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Abstract. Hyperspectral imagery is a powerful source of information
for recognition problems in a variety of fields. However, the resulting
data volume is a challenge for classification methods especially consider-
ing industrial context requirements. Support Vector Machines (SVMs),
commonly used classifiers for hyperspectral data, are originally suited
for binary problems. Basing our study on [12] bbas allocation for binary
classifiers, we investigate different strategies to combine two-class SVMs
and tackle the multiclass problem. We evaluate the use of belief func-
tions regarding the matter of SVM fusion with hyperspectral data for a
waste sorting industrial application. We specifically highlight two possi-
ble ways of building a fast multi-class classifier using the belief functions
framework that takes into account the process uncertainties and can use
different information sources such as complementary spectra features.

Keywords: Hyperspectral classification, Belief Function Theory, waste
sorting.

1 Introduction

Hyperspectral imaging acquires an almost continuous sampling of the spectral
data in each pixel of a scene. The large number of narrow and contiguous bands
allows us to detect even minor variations in a spectrum and provides a significant
advantage for the distinction of different materials (natural or artificial). Hyper-
spectral imaging popularity has thus increased during the last decade, due both
to the increase in computing power (that allows us to process these voluminous
data) and to the need of separation of increasingly specific classes, e.g. different
kinds of polymers for industrial application or different mineralogical composi-
tions of surfaces for remote sensing applications. The acquisition of numerous
wavebands enables the identification of fine classes belonging to various fields:
atmosphere analysis, ecosystems monitoring, military applications and industrial
applications (e.g. [5]).

Recently, hyperspectral imaging industrial applications appeared in waste
sorting field. This latter needs new automated processes to improve the working
conditions and decrease the cost of recycled materials. This requires sensors able



2 Lachaize, le Hégarat-Mascle, Aldea, Maitrot, Reynaud

to discriminate among waste materials as close (in terms of spectral response)
as different kinds of plastics or different fibrous materials. Then, some efficient
classification methods should be defined to use the full potential of hyperspectral
data in this industrial context: methods adapted to waste material classes, robust
to significant object occlusion (objects stacked on one another), and fast enough
to match the waste flow.

Hyperspectral imagery provides detailed spectral information for each pixel of
the picture. This information richness comes with an obvious drawback: the huge
amount of data to process. Indeed, it involves significant computing resources
(time, memory) that may be an issue in an industrial context. In addition to
spectral information, several works also propose to include spatial information
in their classification process, e.g. [13]. However, in this study, we focus on blind
classification, i.e. classification of each pixel independently (not taking into ac-
count the neighbouring pixels that provide the spatial information). For our
industrial application, it is a first step towards a classification process at object
level which couples blind classification and spatial segmentation using others
sensors.

Support vector machines (SVMs) are classically used to meet the challenge
of hyperspectral classification, see [8, 10, 7] for instance. Basically, they project
data into a higher dimensional space in which classes can be separated using
(optimal) hyperplanes. SVMs are widely used in a probabilistic framework (e.g.
through logistic regression). However, probabilities are not able to distinguish
between uncertainty (in decision process) due to ambiguity, e.g. because of over-
lapping between classes, and uncertainty due to imprecision, e.g. because of low
number of samples for some score values during the SVM training and calibra-
tion processes. Thus, [12] has extended several classical regressions used for SVM
binary classifiers to the Belief Function Theory framework.

As SVMs are well suited for 2-class problems, several strategies have been
proposed to address the multiclass case. Classical approaches are: (i) the one-
versus-one strategy, where a classifier is trained on each class pair and (ii)
the one-versus-all strategy, where a classifier is trained to distinguish one class
against all the others. For each strategy, the merging of these 2-class classifiers
is an important issue. In this study, we propose and evaluate three strategies
to combine binary SVM outputs in the BFT framework. We also show that
the use of belief functions allows us to combine the information contained into
different input data derived from the whole spectrum data, and that it is an
efficient way to deal with the complexity involved by the high dimensionality of
the hyperspectral data.

