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Abstract—Feature matching plays an important role in many
computer vision applications, such as object recognition, scene
reconstruction or image mosaicing. In this paper, we propose an
algorithm called Hessian ORB - Overlapped FREAK (HOOFR)
which is based on the combination of the ORB detector and the
FREAK bio-inspired descriptor. We address some modifications
related to the detection and the description processes in order
to enhance HOOFR reliability, speed and memory fingerprint.
The experiments on a widely used dataset demonstrate the
considerable performance of HOOFR compared to SIFT, SURF
or ORB in terms of the execution time and the matching quality,
in various matching contexts.

Index Terms—SIFT, SURF, ORB, FREAK, Hessian matrix,
Feature matching.

I. INTRODUCTION

Feature matching is the task of establishing the correspon-
dences between two images of the same scene and many
vision applications rely on the stability of the matching result.
Through over a decade old, the most popular algorithm is
Scale Invariance Feature Transform (SIFT) proposed by Lowe
[1]. SIFT identifies keypoints based on the local extremum of
Different of Gaussian (DoG) over scale space and describes
them by a 3D spectral histogram of the image gradients.
SIFT is remarkably successful in object recognition [1], vi-
sual mapping [2], automatic parorama[3], etc. However, it
is affected by high computation requirements, which pro-
hibit its implementation in real-time applications such as
visual odometry, or on low-power embedded devices such
as mobile phones. An alternative named Speed Up Robust
Feature (SURF) was proposed in [4]. This method relies on
the determinant of the Hessian matrix for keypoint detection
and on the responses of Haar-like filters for the description.
SURF has a comparable performance to SIFT but it exhibits a
significant improvement in computation speed. The reason is
that while SIFT approximates Laplacian of Gaussian (LoG) by
DoG, SURF goes further and approximates LoG by box filters.
By relying on an integral image, the box filter convolution may
be performed efficiently. Then, two sets of SIFT or SURF
keypoints may be matched by employing Euclidean floating
distances among descriptors.

On the other end of the spectrum, to address real-time
applications, ORB [5] uses a binary representation in order
to simplify the calculation. ORB is inspired by the FAST
[6] keypoint detector and by the BRIEF [7] descriptor. In
fact, FAST does not provide neither multi-scale features nor

orientation measurement. Therefore, in ORB the authors em-
ploys a scale pyramid representation and detect FAST features
at each level; additionally, keypoint orientation is estimated
using the local intensity centroid. The ORB descriptor is
then constructed based on rotated BRIEF which uses simple
binary tests between pixels in a smoothed image patch. ORB
algorithm offers a high efficiency to be implemented in patch-
tracking application on smart phone [5], image matching on
Android devices [8] or SLAM application [9], etc.

Apart from BRIEF, there are several other variants of binary
descriptors, among which BRISK[10] and FREAK [11]. A
clear advantage of binary descriptors is that the Hamming
binary distance may replace the Euclidean floating distance
for matching, by using bit-wise XOR followed by a bit count
on specific architectures, which is significantly faster. The key
concept of the BRISK descriptor is the use of a symmetrical
pattern. Instead of random points as in BRIEF, sampling points
of BRISK are located on circles concentric to the keypoint.
Furthermore, BRISK divides sampling-point pairs into two
subsets: long-distance pairs reserved to compute keypoint
orientation and short-distance pairs reserved to build key-
point descriptor. Following this idea, FREAK is an optimized
version of BRISK with two main modifications. Firstly, it
uses a sampling pattern inspired from the human retina where
the smoothing kernels are overlapping and their size exhibit
exponential change. Secondly, it uses 45 symmetrical pairs
with respect to the center to estimate keypoint orientation
rather than using the long-distance pair subset as in BRISK.

Our proposed feature is an optimized combination of the
ORB detector and FREAK descriptor. In order to filter key-
points at each level of the scale pyramid more accurately, we
replace the Harris response in ORB by the Hessian response.
For the description, we modify the sampling pattern of FREAK
in order to have more overlapping between smoothed kernels,
which allows us to reduce the number of pairs in calculating
keypoint orientation. We refer to this combination as HOOFR
and will detail the modifications in section II. Afterward, to
validate the performance of HOOFR, we will present in section
III the experimental tests on a real benchmark dataset.

