
k-times Full Traceable Ring Signature∗

Xavier Bultel
Université Clermont Auvergne

LIMOS, BP 10448, 63000 Clermont-Ferrand, France
Email: xavier.bultel@udamail.fr

Pascal Lafourcade
Université Clermont Auvergne

LIMOS, BP 10448, 63000 Clermont-Ferrand, France
Email: pascal.lafourcade@udamail.fr

Abstract—Ring and group signatures allow their members to
anonymously sign documents in the name of the group. In ring
signatures, members manage the group themselves in an ad-
hoc manner while in group signatures, a manager is required.
Moreover, k-times traceable group and ring signatures [1] allow
anyone to publicly trace two signatures from a same user if he
exceeds the a priori authorized number of signatures. In [2],
Canard et al. give a 1-time traceable ring signature where each
member can only generate one anonymous signature. Hence, it
is possible to trace any two signatures from the same user. Some
other works generalize it to the k-times case, but the traceability
only concerns two signatures. In this paper, we define the notion
of k-times full traceable ring signature (k-FTRS) such that all
signatures produced by the same user are traceable if and only
if he produces more than k signatures. We construct a k-FTRS
called Ktrace. We extend existing formal security models of k-
times linkable signatures to prove the security of Ktrace in the
random oracle model. Our primitive k-FTRS can be used to
construct a k-times veto scheme or a proxy e-voting scheme that
prevents denial-of-service caused by cheating users.

I. INTRODUCTION

Organization of elections is an old concern of Humanity.
Therefore many kinds of elections have been invented. With
the development of Internet and the progresses in cryptogra-
phy, several e-voting schemes have been developed, see [3]
for a survey. In all these systems the question of proxy voting
exists independently of the form of the ballots and the counting
phase. The problem is how a voting system can allow someone
who cannot participate to the election to delegate his vote
to someone else. In some elections, with the agreement of
the voter, another voter can vote twice or more. Each voter
can have different numbers of proxy-votes from 0 up to a
limit fixed by the election rules. In traditional paper elections,
using paper ballots and a transparent box, a cheater who voted
with an extra false proxy vote, is a posteriori detected during
the tally phase, hence the election is canceled. An electronic
voting system should offer a proxy mechanism that is better
than in a traditional system. Once a fraud is detected then the
cheater should be identified in order to blame him. Moreover,
anyone should be able to find all the ballots that he has
introduced in the system in order to remove them from the final
count. Such a mechanism would prevent having to reorganize
the election.

Another close problem is the elaboration of the program
committee of a conference, that is often done by the mem-

∗ This research was conducted with the support of the “Digital Trust” Chair
from the University of Auvergne Foundation.

bers of the steering committee. Usually each member of the
steering committee anonymously proposes a list of names
for the program committee. Some members might want to
discard some names for personal reasons, but they do not
want other members of the steering committee to learn their
choices. Our aim is to construct a system that allows each
member to anonymously express a maximum of k vetos. If
one person gives more than k vetos then we want to be able
to detect it and to learn all vetos from the cheater in order to
remove them. Using existing signature schemes such as [1], it
is possible to design such a veto system and, in case someone
uses more than his number of vetos, the cheater is identified.
Unfortunately the cheater’s vetos remain anonymous, hence it
is not possible to discard them. While with our ring signature
scheme, all cheater’s vetos can be discarded without restarting
the elaboration of the program committee.

For these two applications, we design a ring signature that
offers the following security properties:
• A new signature cannot be forged without knowing a

secret signature key.
• Each group signer i can have his own number of autho-

rized signatures ki which is determined when the public
key is set up.

• If a signer i signs a number of messages lower or
equal to his authorized number of signatures ki, it is not
possible to determine which member of the group has
signed the message. Moreover, no one can determine if
two signatures have been generated with the same secret
signature key (anonymity).

• If a signer i signs more than his authorized number of
signatures ki then anybody can link all his signatures
(linkability) and also determine the identity of the cheater
(traceability).

• Linkability and traceability properties exist only if the
signatures are generated for the same event: for instance
the first and the second round of an election are two
different events.

In this paper, we propose a k-times full traceable ring
signature that has all these features.

a) Contributions: We define a cryptographic primitive
called k-times full traceable ring signature. This primitive
allows everyone to publicly trace all signatures of a group
member who has produced more than his personal threshold
number of signatures k during a specified event. Existing
results in the literature only allow to link or open two of these

signatures. We give a formal definition of our primitive and
its security properties. More precisely, we have full anonymity
of the signer if he does not over pass his threshold value.
Moreover the ring signature verification key is only composed
of the public key of each member, so it is easy to construct
by an ad-hoc group of users with different thresholds for each
user. Finally, the produced signatures are linear in the group
size times the maxium of thresholds. We also give proofs of
this scheme in the random oracle model (ROM).