2 Strategies from binary to multiclass belief functions

Addressing a multiclass problem from binary SVMs (one-versus-one or one-
versus-all), we have to combine their binary decisions while taking into account
the imprecision of each SVM (classes overlapping, number of samples, . . . ). We
choose to perform this combination in BFT framework considering SVM outputs
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as logical sources. The way an observed score generates a basic belief assignment
(bba) is defined by the calibration step proposed by [12]. It is briefly recalled in
Appendix. Then, in the following, we assume that each cluster of SVM produces
as many bbas as there are SVMs in the cluster, and that each bba represents
our belief in each of the two classes handled by the considered SVM as well as
the ignorance left by this classifier.

Notation are as follows. For any one-versus-one SVM dealing with the pair of

classes ωj and ωk, Ωbj,k denotes the associated discernement frame and mΩbj,k the
bba derived from calibration. For any one-versus-all SVM dealing with the pair
of classes ωj and its complementary ω̄j , Ω

b
j denotes the associated discernement

frame and mΩbj the bba derived from calibration. In both cases, the upperscript
b recalls that SVM was binary and the cardinality of Ωbj,k or Ωbj is 2. Then,
the transition from binary classification to a multiclass one implies a change of
discernment frame from Ωbj,k or Ωbj to Ω = {ω1, . . . , ωn}, the multiclass set.

2.1 Case of one-versus-one SVMs

In the one-versus-one strategy, Ωbj,k = {ωj , ωk} and mΩbj,k is interpreted as the

result of a conditioning of a multiclass bba mΩ on Ωbj,k, noted mΩ
[
Ωbj,k

]
. Then,

from these conditioned estimations of the bba, [9] proposes to derive mΩ by
solving the optimization problem:

min
mΩ

∑
k>j

∑
∅6=A⊆Ω

(
mΩ

[
Ωbj,k

]
(A)−mΩbj,k (A)

(
1−mΩ

[
Ωbj,k

]
(∅)
))2

, (1)

under the constraints: (i) mΩ(A) ≥ 0,∀A ∈ 2Ω , (ii) mΩ(∅) = 0 and (iii)∑
A∈2Ω m

Ω(A) = 1. In Eq.(1), the factor 1 − mΩ
[
Ωbj,k

]
(∅) is due to the fact

that mΩbj,k is a normal bba which may not be the case for mΩ
[
Ωbj,k

]
. To solve

such a constrained system, we have noticed that it can also be written as a
matrix system minX |AX-B|2.

In this study, we propose an alternative to derive mΩ that consists in simply

performing a deconditioning of every bba mΩbj,k on the frame of discernment Ω

and then combining the deconditioned bbas mΩbj,k⇑Ω using a conjunctive rule:
denoting B = Ā the complementary in Ω of hypothesis A,

mΩ (A) = ∩ (j,k)∈[1,n]2m
Ωbj,k⇑Ω (A) ,∀A ∈ 2Ω , (2)

with
mΩbj,k⇑Ω

(
A ∪ Ω̄j,k

)
= mΩbj,k (A) ,∀A ∈ {ωj , ωk, {ωj , ωk}} . (3)

This second way is much simpler than the first one and it is theoretically
founded on the independence between the binary SVM outputs. Now, it could
provide an interesting approximation of the solution and even, it outperforms
the optimization proposed by [9] in our application case. Therefore, on this latter
at least, there are only advantages in using the proposed alternative.
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2.2 Case of one-versus-all SVMs

In the one-versus-all strategy, the binary discernment frames Ωbj are some coars-
enings of discernment frame Ω, or equivalently Ω is a common refinement of the
different Ωbj = {ωj , ω̄j}. Then, the bbas defined on Ωbj are refined on Ω using
classical refinement operator, before combination using Dempster’s rule:

mΩ (A) = ⊕j∈[1,n]mΩbj↑Ω (A) ,∀A ∈ 2Ω , (4)

with
mΩbj↑Ω (A) = mΩbj (A) ,∀A ∈ {ωj , ω̄j , Ω} . (5)

Here, we use the orthogonal sum instead of the conjunctive combination rule
since, due to the existence of singleton focal elements and to the high num-
ber of combinations (as much as the number of classes), conflict becomes very
important even in standard cases.

2.3 Case of hybrid strategy

Each of the two previous strategies handles a given kind of binary SVMs, either
one-versus-one or one-versus-all. Each of these strategies has some advantages:
better separability of the classes for the one-versus-one SVMs, simplicity and
speed for the one-versus-all SVMs. Then, in order to benefit from both advan-
tages, we propose a hybrid strategy that handles SVMs belonging to both kinds
of binary SVMs.