II. HOOFR
A. FAST detection filtered by Hessian matrix

FAST [6] detector is widely used due to its computational
properties. It considers the points on a circular ring around



Fig. 1. Square filters for calculating the Hessian matrix in HOOFR

one pixel. In case of enough consecutive pixels on the ring
which are brighter or darker than the central pixel with a
threshold t, this latter pixel is considered as a corner. The
number of consecutive pixels is generally set between 9 and
12 depending on the application. FAST-9 is employed in ORB
to detect features at all level of the scale pyramid. Each level
is an image sampled from original image at one corresponding
scale. Due to the fact that FAST provides a significant number
of features and it has a large response along edges, the Harris
matrix was used to filter the result.

In HOOFR, we apply a similar detection method to ORB.
However, we are inspired by the overall results of [12] who
evaluated different detection methods based on Harris, Hessian
or MSER. These results show that in general, the Hessian
based detection overcomes that based on Harris. Hence, in-
stead of the Harris matrix, we propose to employ the Hessian
matrix illustrated in equation 1 in order to filter the features
provided by FAST.

H =

[
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∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

]
(1)

The Hessian matrix consists of the second order partial
derivatives of the image. The eigenvectors of this matrix form
an orthogonal basis highlighting the local direction of the
gradient. If the product of eigenvalues of the Hessian matrix
is positive, a local extremum is present. We note that for any
square matrix, the product of eigenvalues is the determinant
of the matrix. Another detector relying on this determinant
with remarkable results is SURF[4]; therefore, in HOOFR,
we propose to use the determinant of the Hessian matrix as
the score of the feature point.

In general, in order to find the derivative, the image is first
smoothed and then the numerical approximations are applied
as this operation is sensitive to noise. Nevertheless, instead of
employing an averaging filter to smooth the image and then
finding its derivative, the derivative can be directly applied to
the smoothing function which can then be used to filter the
image. This would also make it computationally efficient. In
HOOFR, we use Gaussian shown in equation 2 as a smoothing
function.

G(x, y, σ) =
1

2πσ2
exp(− (x2 + y2)

2σ2
) (2)

Fig. 2. Distribution of ganglion cells over the retina [11]. There are four
areas of the density: (a) foveal, (b) fovea, (c) parafoveal and (d) perifoveal

For each candidate point returned by FAST, we calculate
its Hessian matrix. In practice, each element of this matrix
is generated by applying a square filter with the dimension
of 7x7 shown in figure 1 corresponding to the second order
derivative of the smoothing function. Then, the determinant of
this matrix is considered as the score of the point. If there are
more than K points detected by FAST, we only maintain the
K points which exhibit the highest score.

B. FREAK - bio-inspired descriptor

FREAK was proposed by [11] by considering human retina
topology and neuroscience observations. It is believed that
human retina extracts information from the visual field by
using the Gaussian comparison (Difference of Gaussian) of
various sizes and by encoding these differences in binary mode
as a neural network.

1) Sampling pattern: The topology and spatial encoding of
the retina is interesting. First, a ganglion cell includes several
photoreceptors. The region where light influences the response
of a ganglion cell is the receptive field. Figure 2 shows that
the spatial distribution of ganglion cells reduces exponentially
with the distance to the foveal. They are segmented into four
areas: foveal, fovea, parafoveal, and perifoveal. Furthermore,
the sizes of the receptive field and dendritic field increase with
the radial distance to the foveal.

Inspired by this idea, the authors of [11] proposed a sam-
pling pattern as showed in Figure 3a. The pattern is composed
of 7 concentric circles with exponentially decreasing radius.
Each circle contains 6 points considered as 6 receptive fields,
and the receptive field at the center, so that the overall pattern
is formed by 43 receptive fields. The distribution of the points
on the concentric circles is similar to the method of 6-segments
presented in DAISY [13].