Our k-times full traceable ring signature primitive can be
used to design an anonymous veto mechanism for the steering
committee where vetos are anonymous signatures on program
committe names that are not desired. This mechanism can
detect members that use more vetos than expected and remove
cheater’s vetos while preserving the anonymity of other users.
It can also be used to organize elections with multiple proxy
votes such that when a user signs more ballots that he should,
everybody can open all his signatures.

b) Related Works: Group and ring signatures are two
well known cryptographic primitives that first appeared re-
spectively in [4] and [5]. Both primitives allow users to
anonymously sign a digital document within a group. In group
signatures, a special authority manages the group using a
manager secret key, while in ring signatures, members manage
the group themselves in an ad-hoc manner. In [6], the authors
present a scheme where the size of a signature is constant, i.e.
it does not depend to the group size. Some group/ring signature
schemes deal with linkability. Linkable ring signatures are first
defined in [7]. In this paper, the authors present a ring signature
that allows users to publicly link two signatures produced by
the same user within the group. The security model of this
primitive are formalized in [8]. Although the signature size
grows linearly with the group size in most schemes, there
exists constant size signatures such as [9] and [10]. The main
applications of linkable signature are e-voting and e-cash, but
this property is also used in several other applications, such
as the direct anonymous attestation scheme described in [11].

In [12], Canard et al. present list signatures that add a
property to linkable group signature: the identity of the signer
of two linked signatures can be publicly computed. Few years
later, Canard et al. give a list signature construction for ad-hoc
group based on ring signature [2]. In this scheme, the signature
size grows linearly with the group size. In [13], the authors
give a constant size identity-based ring signature scheme with
similar properties (linkability and traceability).

Anonymous authentication is closely related to group/ring
signatures. For instance, k-times anonymous authentications
[14], [15], [16] allow a group member to anonymously authen-
ticate himself k times, but the (k + 1)th authentication allows
the verifier to trace his identity. In [1] the authors adapt k-times
anonymous authentications to linkable group signatures. This
signature primitive allows everyone to trace a user that has
produced more than k signatures by linking two of theses sig-
natures. This primitive can be viewed as a generalization of list
signature schemes. However, the generalization is incomplete
since only two signatures among k + 1 are linked, and the

anonymity of the signer is publicly revealed only for these
two signatures but his other signatures remain anonymous.
Moreover, the number k is the same for each group member.
To the best of our knowledge, there exists no ring signature
that ensures full anonymity for members that produce less
than k signatures, and public full linkability/traceability on all
signatures of a member after the (k + 1)th signature (for a
personal bound k). Solving this problem is the goal of our
k-times full traceable ring signature primitive.

c) Outline: In the next section, we recall some crypto-
graphic notions. In Section III, we present our security models.
In Section IV, we give our scheme and discuss about its
security. In Section V, we give applications of our scheme.
Finally, we conclude in Section VI.

II. CRYPTOGRAPHIC TOOLS

We present some cryptographic assumptions and some re-
sults on zero knowledge proofs. First, we recall the decisional
Diffie-Hellman assumption and his bilinear variant.

Definition 1 (Decisional Diffie-Hellman [17]). Let G be a
multiplicative group of prime order p and g ∈ G be a
generator. The decisional Diffie-Hellman problem (DDH) is
to decide whether z = ab given (ga, gb, gz) for unknown
a, b

$← Z∗p. The decisional Diffie-Hellman hypothesis states
that there exists no polynomial time algorithm that solves DDH
with non-negligible advantage.

Definition 2 (Bilinear Decisional Diffie-Hellman [18]). Let
G1,G2 and Gt be three groups of prime order p and
e : G1 × G2 → Gt be a type 3 non-degenerate bilinear
pairing. Let g1 ∈ G1 and g2 ∈ G2 be two generators.
The Bilinear Decisional Diffie-Hellman problem (BDDH) is
to decide whether z = abc given (ga1 , g

b
1, g

c
2, e(g1, g2)z) for

unknown a, b, c $← Z∗p. The Bilinear Decisional Diffie-Hellman
problem states that there exists no polynomial time algorithm
that solves BDDH with non-negligible advantage.

In this work, we use the follwing variant of BDDH.