The proposed solution is based on some metaknowledge on the classes used to
choose the considered SVMs. Let us first present the particular case of a hierar-
chical strategy through a toy example with only 4 classes: Ω = {ω1, ω2, ω3, ω4},
and assume ω3 and ω4 classes are difficult to separate. According to the pro-
posed strategy, one will focus on most performing SVMs, i.e. SVMs ‘ω1 against
{ω2, ω3, ω4}’, ‘ω2 against {ω1, ω3, ω4}’, ‘{ω3, ω4} against {ω1, ω2}’ and ‘ω3 against
ω4’. In a more general way, the classes of Ω are ‘wisely’ grouped to form a new
coarsened discernment frame on which the one-versus-all approach performs
well (‘good’ enough class separability, such as for {ω1, ω2, {ω3, ω4}} in the ex-
ample). Then, the considered classifiers are: the one-versus-all SVMs for classes
corresponding to singleton hypotheses of the coarsened discernement frame (i.e.
some of them are compound classes, e.g. hypothesis {ω3, ω4} in the exemple)
and the one-versus-one SVMs for classes belonging to a coumpound class of the
coarsened discernment frame (e.g. SVM ω3 versus ω4 in the example). The bbas
derived from outputs of previously cited SVMs that have been either refined
or deconditionned on Ω are combined using conjunctive rule (or Dempster’s
orthogonal rule).

This hierarchical strategy appears as a compromise in terms of number
of used (and thus trained) classifiers: if n = |Ω|, with the pure one-versus-

one strategy, we have to consider
(
n
2

)
= n(n−1)

2 classifiers, with the pure one-
versus-all strategy, we have to consider n classifiers and with the hierarchical
strategy involving l groups of ni indistinguishable classes, we have to consider
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n −
∑l
i=1 (ni − 1)) one-versus-all classifiers and

∑l
i=1

ni(ni−1)
2 one-versus-one

classifiers.
With respect to the hierarchical strategy, the hybrid strategy can in addition

consider few other classifiers in order to increase the redundancy between clas-
sifiers and then provide more robust results. However, this number of additional
classifiers should remain low to keep an interest in terms of complexity.

Finally, if the derivation of the metaknowledge is a subject beyond the scope
of this article (here we simply assume that it can be either known a priori
or learnt from training samples), let us underline that it is the crucial point
for the proposed hybrid strategy since it allows us to add prior information
(metaknowledge) that should be carefully chosen.

2.4 Decision

Independently of the strategy used, at the end, we have a bba resulting from the
combination of the information pieces provided by different binary SVMs taking
into account their own features (in particular the learning step conditions and
results). From this bba, we can take a decision or, as seen in the experimental
part, combine it with other bba(s) and then take the decision.

The belief function framework offers many possibilities for decision mak-
ing [3]. Among them, pessimistic and optimistic strategies consist in maximizing,
over the singleton hypotheses, the belief or plausibility function, respectively. A
decision according to the pignistic probability provides intermediate results.

Here, specific to the one-versus-one strategy based optimization [9], we also
test the following criterion: the decided singleton class ωi maximizes the conflict
generated by conditioning on binary subsets not including ωi:

ωi = arg maxi
∑
j,k 6=i

mΩ
[
Ωbj,k

]
(∅) . (6)

3 Experiments

3.1 Industrial context and data preprocessing

We applied the proposed classification strategies to waste sorting. Despite the
use of some sorting components exploiting the mechanical properties of the waste
materials in order to separate them, this industrial application has still several
issues such as the automatic identification of some resembling materials or the
detection of some ‘intruders’ in a set of similar wastes (e.g. paper, cardboard
and plastic waste). For such purposes, the hyperspectral sensor appears relevant
since it provides some information about the nature of the material itself that
should help us to discriminate among different fibrous materials and polymers
with high throughput and a reliability and robustness suitable for an industrial
context.

