gi)i∈N in
terms of given geometric information on the elements of the sequence (Mi, gi)i∈N. In
a lot of cases (Mi, gi)i∈N is supposed to converge to (X, d) in the Gromov–Hausdorff
(abbreviated as GH) sense. In this context one can show the following results:

• If (Mi, gi)i∈N GH converges to a smooth manifold (M, g) and each (Mi, gi) has
sectionnal curvature greater thanK, then (M, g) has sectionnal curvature greater
than K. This follows from the synthetic theory of lower sectionnal curvature
bounds as exposed in [BBI01].

• If (Mn
i , gi)i∈N GH converges to a smooth manifold (Mn, g) and each (Mn

i , gi) has
Ricci curvature greater than K, then (Mn, g) has Ricci curvature greater than
K. Note that collapsing is ruled out in this case. The result is a consequence of
the theory of CD(K,N) spaces (see [LV09] and [Stu05]).
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e-mail: thomas.richard@u-pec.fr

1



The case of lower bounds on the scalar curvature is much less clear. As the example
of the product of a radius 1/i 2-sphere with a negative scalar curvature manifold shows,
a result as above cannot be true under the sole assumption of Gromov-Hausdorff
convergence, at least if collapsing is allowed. Example 6.1 in the preprint [BDS17] is
actually a 3 dimensional singular limit of a sequence of 3-manifolds with positive scalar
curvature which cannot be reasonably thought of as having positive scalar curvature.
In [Gro14], Gromov layed the first bricks of a possible synthetic theory of lower

bounds on scalar curvature and proved :

Theorem 0.1 (Gromov [Gro14]). Let M be a smooth manifold, u : M → R be a con-
tinuous function, and (gi)i∈N be a sequence of possibly non-complete C2 Riemannian
metrics. Assume that:

• For every i ∈ N, Scalgi(x) ≥ u(x).

• gi converges in C0 norm to a C2 Riemannian metric g.

Then Scalg(x) ≥ u(x).

Here and in the rest of the paper, by “gi converges in C0 norm to g” we will mean
that supM |gi − g| goes to zero as i goes to infinity where the pointwise norm of the
2-tensors gi − g is taken with respect to a fixed background Riemannian metric.
Gromov’s proof uses arguments from the theory of minimal hypersurfaces. In

[Bam16], Bamler gave an alternative proof of this result using Ricci flow. In this
paper we will adapt Bamler’s method to other type of curvature lower bounds and
show the following theorem:

Theorem 0.2. Let M be a compact smooth manifold and u be a lower semi-continuous
nonnegative function on M . Let gi be a sequence of complete smooth metrics with
bounded curvature on M which converges in C0 norm to a smooth metric g. Then:

• if for every i ∈ N the lowest eigenvalue of the curvature operator of gi at any
x ∈ M is bigger than u(x), then the lowest eigenvalue of the curvature operator
of g at any x ∈ M is bigger than u(x).

• if for every i ∈ N the isotropic curvature of gi at any x ∈ M is bigger than u(x),
then the isotropic curvature1 of g at any x ∈ M is bigger than u(x).

Then Rg − u I ∈ C.
This will actually follow from the more general Theorem 0.4 below.
To state it, we need to recall some notation: let A and B be two symmetric tensors on

an inner product space E, we define the algebraic curvature tensor A∧B : Λ2E → Λ2E
by:

(A ∧B)(x ∧ y) = 1
2 (Ax ∧By +Bx ∧Ay) .

We will also denote by I : Λ2E → Λ2E the identity operator.

1We say that (M, g) has isotropic curvature greater than k at x ∈ M if, for any orthonormal 4-
frame (e1, . . . , e4) of TxM , R(e1, e3, e1, e3)+R(e1, e4, e1, e4)+R(e2, e3, e2, e3)+R(e2, e4, e2, e4)−
2R(e1, e2, e3, e4) ≥ k. See Appendix B for more details.
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Definition 0.3. A curvature cone C ⊂ S2
BΛ

2
R

n is said to satisfy condition (∗) if:
• C is Ricci flow invariant.

• If R ∈ C then Ric(R) ∧ id ⊂ C.
The notion of Ricci flow invariant curvature cone is recalled in appendix A.
We mention here two examples of curvature cones which satisfy conditon (∗) :
• The cone of curvature operators with positive isotropic curvature satisfies (∗).
This follows from [Ngu10] or [BS09] and the two lemmas proven in the appendix.