Definition 3 (2-Bilinear Decisional Diffie-Hellman). Let
G1,G2 and Gt be three groups of prime order p and e :
G1 × G2 → Gt be a type 3 non-degenerate bilinear pairing.
Let g1 ∈ G1 and g2 ∈ G2 be two generators. The Bilinear
Decisional Diffie-Hellman problem (2BDDH) is to decide
whether z = abd given (ga1 , g

b
1, g

c
2, g

d
2 , e(g1, g2)abc, e(g1, g2)z)

for unknown a, b, c, d $← Z∗p. The 2-Bilinear Decisional Diffie-
Hellman problem states that there exists no polynomial time
algorithm that solves 2BDDH with non-negligible advantage.

This assumption is very close to BDDH. Actually, an
instance of 2BDDH contains (ga1 , g

b
1, g

d
2 , e(g1, g2)z) that is

an instance of the BDDH problem and two additional ele-
ments (gc2, e(g1, g2)abc). We do not know any reduction from
2BDDH to BDDH (or any other standard assumption such
that the decisional Diffie-Hellman assumption in G1 [17] or
the pairing inversion problem [19]). However, this problem
seems to be difficult to solve: values (gc2, e(g1, g2)abc) are hard

2

to exploit since e(g1, g2)abc is indistinguishable to a random
group element under BDDH, and it is hard to extract gab1 from
(ga1 , g

b
1, g

c
2, e(g1, g2)abc) under the pairing inversion problem.

The hardness of this assumption can be argued by the
following property: 2BDDH is hard under BDDH when
e is a type 1 or type 2 pairing. Indeed, if G1 =
G2 = G and g1 = g2 = g, it is possible to trans-
form an instance (ga, gb, gd, e(g, g)z) of BDDH into an
instance of 2BDDH. Picking c ∈ Z∗p, one can compute
gc and e(ga, gb)c = e(g, g)abc and build the instance
(ga, gb, gc, gd, e(g, g)abc, e(g, g)z) which is an instance of
2BDDH. Then, knowing an algorithm that solves the 2BDDH
problem, we can deduce an algorithm that solves the BDDH
problem in a similar runing time. It is possible to construct a
similar reduction using type 2 pairing. Unfortunately, the same
reduction does not work for type 3 but the problem seems to
be at least as hard as in the type 1 or type 2 cases.

Definition 4 (Zero-knowledge proofs [20]). A proof of knowl-
edge is a two-party protocol between two polynomial time
algorithms P (the prover) and V (the verifier). It allows the
prover P to convince the verifier V that he knows a solution
s to the instance I of a problem P . Such a protocol is said
zero-knowledge proof of knowledge (ZKP) if it satisfies the
following properties:

Completeness: If P knows s, then he is able to convince V
(i.e. V outputs "accept").

Soundness: If P does not know s, then he is not able to
convince V (i.e. V outputs "reject") except with
negligible probability.

Zero-knowledge: V learns nothing about s except I, i.e.
there exists a probabilistic polynomial time algorithm
Sim (called the simulator) such that outputs of the real
protocol and outputs of Sim(I, inputV) follow the same
probability distribution, where inputV denotes the input
used by V for the real protocol.

Honest-verifier ZKP (HZKP) is a weaker notion of ZKP
which is restricted to case where the verifier is honest, i.e. V
correctly runs the protocol.

If we only have one transaction from the prover to the
verifier, we say that the ZKP is non-interactive (NIZKP). In
the litterature, sigma protocols are ZKP with three exchanges
between the prover and the verifier: a commitment, a chal-
lenge, and a response (by example the Schnorr protocol [21]).
If the challenge is chosen on a large set, it is possible to
transform a sigma protocol into a NIZKP using the Fiat-
Shamir heuristic [22] replacing the challenge by the digest
of a hash function on the commitment.

Finally, our scheme uses the generic transformation of
ZKP designed by [23]. The authors propose a generic trans-
formation from the ZKP of the solution to some problem
instance to a ZKP of the solution to one problem instance
out of n problem instances (without revealing this problem
instance). This transformation holds with any sigma protocol.
The computational and space cost of the resulting ZKP is n

times the cost of the primary ZKP. It is possible to use the Fiat-
Shamir transformation on such a ZKP to obtain an equivalent
NIZKP.

III. MODEL AND SECURITY

We first formally define k-times full traceable ring signature
(k-FTRS) scheme, next we define the security models.