As with any classification method, the performance of a SVM classifier strongly
depends on the input data. Classical preprocessing on the spectrum involves a
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filtering and derivation at different orders. Specifically, the Savitsky-Golay filter
is widely used for hyperspectral data analysis [6, 11]. This filter fits a low degree
polynomial on data within a sliding window having fixed size. It allows us to
smooth the data and to compute the derivatives from the fitted polynoms. The
fact of considering different derivative orders (typically 0, 1 and 2) appears all
the more justified since, for classification, not the whole spectrum is considered
but only some selected features, in order to reduce both the data complexity and
the correlation between the bands. Then, a classical way is to perform a Princi-
pal Component Analysis (PCA) on the filtered spectra, e.g. [2, 1]. In our case,
the number of selected components is set to represent 99% of the information.
It varies between 3 to about 20 whereas the whole spectrum dimensionality was
about 275.

In summary, preprocessing involves the computation of different derivative
orders (0, 1 and 2) of the spectrum by the Savitsky-Golay filter and then, for
each of these derivatives, the computation of the PCA that provides the input
data for the SVM classifiers. In the following, these input data are denoted S0,
S1 and S2 where subscript denotes the derivation order. The results obtained
using these inputs will be compared in terms of classification performance. We
also propose to use them as different logical sources so that, we combine the
multiclass (defined on Ω) bbas derived for given input data (S0, S1 and S2).
Assuming that the PCA process makes input data cognitively independent, bba
combination will be done through the conjunctive rule.

3.2 Experimental results

The sample sets used for these experiments have been collected in the Veolia
laboratories on a hyperspectral sensor (whose spectra contains about 275 wave-
lengths) via specimen boards with small material samples: four boards called
Paper, Plastic1, Plastic2a, Plastic2b. Samples are divided in 9 classes, namely 7
polymers classes (not listed here for paper shortness) and 2 fibrous classes (paper
and cardboard). From specimen boards, three different datasets were extracted.
The first one, called training set, has 1000 samples per class and is used for
SVM training. The second one, called calibration set, has 200 samples per class
and is used for bba calibration. The last one has 1000 samples per class and is
used for test and performance estimation. In addition to this test dataset, an-
other board, exclusively used for testing and called Superposition, presents real
objects stacked on top of each other to provide more realistic conditions.

Then, the training set allows for the estimation of each SVM classifier param-
eters, determined by cross validation and grid search, using Gaussian kernels.
The calibration set allows for the estimation of sigmoid parameters and contour
function defined for any score value (see Appendix for details). It also allows
us to determine the classes to group for the hybrid strategy. Then, using the
test set and the Superposition board, the first analysis (not presented here) puts
forward some complementarity of classification performance for the input data
S1 and S2, in particular for the ‘difficult’ pixels such as those present in the
shadows or pixels corresponding to the superposition of two objects. The initial
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Strategy→ one-versus-one one-versus-all hybrid

↓Boards score vote optimization deconditioning

Paper 95.3 95.2 95.5 91.6 94.1
Plastic1 90.2 87.3 91.4 85.2 91.0
Plastic2a 79.1 83.7 84.1 77.5 79.5
Plastic2b 87.2 89.3 89.7 83.9 87.8

Superposition 82.8 88.0 88.4 79.5 80.1

whole data 86.9 88.8 89.8 83.5 86.5

Table 1: Correct classification rate (in %) for the 5 test sample boards (each
one having 13500 pixels). Results are given for S1 source, considering different
strategies and decisions for the one-versus-one strategy.

analysis also revealed that the S0 input data provides results of little interest
(low performance and lower complementarity) so that it has not been considered
in the results presented further.

3.3 Comparison of the different strategies

The comparison of the different strategy is presented here in the case of S1

data that prompts better results than S0 or S2. Considering S1, the hybrid
strategy was instanciated introducing two coarse classes: one grouping paper
and cardboard and another grouping two classes of polymers (among the 7). A
supplementary one-versus-one classifier is also considered to remove ambiguities
between two other classes of polymers.

Classification results are analyzed in the perspective between comparison
of (i) different multi-class strategies (one-versus-one, one-versus-all, hybrid),
(ii) different decision making processes for the one-vs-one strategy. Quantita-
tive results, computed on the whole datasets, are shown in Tab. 1. Our main
conclusions are:

– In the case of the one-versus-one strategy, solving Eq. (1), the computation
time increases dramatically with the number of classes (factor about 200
with the one-vs-all strategy computation time). Performing deconditioning
(Eq. (2)) as proposed provides slightly better results for a much lower com-
putation time.