• if C is Ricci flow invariant and {R ≥ 0} ⊂ C ⊂ {Ric(R) ≥ 0}, then it satisfies

condition (∗): indeed the eigenvalues of Ric(R)∧ id are
λi+λj

2 where the λi’s are
the eigenvalues of Ric(R) which are nonnegative by assumption. This includes
the cones of nonnegative curvature operators, 2-nonnegative curvature operators
as well as the NNIC1 and NNIC2 cones.

Theorem 0.4. Let C be a curvature cone which satisfies condition (∗). Let M be a
compact smooth manifold and u be a lower semi-continuous nonnegative function on
M . Let gi be a sequence of complete smooth metrics with bounded curvature on M
such that:

• As i goes to infinity, gi converges in C0 norm to a smooth metric g.

• For every i, the curvature operator of gi satisfies Rgi − u I ∈ C.
Then Rg − u I ∈ C.
Picking for C the NNIC cone or the cone of nonnegative curvature operators, we

recover Theorem 0.2
The proof of this result follows roughly Bamler’s proof in [Bam16] with some differ-

ences:

• the evolution equation for the curvature operator along the Ricci flow is not as
nice as the evolution equation for the scalar curvature, this is why we have not
been able to handle the case of a lower bound u of arbitrary sign.

• we require compactness of the manifold M because we are not able to localize
the argument as Bamler did. Our proof would work if we assumed completeness
and bounded curvature of all the metrics involved, in order to be able to apply
the maximum principle.

• we study the behavior of the heat flow as t goes to 0 using hessian estimates
based on the maximum principle, whereas Bamler uses heat kernel estimates.
This choice has been made to make the proof more self-contained.

Acknowledgments.

The author thanks Alix Deruelle for useful discussions during the preparation of this
paper.

3



1. Bounding the curvature from below by the heat flow

Proposition 1.1. Let C be a curvature cone which satisfy condition (∗). Let (M, g(t))t∈[0,T )

be a solution to the Ricci flow and u(t, ·) be a nonnegative solution to the heat equation
such that:

Rg(0) − u(0, ·) I ∈ C
Then

Rg(t) − u(t, ·) I ∈ C
for all t ∈ [0, T )

Proof. We will apply Hamilton’s maximum principle (see [Ham86], Theorem 4.3) to
L(t) = Rg(t) − u(t, ·) I. It satisfies the evolution equation:

(∂t −∆)L = 2Q(R)

= 2Q(L) + 4uQ(L, I) + 2u2Q(I)

= 2Q(L) + 4uRic(L) ∧ id+2(n− 1)u2 I

where Q(R) = R2 +R# and we have used the notations and results from [BW08].
(n − 1)u2 I ∈ C since C is a curvature cone, 2uRic(L) ∧ id ∈ C whenever L ∈ C by

condition (∗) and the fact that u is nonnegative, Q(L) ∈ TLC whenever L ∈ C since C is
Ricci flow invariant. Thus we have that (∂t −∆)L ∈ TLC whenever L ∈ C. Hamilton’s
maximum principe implies that L(t) ∈ C if L(0) ∈ C.

2. A variation on Koch and Lamm’s Ricci flow of C0

metrics.

We review here the theory of Ricci flow of C0 metrics develloped by Koch and Lamm
in [KL15] and [KL12]. The precise version of the theory we need here is formulated
in terms of Ricci flow background rather than a static background metric, and is very
similar to the theory developped by Deruelle and Lamm in [DL16] formulated with an
expanding Ricci soliton as a background.
Let g(t)t∈[0,T ) be a Ricci flow on a compact manifold M . We consider the following

problem:
{

∂tḡ = −2Ricḡ +LW (ḡ,g)ḡ

ḡ(0) = ḡ0
(RicDT)

where W (ḡ, g) is the vector field given in local coordinates by: W k = gij
(

Γ̄k
ij − Γk

ij

)

where Γ̄k
ij and Γk

ij are the Christoffel symbols of ḡ(t) and g(t) (respectively).
If we set h = ḡ − g, a computation shows that the equation above is equivalent to:

(∂t −∆L,g(t))h =∇l

((

(g + h)lm − glm
)

∇mhik

)

+ ḡ−1
⊛ ḡ−1

⊛∇h⊛∇h

+
(

(g + h)−1 − g−1
)

⊛Rg(t) ⊛ h

=F [h]
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where ∇ denotes the covariant derivative with respect to g(t), Rg(t) is the curvature
tensor of g(t) and ∆L,g(t) is the Lichnerowicz Laplacian with respect to g(t) (see
[CLN06], p. 109). If A and B are tensors, A⊛B denotes any tensor built by tracing
A⊗B.
Following [KL12], [KL15] and [DL16], let XT ′ be the space of time dependent sym-

metric 2-tensors h which satisfy:

‖h‖X = sup
M×[0,T ′)

|h|+ sup
(x,R2)∈M×(0,T ′)

(

R‖∇̄h‖2,x,R + ‖
√
t∇̄h‖+n+4,x,R

)

< +∞

where:

‖h‖p,x,R =













∫ R2

0

∫

Bḡ(s)(x,R)

|h|pdvḡ(s)ds
∫ R2

0

volḡ(s) Bḡ(s)(x,R)ds













1/p

‖h‖+p,x,R =













∫ R2

1
2R

2

∫

Bḡ(s)(x,R)

|h|pdvḡ(s)ds

∫ R2

1
2R

2

volḡ(s) Bḡ(s)(x,R)ds













1/p

.

For a fixed initial condition h0 small enough in C0 norm, one can consider the map
Φ, defined on XT ′ for T ′ small enough, which sends a small enough time dependent
symmetric 2-tensor k(t) to the solution h(t) of the linear problem:

{

(∂t −∆L,g(t))h = F [k]

h(0) = h0.

Lemma 2.1. Provided T ′ and the C0 norm of h0 are small enough, Φ : XT ′ → XT ′

is a strict contraction from a small ball in XT ′ to itself.

The proof of this result follows the same route as the proof of Theorem 4.3 in [KL12],
with adjustments needed to handle the fact that the background metric is evolving by
Ricci flow. These adjustments have been carried out in details in [DL16], though our
situation requires much less delicate estimates since we are only interested in short
time existence and uniqueness, whereas [DL16] study the long time behavior of the
solutions.
Banach’s fixed point theorem can then be applied to show that Φ has a unique fixed

point and get the following existence and uniqueness theorem:

Theorem 2.2. Let (M, g0) be a compact smooth manifold with a smooth riemannian
metric, let (g(t))t∈[0,T ) be the smooth Ricci flow starting from g0.
Then there exists ε > 0 and T ′ ∈ (0, T ) such that if ḡ0 is a metric with |ḡ0 − g0| < ε

then there exists a solution (ḡ(t))t∈[0,T ′) to the equation:

∂tḡ(t) = −2Ricḡ(t) +LW (ḡ(t),g(t))ḡ(t)
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with ḡ(0) = ḡ0.
Moreover for every k > 0, there exist constants Ck > 0 such that:

tk/2 sup
M

|∇k(ḡ(t)− g(t))| ≤ Ck sup
M

|ḡ0 − g0| (1)

for any t ∈ (0, T ′).
The solution ḡ(t) is unique among all solutions which satisfy the above estimate for

k = 0 and k = 1.

3. Hölder continuity of the heat flow in a Ricci flow

background

In this section, we will show an estimate on solutions to the heat equation which will
be used to control how fast a solution can deviate from its initial contion.
We start with the following well known lemma:

Lemma 3.1. Let (M, g(t)) be a solution to the Ricci flow and u(t) be a C2 solution
to the heat equation ∂tu = ∆g(t)u then :

sup
M

|∇u(t)| ≤ sup
M

|∇u(0)|.

Proof. Once one notices that Bochner’s formule implies

(∂t −∆g(t))|∇u(t)|2 = −2|∇2u(t)|2 ≤ 0,

this is a straightforward consequence of the maximum principle.

Proposition 3.2. Let (M, g(t)) be Ricci flow such that supM |Rg(t)| ≤ A/t for some
A > 0, let u(t) be a C2 solution to ∂tu = ∆g(t)u. Then for every α > 1/2 there exists
T ′(A,α) ∈ (0, T ) such that for every t ∈ (0, T ′):

sup
M

|∇2u(t)| ≤ supM |∇u(0)|
tα

.

Proof. We first compute, using the evolution equation for the Hessian given in [CLN06]
Lemma 2.33:

(∂t −∆g(t))|∇2u|2 = Ricg(t) ∗∇2u ∗ ∇2u+ 2
〈

(∆L −∆)∇2u,∇2u
〉

− 2|∇3u|2

= Rg(t) ∗ ∇2u ∗ ∇2u− 2|∇3u|2

≤ CnA

t
|∇2u|2

where Cn is a dimensional constant.
We now fix α > 1/2 and set δ = 2α − 1 > 0 and F (t) = t1+δ|∇2u|2 + |∇u|2. F

satisfies:
(∂t −∆g(t))F ≤

(

CnAt
δ + (1 + δ)tδ − 2

)

|∇2u|2.
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The right hand side is negative for t ≤
(

2
CnA+1+δ

)1/δ

= T ′. Thus the maximum

principle implies that supM F (t) ≤ supM F (0) = supM |∇u(0)|2 for t ∈ (0, T ′).
Since t1+δ|∇2u(t)|2 ≤ F (t), we have the required estimate.