Let k be the maximum of authorized anonymous signatures
then a k-FTRS is a ring signature scheme that has three
additional functionalities depending on the parameter k:
• (i) a link algorithm allows users to link two signatures

produced by the same member who has produced more
than k signatures;

• (ii) a match algorithm extracts the identity of a member
u and a tracer, denoted by ω(E,u), from two linked
signatures for the same event E;

• (iii) a trace algorithm allows users to decide whether a
signature has been produced by the user u for the same
event E, using the corresponding tracer ω(E,u).

Each group member has his own parameter ku that is used to
generate his pair of signing/verification key. Thus, to publicly
detect a cheater who has produced more than ku signatures
in a set of r signatures, it suffices to use the link algorithm
on all pairs of signatures. The match algorithm allows users
to identify the cheater and returns a tracer ω(E,u). Using this
tracer and the trace algorithm, everyone can detect all other
signatures produced by the identified cheater. The number of
calls to the link algorithm is quadratic in r and the the number
of calls to the trace algorithm is linear in r.

As it is often required in linkable signatures, all signatures
are computed for a particular event. Thus, link, match and
trace algorithms can be only used for signatures coming
from the same event. More formally, the signature algorithm
requires a bit string E, called an event, that corresponds to the
identification of a given event (for example the concatenation
of the date, title and the location of the election).

Definition 5 (k-times full traceable ring signature (k-FTRS)).
A k-FTRS is defined by the followings algorithms:
Init(1t): This algorithm outputs an init value from security

parameter t.
Gen(init, k): This algorithm outputs a signing key pair

(ssk, svk) from init and a threshold value k denoting the
maximum number of anonymous signatures authorized
for the key ssk.

SigE(ssk,m,L, j): This algorithm outputs a signature σ on
the message m using the event E, the signing key ssk,
the set of public keys of all members of the group L and
the witness j ∈ {1, . . . , k}, where k is the value used to
generate ssk.

VerE(L, σ,m): This algorithm checks that σ is a valid sig-
nature of m for the event E and the set L.

LinkE(L1, L2, σ1, σ2,m1,m2): This algorithm checks
whether the two signatures σ1 and σ2, for the messages
m1 and m2 and the sets of public keys L1 and L2, come
from the same signing key ssk for the event E. In this

3

case, it returns 1, else it returns 0. This algorithm only
links two signatures of the same member out of k + 1,
for k the value used to generate ssk.

MatchE(L1, L2, σ1, σ2,m1,m2): This algorithm outputs ⊥ if
LinkE(L1, L2, σ1, σ2,m1,m2) 6= 1. Else, let svku be the
key of the signer u who has produced σ1 and σ2. If
svku ∈ L1 ∪ L2 then this algorithm outputs svku and
a tracer ω(E,u), else ⊥.

TraceE(L, σ,m, ω(E,u)): This algorithm checks that the sig-
nature σ of m for the set of public keys L has been
produced in the event E by the user u using the tracer
ω(E,u). In this case it returns 1, else 0.

The following definition presents the correctness of such
a scheme. Loosely speaking, a k-FTRS is correct when the
algorithms Ver, Link, Match and Trace correctly work using
signatures coming from the algorithm Sig.

Definition 6 (Correctness). We say that a k-FTRS is
correct if for any key pair (sski, svki) generated by
Gen(init, k) and any signatures σ = SigE(sski,m,L, l),
σ1 = SigE(sski,m1, L1, j) and σ2 = SigE(sski,m2, L2, j)
(where l, j ∈ {1, . . . , k}), the following conditions hold:

1) VerE(L, σ,m) outputs 1.
2) LinkE(L1, L2, σ1, σ2,m1,m2) outputs 1.
3) If the algorithm MatchE(L1, L2, σ1, σ2,m1,m2) outputs

(svk, ω) then svk = svki.
4) If the algorithm MatchE(L1, L2, σ1, σ2,m1,m2) outputs

(svk, ω) then TraceE(L, σ,m, ω) = 1.

The first point checks the verification algorithm works
correctly for any signature generated by the algorithm Sig.
The second one shows that the algorithm Link outputs 1 if the
two given signatures use the same witnesss j and the same
signature key sski. The third point ensures that the algorithm
Match outputs the verification key associated to two given
linked signatures. The last point verifies that the tracer and
the verification signature key svki outputed by the algorithm
Match allow the algorithm Trace to trace all the signatures
produced by sski.

We formalize the following properties of k-FTRS:
Unforgeability: It is computationally infeasible to forge a

valid signature without the secret key of a group member.
Traceability: More then k signatures coming from the same

user in the same event are always traceable.
Anonymity: It is computationally infeasible to determine the

identity of an honest user from less than (k + 1) of his
signatures for each event.