With HOOFR, we propose a different sampling pattern
illustrated in figure 3b. Our sampling pattern contains only 6
concentric circles. However, each circle has 8 receptive fields
distributed as the 8-segment method in DAISY. Therefore,
including the point at the center, this pattern contains 49
receptive fields in total. The justification for our proposed con-
figuration is that for complex image processing tasks, various



Fig. 3. Sampling pattern in FREAK [11] (a) and in HOOFR(b)

Fig. 4. Illustration of selected pairs to estimate the orientation in FREAK
[11] (a) and HOOFR(b)

descriptors exploit, either in the image space [14] or in the
frequency domain[15], a certain degree of overlapping in order
to be able to grasp more effectively complex correlations. With
respect to FREAK, our configuration increases, in addition
to the radial overlap, the amount of circumferential overlap
among the fields.

Due to the fact that FREAK uses the comparison between
these receptive fields to build the descriptor, with 49 fields, we
have more pairs (1176 pairs) to choose than that of [11] (903
pairs). Moreover, in our sampling pattern, we have the overlap
not only between the receptive fields of different concentric
circles but also circumferentially.

2) Keypoint orientation: In order to estimate the keypoint
orientation, we use the same method proposed in FREAK by
summing the local gradients over selected pairs. However,
our sampling pattern has more overlapping leading to more
information being integrated in the receptive field. Hence, we
can use fewer pairs than FREAK for orientation estimation.
The latter is using 45 pairs with symmetric receptive fields
with respect to the center as shown in figure 4a, whereas we
select only 40 pairs as shown in figure 4b. By decreasing the
number of pairs, we can improve the execution time when
computing the orientation.

The orientation is then obtained by the equation 3 where S
is the set of all 40 pairs used to compute local gradients, N is
number of pairs in S and P r10 is the 2D vector of coordinates of
the receptive field center. The space of orientation in HOOFR
is also discretized by the same steps proposed in FREAK.

O =
1

N

∑
P0εS

(I(P r10 )− I(P r20 ))
P r10 − P

r2
0

‖P r10 − P
r2
0 ‖

(3)

3) Descriptor: The binary descriptor F is constructed by
the comparison between receptive fields with their correspond-
ing Gaussian kernel.

F =
∑

0≤n<N

2nT (Pn) (4)

T (Pn) = {
1 if (I(P r1n )− I(P r2n )) > 0
0 otherwise

(5)

where Pn is the pair of receptive fields, N the size of binary
descriptor, I(P r1n ) and I(P r2n ) are respectively the Gaussian
smoothed intensities of the first and the second receptive field
of the pair n.

Here, we experience a second advantage of the increase in
overlap, the fact that it contributes to reducing the descriptor
size. In HOOFR, we build a descriptor of size 256 bits
which is half the size of the FREAK descriptor (512 bits).
This reduction is aimed not only at memory-saving, but
also at accelerating the matching process where the 256-bits
comparison is two times faster than 512-bits comparison. In
fact, following testing, we found that a 256-bits descriptor is
high enough to ensure a good performance for our sampling
pattern. This boils down to selecting the 256 most relevant
pairs among the total of 1176 pairs. These pairs are also chosen
experimentally by running an algorithm similar to the ORB
selection. This algorithm has 3 main steps:

• The first step extracts keypoints from training data. We
take all the possible pairs (1176 pairs) to build the
description and each keypoint has its own descriptor.
A matrix M is created where the number of rows cor-
responds to the number of keypoints and the number
of columns corresponds to the size of descriptor (1176
columns).

• For each column, we calculate the average which is
situated between 0 and 1. This value represents the
variance of the binary distribution. The high variance is
desired to have a discriminant feature and the mean of
0.5 leads to the highest variance.

• All the columns are ordered and we keep the 256 columns
which have the highest variances.

Figure 5 shows the 256 relevant selected pairs used in HOOFR.

III. PERFORMANCE EVALUATION

Our proposed algorithm has been tested using the well-
known evaluation method and datasets published by Miko-
lajczyk and Schmid[16]. We take eight image sequences as
shown in figure 6, corresponding to viewpoint change (Graffiti,
Wall), zoom and rotation (Bark, Boat), blur (Bikes, Trees),
brightness change (Cars) and JPEG compression (Ubc) to
evaluate the performances.

Each sequence contains 6 images ordered by the increasing
amount of transformation from image 1 to image 6. All



Fig. 5. Illustration of 256 selected pairs used to construct the descriptor in
HOOFR

Fig. 6. Image sequences used for evaluation

transformations are planar, so ground truth is determined
based on the homography matrix. Furthermore, matching is
performed between each image and the first image of the
same sequence because homography matrices for these pairs
of images are carefully defined in the datasets. We consider
that a point pa in one image is a correspondence of a point
pb in other image when they satisfy two conditions:

• The error in relative location of ||pa − H · pb|| < 1.5
pixel where H is the homography matrix between the
two images.