Proposition 3.3. Let ḡ(t) be a solution to equation (RicDT) given by Theorem 2.2,
and ū be a C2 solution to:

∂tū = ∆ḡ(t)ū+
〈

W, ∇̄ū
〉

.

Then for every β ∈ (0, 12 ), there exist constants C, T
′ > 0 depending only on supM |ḡ0−

g0| and supM |∇̄ū(0)| such that:

sup
M

|ū(t)− ū(0)| ≤ Ctβ

for t ∈ [0, T ′).

Proof. Let W = W (ḡ, g) be the vector field built from the solution ḡ(t) to equation
(RicDT) given by Theorem 2.2. Let us remark that |Rḡ(t)| ≤ A/t and |W (ḡ(t), g(t))| ≤
B/

√
t thanks to the estimate (1).

Let ϕt be the flow of the vector field −W . Then set g̃(t) = ϕ∗

t ḡ(t) and ũ(t) = ϕ∗

t ū(t).
We have that:

{

∂tg̃ = −2Ricg̃

∂tũ = ∆g̃ũ

We will have that |Rg̃(t)| ≤ A/t since the same estimate was true for ḡ(t). Thus we
can apply Propositions 3.1 and 3.2 to get that:

sup
M

|∇̃ũ| ≤ C1, sup
M

|∇̃2ũ| ≤ C2

tα

for any α > 1
2 and t ≤ T (α,A). Those same estimates will thus hold for ū.

We can then write:

|ū(t)− ū(0)| ≤
∫ t

0

|∆ḡū|+ |
〈

W, ∇̄ū
〉

|dt

≤
∫ t

0

√
n|∇̄2ū|+ |W | |∇̄ū|dt

≤
∫ t

0

√
nC2t

−α + C1Bt−1/2 dt

≤Ct1−α.
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4. Proof of the main result

Proof of Theorem 0.4. In this section we prove Theorem 0.4.
For any lower semi continuous u : M → R, one can find a sequence of vk of smooth

functions such that vk ≤ u and vk pointwisely converges to u. Thus we can assume
that u : M → R is C∞.
Let g(t) be the Ricci flow of g and gi(t) be the solution to equation (RicDT) such

that gi(0) = gi.
Thanks to Theorem 2.2, we have that gi(t) converges in C∞

loc((0, T ) × M) to g(t).
Set ui(t) be the solution to:

∂tui = ∆gi(t)ui + 〈W (g(t), gi(t)),∇ui〉

with ui(0) = u.
Thanks to the maximum principle ui(t) is bounded uniformly in i ∈ N. We also have

uniform bounds on the Hessian and the gradient of each ui(t) thanks to the results of
section 3. Thus, up to a subsequence, ui(t) converges locally uniformly on (0, T )×M
to a solution u(t) of the equation:

∂tu = ∆g(t)u.

Thanks to proposition 3.3, we have that for each i, supM |ui(t)− u| ≤ Ct1/4. Hence
supM |u(t)− u| ≤ Ct1/4 and u(t) uniformly converges to u as t goes to 0.
Moreover, up to a pull back by a time dependent diffeomorphism, gi(t) and ui(t)

satisfy the hypothesis of proposition 1.1. Hence we have that Rgi(t) − ui(t) I ∈ C.
Since gi(t) converges in C2 to g(t) for every fixed t > 0, we have that :

Rg(t) − u(t) I ∈ C.

We now let t go to 0 to get :
Rg − u I ∈ C.

This ends the proof of Theorem 0.4.

A. Curvature cones and the Ricci flow

We gather here some definitions on Ricci flow invariant curvature cones for convenience
of the reader. For a more detailed exposition of this topic see [Ric14].
Recall that the space of algebraic curvature operators, denoted by S2

BΛ
2
R

n, is the
space of symmetric endomorphisms R : Λ2

R
n → Λ2

R
n which satisfy the Bianchi

identity:
〈R(x ∧ y), z ∧ t〉+ 〈R(y ∧ z), x ∧ t〉+ 〈R(z ∧ x), y ∧ t〉 = 0.