Our security models are based on [8] that formalizes the
security of linkable ring signatures.

Unforgeability: A k-FTRS is unforgeable when there
exists no polynomial adversary able to create a new valid
signature for the group. The adversary has access to a signature
oracle that computes signatures for given messages and events
using the secret key of chosen user. To win the adversary must
generate a valid signature that does not come from the oracle.
In what follow, we denote by outO the set of all the values

outputed by the oracle O during an experiment. Unforgeability
is defined as follows.

Definition 7 (EUF-CMA security). Let P be a k-FTRS of
security parameter t and letA be a polynomial time adversary.
We define the (n, k)-existential unforgeability against chosen
message attack experiment for A against P as follows:

Exp(n,k)-euf-cma
P,A (t):

init← Init(1t)
∀ i ∈ {0, . . . , n}, (sski, svki)← Gen(init, k)
U ← {svki}0≤i≤n
(L∗, σ∗,m∗, E∗)← ASO1(·)(t, U)
if VerE∗(L∗, σ∗,m∗) = 1 and (L∗, σ∗,m∗, E∗) 6∈ outSO1

then output 1 else output 0.
Where SO1(·) is a signing oracle that takes (svki, L,E,m, j)
as input. If svki 6∈ U then it returns ⊥, else it computes
σ = SigE(sski,m,L, j) and returns (L, σ,m,E). The
advantage of the adversary A against (n,k)-EUF-CMA
is Adv

(n,k)-euf-cma
P,A (t) = Pr[Exp(n,k)-euf-cma

P,A (t) = 1]. We
define the advantage on (n,k)-EUF-CMA experiment by
Adv

(n,k)-euf-cma
P (t) = maxA∈POLY(t){Adv

(n,k)-euf-cma
P,A (t)}. We

say that a k-FTRS scheme P is (n,k)-EUF-CMA secure
when the advantage Adv

(n,k)-euf-cma
P (t) is negligible.

Traceability: A k-FTRS is traceable when there exists
no polynomial adversary who is able to generate at least k
valid signatures for the same event knowing only one secret
key from the group such that the match and trace algorithms
fail to trace the corresponding public key on each signatures.
To help him, the adversary has access to a signature oracle
that computes signatures for given messages and given events
using secret keys of chosen users. This property is formally
given in the following definition.

Definition 8 (Traceability). Let P be a k-FTRS of security
parameter t and let A = (A1,A2) be a pair of algorithm
in POLY(t). We define the (n, k)-traceability experiment for
adversary A against P as follows:

Exp(n,k)-trace
P,A (t):

init← Init(1t)
∀ i ∈ {0, . . . , n}, (sski, svki)← Gen(init, k)
U ← {svki}0≤i≤n
π ← ASO1(·)

1 (t, U)

(z, {(Li, σi,mi)}1≤i≤z, E)← ASO1(·)
2 (t, sskπ, U)

if (z > k)
and (∀i ∈ {1, . . . , z},VerE(Li, σi,mi) = 1

and (Li, σi,mi, E) 6∈ outSO1
)

and ((∀ a, b,LinkE(La, Lb, σa, σb,ma,mb) 6= 1)
or ((
∃ a, b, i,MatchE(La, Lb, σa, σb,ma,mb) = (svk∗, ωπ)
⇒ (svk∗ 66= svkπ or TraceE(Li, σi,mi, ωπ) 6= 1)

)))
then output 1 else output 0.

Where SO1(·) is defined as in Definition 7. The advan-
tage of the adversary A against (n, k)-traceability is de-
fined by Adv

(n,k)-trace
P,A (t) = Pr[Exp(n,k)-trace

P,A (t) = 1]. We
define the advantage on (n, k)-traceability experiment by

4

Adv
(n,k)-trace
P (t) = maxA∈POLY(t){Adv

(n,k)-trace
P,A (t)}. We say

that a k-FTRS scheme P is (n, k)-traceable when the ad-
vantage Adv

(n,k)-trace
P (t) is negligible.

Anonymity: A k-FTRS is anonymous when there exists
no polynomial adversary able to distinguish the signer of a
given message between two given honest group members. The
adversary chooses two honest user’s public keys, a group of
users, a message and an event, the he sends it to the challenger.
The challenger signs the message using one of the two corre-
sponding secret keys. Then the adversary must guess who the
signer is. To help him, the adversary has access to a signature
oracle that computes signatures for given messages and given
events using the secret key of chosen users. However, the
oracle does not produce more that k − 1 signatures for the
two chosen public keys and the corresponding event used to
produce the challenge since signatures would be traceable in
this case. This notion is formally introduced in the following
definition.