• The overlap area of the keypoint region in one image
and the projection of the keypoint region from the other
image is high enough. In our test, if the intersection is
larger than 50% of the union of the two region, it is
considered a correspondence.

We note that this correspondence is called point-to-point
correspondence as defined in [16]. It is different from region-
to region correspondence as defined in [12] which considers
only the second condition above. We take other widely used
algorithms such as SIFT, SURF, ORB, BRISK and FREAK
to make the comparison. All matching tests employ brute-
force algorithm using floating distance for SIFT, SURF and
Hamming distance for binary descriptors. For the sake of
fairness, we set the same value for the number of relevant
keypoints returned by detectors. This value is set to be 1000
keypoints in this test. As a reminder, the SIFT detector selects

Fig. 7. Repeatability of detectors evaluated in image datasets.

the relevant keypoints based on contrast thresholds and edge
filter thresholds[1], whereas SURF uses Hessian response,
ORB uses FAST score then Harris score. On the other hand,
our algorithm HOOFR uses FAST score then Hessian score to
refine keypoints for the detection.

A. HOOFR detector repeatability

The desirable property for a feature detector is repeatability.
It represents the ability of a detector to find the same feature in
two or more different images of the same scene. It is defined in
[16] as the ratio between number of corresponding keypoints
and the minimum number of points detected in the two images.
We note that the number of points here is fixed to be 1000 for
all detectors.

Figure 7 shows the repeatability evaluation on five trans-
formations with independent characteristics. HOOFR exhibits
a remarkable performance, and outperforms ORB on most of
image sequences. This result underlines the conclusion of [12]
that in general, Hessian matrix based detection outperforms
detection based on the Harris matrix. The occasional low
performance of SIFT is due in part to its sensitivity to rotation
change and to blur (Boat, Bark and Bikes sequences); SURF
exhibits competitive performance with respect to ORB and
our algorithm HOOFR. Nevertheless, SURF is also time-
consuming which limits its ability to be applied in real-time
applications.

B. HOOFR binary descriptor comparison

Since we use the binary method to build the description,
we compare HOOFR descriptor with other binary descriptor
in the literature such as BRISK, ORB and FREAK. Recall
vs 1-precision curve is used as proposed in FREAK [11]
and BRISK [10] to judge the performances. Recall is de-
fined as the ratio of number of correct matches/number of



Fig. 8. Recall-precision for the evaluation of binary descriptors

correspondences, while 1-precision is the ratio of number of
false matches/number of matches. In fact, the result of match-
ing largely depends on the combination detector-descriptor.
Nevertheless, the global ranking of matching performance of
the descriptors remains the same regardless of the selected
detector. Therefore, to ensure a fair comparison, we evaluate
all descriptors by using the same detector. In this test, we chose
ORB detector and the number of relevant keypoints returned
is also 1000.

Figure 8 shows the recall-precision curves using thresh-
olds based similarity matching of Hamming distance for a
collection of images pairs from datasets. As the result of
figure 8, HOOFR is generally more robust than FREAK. On
the other hand, it overcomes ORB for all the tested image
transformations. Moreover, despite the fluctuation in some
cases, HOOFR has better performance than BRISK.

C. Overall evaluation of HOOFR

Our work proposes modifications in terms of detection and
description at the same time, so we also evaluate the joint
performance of both propositions compared to the well-known
algorithms which have their own detector and descriptor such
as SIFT, SURF or ORB. Due to the fact that SIFT and SURF
use the floating descriptor while ORB and our work use binary
descriptor, it does not make sense to use a similarity based
method in matching. The reason is that similarity method
highly depend on the threshold and it is difficult to determine
equivalent value for the each type of descriptor. Therefore, in

Fig. 9. Evaluation of matching rate in image datasets

order to match two set of keypoints extracted from two images,
for each keypoint in the first set, we simply select the keypoint
in the second set which is the nearest neighbor (smallest
matching distance). We present a factor called “Matching
rate”(number of correspondences / number of matches) to
compare the performances in this case.