The orthogonal group O(n) acts on S2
BΛ

2
R

n by:

〈g · R(x ∧ y), z ∧ t〉 = 〈R(gx ∧ gy), gz ∧ gt〉 .
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Definition A.1. A curvature cone is closed convex cone C ⊂ S2
BΛ

2
R

n which is O(n)
invariant and contains the identity operator I : Λ2

R
n → Λ2

R
n in its interior.

Thanks to the O(n) invariance of R, it makes thanks to see C as a subset of
S2
BΛ

2TxM for each point x in a Riemannian manifold (M, g), and thus it makes sense
to say that the curvature operator Rg of a Riemannian manifold (M, g) belongs to C.
Recall that, once Uhlenbeck’s trick has been applied, the curvature operator Rg(t)

of a Ricci flow (M, g(t)) satisfies

∂tRg(t) = ∆g(t)Rg(t) +Q(Rg(t))

where Q(·) can be seen as a quadratic vector field Q : S2
BΛ

2
R

n → S2
BΛ

2
R

n. We will
write Q(·, ·) for the associated bilinear map.
With Hamilton’s tensor maximum principle in mind, we have the following defini-

tion:

Definition A.2. A curvature cone C is said to be Ricci flow invariant if Q(R) ∈ TRC
whenever R ∈ C.

Examples of Ricci flow invariant curvature cones include the cones of curvature
operator which are nonnegative or 2-nonnegative as symmetric quadratic forms, the
cone of NNIC curvature operators and the related NNIC1 and NNIC2 cones.

B. Isotropic curvature and Ricci curvature

If R is a curvature operator, we set Rijkl = 〈R(ei ∧ ej), ek ∧ el〉. Recall that R is
said to have nonnegative isotropic curvature (in short NNIC) if, for any orthonormal
4-frame (e1, e2, e3, e4), we have:

IC1234(R) = R1313 +R1414 + R2323 +R2424 − 2R1234 > 0.

Recall that a symmetric tensor is said to be k-nonnegative if the sum of its k smallest
eigenvalues is nonnegative.
These two lemmas show that that the cone of curvature with nonnegative isotropic

curvature satisfy condition (∗).

Lemma B.1. Let R be a NNIC curvature operator, then Ric(R) is 4-nonnegative.

Proof. Let (ei)i=1,...,n be any orthonormal basis of Rn.
If R is PIC, we have:

R1i1i +R1j1j +R2i2i +R2j2j − 2R12ij ≥ 0.

Summing this and the same expression obtained by exchanging ei and ej, we get:

R1i1i +R1j1j +R2i2i +R2j2j ≥ 0.

9



We sum together the n − 3 terms corresponding to letting i ranging from 3 to n,
excluding j, we get:

R11 +R22 + (n− 4)(R1j1j +R2j2j)− 2R1212 ≥ 0

where Rii stands for Ric(R)(ei, ei).
We now sum over j ranging from 3 to n. This gives:

(n− 3)(R11 +R22 − 2R1212) ≥ 0.

Thus we have R11 +R22 ≥ 2R1212. Hence:

R11 +R22 +R33 +R44 = 1
2 (R11 +R33) +

1
2 (R11 +R44)

+ 1
2 (R22 + R33) +

1
2 (R22 +R44)

≥R1313 +R1414 +R2323 +R2424

≥0.

Since this inequality is true for any orthonormal 4-frame (e1, e2, e3, e4), we have that
Ric(R) is 4-positive.

Lemma B.2. Let A be a 4-nonnegative symmetric endomorphism, then A ∧ id is
NNIC.

Proof. Recall that if (ei, ej , ek, el) come from an orthonormal frame, we have that:

(A ∧ id)ijkl =
1

2
(Aikδjl −Ailδjk + δikAjl − δilAjk)

which implies that (A ∧ id)ijkl = 0 if i, j, k, l are all distinct and that (A ∧ id)ijij =
1
2 (Aii +Ajj) if i 6= j.
Let (e1, . . . , e4) be any orthonormal 4-frame, and A be a symmetric endomorphism.

Then:
IC1234(A ∧ id) = A11 +A22 +A33 +A44 ≥ 0

since A is 4-positive.

References

[Bam16] Richard H. Bamler. A Ricci flow proof of a result by Gromov on lower bounds
for scalar curvature. Math. Res. Lett., 23(2):325–337, 2016.

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,
volume 33 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2001.

[BDS17] J. Basilio, J. Dodziuk, and C. Sormani. Sewing Riemannian Manifolds with
Positive Scalar Curvature. ArXiv e-prints, March 2017.

10



[BS09] Simon Brendle and Richard Schoen. Manifolds with 1/4-pinched curvature
are space forms. J. Amer. Math. Soc., 22(1):287–307, 2009.
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