Definition 9 (Anonymity). Let P be a k-FTRS of security
parameter t and let A = (A1,A2) be polynomial time adver-
sary. We define the (n, k)-anonymity experiment for adversary
A against P as follows:

Exp(n,k)-anon
P,A (t):

b← {0, 1}
init← Init(1t)
∀ i ∈ {0, . . . , n}, (sski, svki)← Gen(init, k)
U ← {svki}0≤i≤n
(π0, π1, L∗, E∗,m∗, j∗)← ASO2(·)

1 (t, U)
σ0 ← SO2(svkπ0

, L∗, E∗,m∗, j∗)
σ1 ← SO2(svkπ1

, L∗, E∗,m∗, j∗)

b′ ← ASO2(·)
2 (t, σb, U)

output b = b′.
Where SO2(·) is a signing oracle that takes

(svki, L,E,m, j) as input. If j > k of svki 6∈ U then
it returns ⊥ and aborts. If svki and E are asked together
for the first time, then this oracle initializes the set
wit(svki, E) ← ∅. During the second phase, if E = E∗ and
(i = π0 ∨ i = π1) and j ∈ wit(svki, E) then it returns ⊥ and
aborts. Finally, it updates wit(svki, E)← wit(svki, E) ∪ {j}
and returns SigE(sski,m,L, j). The advantage
of the adversary A against (n, k)-anonymity is
Adv

(n,k)-anon
P,A (t) =

∣∣∣Pr[Exp(n,k)-anon
P,A (t) = 1]− 1

2

∣∣∣. We
define the advantage on (n, k)-anonymity experiment by
Adv

(n,k)-anon
P (t) = maxA∈POLY(t){Adv

(n,k)-anon
P,A (t)}. We say

that a k-FTRS scheme P is (n, k)-anonymous when the
advantage Adv

(n,k)-anon
P (t) is negligible.

IV. OUR CONSTRUCTION: KTRACE

We present the scheme Ktrace, a secure construction of our
primitive. It is based on the list signature scheme for small
groups of Canard et al. [2]. We first recall this scheme.

A. Canard et al. List Signature Scheme

Each member generates an ElGamal secret/public key pair
(sk = x,pk = gx) for g a generator of a prime order

multiplicative group. Let I be the set of user identities. The
group key GPK = {pki}i∈I is the set of all member’s public
keys. To sign a message m for the event E, we use two hash
functions H0 and H1 to compute the hashed values A =
H1(E, 0), B = H1(E, 1) and u = H0(m,E, 1). Finally, we
compute T1 = Ax and T2 = Bx ·(gu)x, and we compute T3 an
ad-hoc NIZKP of the knowledge of the two values x and i such
that x = logg(pki) = logA(T1) = logB·gu(T2). The signature
of m is the triplet (T1, T2, T3). The verification algorithm
consists in checking the NIZKP T3. Furthermore, to link two
signatures σ1 = (T1,1, T1,2, T1,3) and σ2 = (T2,1, T2,2, T2,3),
it suffices to check that T1,1 = T2,1. Finally, to match
the identity of a signer using two signatures, we compute
(T1,2/T2,2)1/u1−u2 = (Bx ·(gu1)x/Bx ·(gu2)x)1/u1−u2 which
is equal to the public key pk = gx.

This scheme allows users to produce only one anonymous
signature per key. As a consequence, it suffices to generate
k keys per user to allow them to produce k anonymous
signatures. Moreover, any extra signature can be linked to one
of the first k signatures because a user must use the same
key twice to produce more than k signatures. However this
solution does not allow users to recover all the messages of a
cheater.

B. An Helpful ZKP

In order to have all the necessary tools to construct our
scheme, we build the following ZKP, denoted Π.

Let G1, G2 and Gt be three groups of prime order p, g1 and
g2 be two respective generators of G1 and G2, e : G1×G2 →
Gt be a non-degenerate bilinear pairing and n be an integer.
Let A, B, C, W , T1, T2, T3, be seven elements of G1, T4 be
an element of G2, T5 be an element of Gt and u and v be
two elements of Z∗p. Finally, for all i ∈ {1, · · · , n}, let (hi, li)
be some couples of G2

1. Using

Q = (g1, g2, A,B,C,W, u, v, T1, T2, T3, T4, T5)

S = {(Q, hi, li)}i∈{1,...,n}

we build Π, a NIZKP of knowledge of (x, y, z) ∈ (Z∗p)3 such
that T1 = Ax; T2 = Bx · gu·y1 ; T3 = Cx ·W v·y; T4 = gz2 ;
T5 = e(W y, T4); h = gx1 and l = gy1 for one (Q, h, l) ∈ S.