In order to have a high matching score, an algorithm must
exhibit a high detector repeatability and must concurrently
have a high discrimination for the keypoint descriptor. As
illustrated in figure 9, HOOFR performs competitively with
SURF. It outperform SURF for the viewpoint change (Wall,
Graffiti) or JPEG compression (Ubc), have a fluctuation for
zoom-rotation (Bark, Boat) or blur (Bikes, Trees) and slightly
fall behind SURF for brightness change(Cars). In contrast,
HOOFR normally has overall better performance than SIFT
and ORB.

D. Timings

Execution times have been recorded using a single core on
a PC with Intel Core i7 3.4 GHz processor and 16GB RAM.
Table I presents the results corresponding to detection of the
first image in 4 selected sequences, while table II presents
the description time for the same images. Moreover, table
III shows the extraction time (detection+description) of the



TABLE I
DETECTION TIME (MILLISECONDS) OF DIFFERENT DETECTORS (1000

RELEVANT KEYPOINTS RETURNED)

Bark 1 Graffiti 1 Boat 1 Wall 1
(512x765) (640x800) (680x850) (700x1000)

SIFT 860 919 1554 1722
SURF 129 137 169 202
ORB 34 44 79 107

HOOFR 33 42 76 105

TABLE II
DESCRIPTION TIME (MILLISECONDS) OF DIFFERENT DESCRIPTORS FOR

1000 KEYPOINTS

Bark 1 Graffiti 1 Boat 1 Wall 1
(512x765) (640x800) (680x850) (700x1000)

SIFT 3611 3873 4024 4093
SURF 479 488 492 501
ORB 16 18 18 20

BRISK 23 24 24 24
FREAK 20 21 21 21
HOOFR 18 20 20 20

algorithms having its own detector and descriptor. The values
are averaged over 50 runs.

Regarding the detector, the timings show an advantage of
HOOFR. Its computation is even faster than ORB detector
although the latter is the fastest detector currently available.
The reason is that the Hessian response is time-saving to
compute against Harris response.

In terms of description, we also clearly highlight the ad-
vantage of binary descriptors, with an order of magnitude
faster than SURF and two order of magnitude faster than
SIFT. Among the binary descriptors, FREAK is inspired by
BRISK and it is more efficient than BRISK. Following the
optimization trend, HOOFR is inspired by FREAK, and it
is more robust, memory-saving and slightly faster than the
original. We note that although the descriptor size and the
number of pairs for orientation estimation were reduced in
HOOFR in comparison to FREAK, we can not gain a signif-
icant acceleration due to more receptive fields being sampled
(49 points) than in the case of FREAK (43 points). Hence,
for each keypoint description, HOOFR takes more time to
compute the Gaussian filter for all receptive fields. However,
even though ORB is the fastest descriptor, in general, the
extraction time (detection + description) of ORB is similar
to that of HOOFR while our proposal maintains the better
matching results.

TABLE III
EXTRACTION TIME (MILLISECONDS) OF DIFFERENT ALGORITHMS

(DETECTION + DESCRIPTION) FOR1000 RELEVANT KEYPOINTS RETURNED

Bark 1 Gratifi 1 Boat 1 Wall 1
(512x765) (640x800) (680x850) (700x1000)

SIFT 4471 4792 5578 5815
SURF 608 625 661 703
ORB 50 62 97 127

HOOFR 51 62 96 125

IV. CONCLUSION

We have presented a method named HOOFR, which aims to
address the fundamental computer vision problem of detecting,
describing and matching image keypoints. Our detector is
the combination of ORB with a Hessian score, while our
descriptor employs a human retina based descriptor consisting
of a FREAK version with enhanced overlapping. Our proposal
offers a better compromise between speed and matching qual-
ity against other state of the art algorithms. The experimental
test shows that HOOFR exhibits competitive performance but
much faster speed than SURF, SIFT. Besides, HOOFR exhibits
comparably low computation cost as ORB, which it outper-
forms performance wise. In future work, we want to further
investigate the applicability of HOOFR in different contexts,
and to implement it efficiently on embedded heterogeneous
systems (ARM-FPGA) which are adapted to real-time mobile
applications.
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