– Comparison with classic decision rules, either score voting (shown in Tab. 1)
or probabilistic decision (not shown) shows that the optimistic decision on
bba obtained using either optimization or deconditioning (Eq. (2)) is better
in every cases.

– The one-vs-one strategy always outperforms the one-vs-all strategy and the
hybrid one, which is a standard result due to the better separability of the
classes and much higher number of considered classifiers.

– The hybrid strategy shows intermediate results between the one-vs-one strat-
egy and the one-vs-all one: depending on the considered test dataset, the
improvement relatively to the one-vs-all strategy varies between 0.6% and
5.8%.
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Fig. 1: Example of the fusion impact on classification rate (Superposition board).
From left to right: test board image, binary representations of the well classified
pixels (in white) considering S1, S2 and their evidential fusion, respectively.

Boards→ Paper Plastic1 Plastic2a Plastic2b Superposition whole data

one-versus-one 93.3 93.4 82.2 87.9 89.9 89.3

one-versus-all 92.3 91.8 80.1 87.1 87.3 87.7

hybrid 95.9 92.2 78.4 87.3 86.1 88.0

Table 2: Correct classification rate (in %) for the 5 test sample boards. Results
are given for the S1&S2 fusion, considering different strategies.

3.4 Combination of sources S1 and S2

In this subpart, classification results are analyzed versus different input data,
namely both S1 and S2 (combined by fusion) or only S1 (shown in Tab. 1).
Quantitative results are shown on Tab. 2. Our main conclusions are:

– The fusion of S1 and S2 sources provides no or low improvement compared
to the one-vs-one strategy, however the complementarity is very beneficial
to the one-versus-all strategy and narrows the gap between the classification
results of the two strategies (from 6.3% to 1.5% on the whole dataset).

– Figure 1 presents the Superposition results illustrating that the fusion im-
proves particularly the classification of the difficult pixels, such as at the top
of the bottle and the caps stacked on paper.

– The hybrid strategy still provides intermediate results between one-versus-
one strategy and one-versus-all one, but the interest relatively to the one-
versus-all is reduced (relatively to the case of the only-S1 data) due to the
high improvement of performance of one-versus-all strategy provided by
fusion.

4 Conclusion and perspectives

This study has investigated the possibility in BFT to build a multiclass classi-
fier which would be fast and efficient enough to be considered in the industrial
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context of waste sorting. We compare different ways to achieve it: using the
deconditioning operator on bbas derived from one-vs-one classifiers, using the
refinement operator on bbas derived from one-vs-all classifiers or a using hybrid
strategy. According to our tests, using one-vs-one leads to better performance
but requires more classifiers to train than using one-vs-all classifiers. Using op-
timization [9] to derive the multiclass bba from bbas derived from one-vs-one
classifiers can be advantageously replaced by the proposed deconditioning and
conjunctive combination in terms of computation time. Hybrid strategy seems a
good compromise between pure one-vs-one and pure one-vs-all strategies, pre-
senting both reasonable number of classifiers and interesting performance results.
Combining multiclass bbas associated to different features of the hyperspectral
spectra (different orders of derivative) enhances the classification results in a
noticeable way.

A main perspective to our work is the automatic derivation of the meta-
knowledge on data used to build the hybrid strategy. We saw that the results
provided by hybrid strategy are encouraging. However, the impact of the meta-
knowledge has to be investigated and this also indirectly raises the question of
the calibration quality of the binary classifiers. Then, we also intend to inves-
tigate some evidential criteria that will allow us to analyze training calibration
sets, for instance to group automatically some classes and make the most of the
hybrid strategy.

Appendix: Evidential calibration

Handling binary classifiers, the discernment frame is Ωb = {{0} , {1}}. Then, for
a given SVM having its own features in terms of number of samples, learning
step performance, we aim at defining a belief function for each score that reflects
the confidence we may have in each class. Indeed, this belief function will be used
for forecasting taking into account the whole training set specificities. Explicitly,
for each score s, the mass function, denoted m, is derived from the contour
function: ω → plX (ω, s), where ω = P (y = 1 |s ) (note that, ω is not a class but
a probability).