We first describe in Figure 1 the interactive case Π1 where
n = 1, hence there is only one couple (h, l). It is based
on the classical methodology of ZKP of discrete logarithm
knowledge [21] and equality of two discrete logarithms [24].
This proof is by construction a sigma-protocol.

Lemma 10. The ZKP Π1 is complete, sound, and honest-
verifier zero-knowledge.

See Appendix A, for the proof of Lemma 10. As Π1 is
honest-verifier zero knowledge and a sigma protocol, we can
use the generic transformation of [23] to obtain the interactive
version of our proof for any n ≥ 0. Finally, using this
transformation and the Fiat-Shamir heuristic on Π1, we build
the non-interactive proof Π in the random oracle model.

5

Prover P Verifier V
Secret: (x, y, z) Public: (g1, g2, A,B,C,W, u, v, T1, T2, T3, T4, T5, h, l)

r, s, q
$← Z∗

p
R0 = gr1 ; R1 = Ar ; R2 = Br ; R3 = Cr

S0 = gs1 ; S1 = W s ; S2 = e(W,T4)s

Q0 = gq2
(R0,R1,R2,R3,S0,S1,S2,Q0)−−−−−−−−−−−−−−−−−−−−−−−→ ε

$← Z∗
p

x̄ = r + x · ε ; ȳ = s+ y · ε ; z̄ = q + z · ε ε←−−−−−−−−−−−−−−−−−−−−−−−
(x̄,ȳ,z̄)−−−−−−−−−−−−−−−−−−−−−−−→ Check that:

Ax̄ = R1 · T1
ε ; Bx̄ · gu·ȳ1 = R2 · Su0 · T ε2

Cx̄ ·W v·ȳ = R3 · Sv1 · T ε3 ; gz̄2 = Q0 · T ε4
e(W,T4)ȳ = S2 · T ε5 ; gx̄1 = R0 · hε ; gȳ1 = S0 · lε

Fig. 1. Interactive zero knowledge proof Π1.

Theorem 11. The NIZKP Π is complete, sound, and zero-
knowledge in the random oracle model.

It is a direct implication of [23] and Lemma 10.

C. Our Construction: Ktrace

Our construction, given in Scheme 1, requires three groups
G1,G2 and Gt of prime order p and a bilinear pairing e. Let g1

and g2 be two respective generators of G1 and G2. Each user
generates k ElGamal signing key pairs {(xi,j , g

xi,j
1)}1≤j≤k

and an extra key pair (xi, g
xi
1) used to identify him with the

algorithms match and trace.
To sign a message, a user picks r

$← Z∗p and chooses
one of these ElGamal secret keys and computes T1 = Axi,j

and T2 = Bxi,j · (gu1)xi as in the scheme [2] except that
u = H1(E,m, 0, gr2). Thus, using these two values, two
signatures can be linked when the same secret key is used, and
it is possible to deduce the public key gxi1 from theses two sig-
natures. Then the signer computes additional values T3, T4, T5

and T6 as follows: he sets C = H0(E, 2),W = H0(E, 3) and
v = H1(E,m, 1, gr2) and sets T3 = Cxi,j ·W v·xi , T4 = gr2 and
T5 = e(W,T4)xi . As in list signatures, the signer computes in
T6 a non-interactive proof that all other parts of the signatures
T1, T2, T3, T4 and T5 are ”correctly formed” according to
one of the verification keys of the group using the proof Π
given in Section IV-B. The complete signature is the tuple
(T1, T2, T3, T4, T5, T6) and is verified by checking the validity
of the proof T6.

Note that using two linked signatures with respective third
terms T1,3 = Cxi,j ·W v1·xi and T2,3 = Cxi,j ·W v2·xi , it is pos-
sible to compute the tracer ω(E,i) = (T1,3/T2,3)1/(v1−v2) =
W xi in addition to the public key gxi1 in the match algorithm,
for an evant E1. Finally, to trace a signature T generated by
the owner of the public key gxi1 using the tracer ωi, anybody
can check that e(ωi, T4) = e(W xi , T4) = e(W,T4)xi . Since
the proof T6 assures that terms T3, T4 and T5 are well formed,
this equation always holds when the signer is the owner of the
public key gxi1 .

1We omit the event E in the notation of the tracer. When it is clear from
the context, we simply write ωi.