To build the contour function on ω, [12] uses the idea behind the logistic
regression: approximating the probability P (y = 1 |s ) by a sigmoid sigs (θ) =

[1 + exp(θ0 + θ1s)]
−1

, where the parameter θ̂ = (θ0, θ1) is determined by maxi-
mizing the likelihood function LX (θ) over the training setX = {(s1, y1), . . . , (sN , yN )}
where, for each sample number i, si ∈ R is the score given by the considered
classifier and yi ∈ {0, 1} is its true label. Then, the contour function of interest
is drawn for a given value of score. It derives from the 2D function plotting the

relative value of the likelihood function LX(θ)

LX(θ̂)
versus θ = (θ0, θ1).Then, for any

given pair (s, ω), the set of θ (i.e. sig−1s (ω)) values is a straight line in R2. Then,
the contour function value can be determined as the maximum value over this
straight line:
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pl
Ωbj,k
X (ω) =

{
0 if ω ∈ {0, 1} ,
supsig−1

s (ω)
LX(θ)

LX(θ̂)
otherwise,

(7)

with LX (θ) =
∏N
i=1 p

yi
i (1 − pi)1−yi where pi = 1

1+exp(θ0+θ1si)
. Finally, from

each pl
Ωbj,k
X , the corresponding mass function mΩbj,k on binary discernment frame

Ωbj,k is derived using the ‘likelihood based’ belief function for statistical inference
approach proposed by Shafer and further justified by Denœux [4].

References

1. R. Cavalli, G. Licciardi, and J. Chanussot. Archaeological structures using nonlin-
ear principal component analysis applied to airborne hyperspectral image. IEEE
J. of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2):659–
669, 2013.

2. G. Chen and S.-E. Qian. Denoising of hyperspectral imagery using principal com-
ponent analysis and wavelet shrinkage. IEEE Trans. on Geoscience and Remote
Sensing, 49(3):973–980, 2011.

3. T. Denoeux. Analysis of evidence-theoretic decision rules for pattern classification.
Pattern recognition, 30(7):1095–1107, 1997.

4. T. Denœux. Likelihood-based belief function: justification and some extensions to
low-quality data. Int. J. of Approximate Reasoning, 55(7):1535–1547, 2014.

5. H. Grahn and P. Geladi. Techniques and applications of hyperspectral image anal-
ysis. John Wiley & Sons, 2007.

6. R. L. King, C. Ruffin, F. LaMastus, and D. Shaw. The analysis of hyperspectral
data using savitzky-golay filtering-practical issues. 2. In Proceedings of IGARSS’99,
volume 1, pages 398–400. IEEE, 1999.

7. B.-C. Kuo, H.-H. Ho, C.-H. Li, C.-C. Hung, and J.-S. Taur. A kernel-based feature
selection method for svm with rbf kernel for hyperspectral image classification.
IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing,
7(1):317–326, 2014.

8. F. Melgani and L. Bruzzone. Classification of hyperspectral remote sensing images
with support vector machines. IEEE Trans. on Geoscience and Remote Sensing,
42(8):1778–1790, 2004.

9. B. Quost, T. Denœux, and M.-H. Masson. Pairwise classifier combination using
belief functions. Pattern Recognition Letters, 28(5):644–653, 2007.

10. S. Samiappan, S. Prasad, and L. M. Bruce. Non-uniform random feature selection
and kernel density scoring with svm based ensemble classification for hyperspectral
image analysis. IEEE J. of Selected Topics in Applied Earth Observations and
Remote Sensing, 6(2):792–800, 2013.

11. C. Vaiphasa. Consideration of smoothing techniques for hyperspectral remote
sensing. ISPRS J. of Photogrammetry and Remote Sensing, 60(2):91–99, 2006.

12. P. Xu, F. Davoine, H. Zha, and T. Denoeux. Evidential calibration of binary svm
classifiers. Int. J. of Approximate Reasoning, 72:55–70, 2016.

13. J.-H. Yang, L.-G. Wang, and J.-X. Qian. Hyperspectral image classification based
on spatial and spectral features and sparse representation. Applied Geophysics,
11(4):489–499, 2014.