Scheme 1 (Ktrace scheme). Ktrace is a k-FTRS with the
following algorithms:
Init(1t): This algorithm generates three groups G1,G2 and

Gt of prime order p, two respective generators g1 and
g2 of G1 and G2, a non-degenerate bilinear pairing e :
G1 × G2 → Gt of type 3 and two hash functions H0 :
{0, 1}∗ → G1 and H1 : {0, 1}∗ → Z∗p. The algorithm
outputs init = (p,G1,G2,Gt, g1, g2, e,H0,H1).

Gen(init, ki): This algorithm randomly picks xi in Z∗p. It then
picks ki other values xi,j in Z∗p for j in {1, . . . , ki}.
It sets svki = (gxi1 , {g

xi,j
1 }1≤j≤ki) and sski =

(xi, {xi,j}1≤j≤k) and returns (svki, sski).
SigE(sski,m,L, j): Using sski = (xi, {xi,j}1≤j≤k) and the

event E, this algorithm picks r $← Z∗p and computes the
following values:

A = H0(E, 0) B = H0(E, 1)

C = H0(E, 2) W = H0(E, 3)

u = H1(E,m, 0, gr2) v = H1(E,m, 1, gr2)

T1 = Axi,j T2 = Bxi,j · gu·xi1

T3 = Cxi,j ·W v·xi T4 = gr2

T5 = e(W,T4)xi

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤ki)}i∈I

We set:

Q = (g1, g2, A,B,C,W, u, v, T1, T2, T3, T4, T5)

The algorithm computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,ki}

Finally, it generates a non-interactive proof of knowledge
T6 using Π (see section IV-B) of the solution (xi, xi,j , r)
of one instance I = (Q, gxi1 , g

xi,j
1) out of the instance set

S without revealing neither (xi, xi,j , r) nor I. It outputs
the signature σ = (T1, T2, T3, T4, T5, T6).

6

VerE(L, σ,m): We set σ = (T1, T2, T3, T4, T5, T6). Let
I be a set of user indexes such that L =
{(gxi1 , {g

xi,j
1 }1≤j≤ki)}∀i∈I . This algorithm computes:

A = H0(E, 0) B = H0(E, 1)

C = H0(E, 2) W = H0(E, 3)

u = H1(E,m, 0, T4) v = H1(E,m, 1, T4)

It also computes:

Q = (g1, g2, A,B,C,W, u, v, T1, T2, T3, T4, T5)

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,ki}

Finally, it returns 1 if the proof T6 is valid for Π (see
section IV-B) according to the set of instances S.

LinkE(L1, L2, σ1, σ2,m1,m2): We set

σ1 = (T1,1, T1,2, T1,3, T1,4, T1,5, T1,6)

σ2 = (T2,1, T2,2, T2,3, T2,4, T2,5, T2,6)

This algorithm returns 1 if and only if
VerE(L1, σ1,m1) = VerE(L2, σ2,m2) = 1 and
T1,1 = T2,1.

MatchE(L1, L2, σ1, σ2,m1,m2): We set

σ1 = (T1,1, T1,2, T1,3, T1,4, T1,5, T1,6)

σ2 = (T2,1, T2,2, T2,3, T2,4, T2,5, T2,6)

This algorithm computes the following hashed values:

u1 = H1(E,m1, 0, T1,4) v1 = H1(E,m1, 1, T1,4)

u2 = H1(E,m2, 0, T2,4) v2 = H1(E,m2, 1, T2,4)

If LinkE(L1, L2, σ1, σ2,m1,m2) = 0 this algorithm
outputs ⊥, else it computes:

id =

(
T1,2

T2,2

) 1
u1−u2

; ω(E,i) =

(
T1,3

T2,3

) 1
(v1−v2)

Let svki = (gxi1 , {g
xi,j
1 }1≤j≤ki) be the element of L1∪L2

such that gxi1 = id. If such an element does not exist
then this algorithm outputs ⊥, else this algorithm outputs
(svki, ω(E,i)).

TraceE(L, σ,m, ω(E,i)): This algorithm set σ =
(T1, T2, T3, T4, T5, T6). If VerE(L, σ,m) = 1 and
e(ω(E,i), T4) = T5 then it returns 1, else 0.

D. Correctness

Theorem 12. Ktrace is correct.

Proof. Ver: The set of instances S is similarly computed in
both algorithms Sig and Ver. The part T6 of a signature
is a proof Π on the set of instances S. Since the
verification algorithm constists to check this proof, and
since Π is complete, then algorithm Ver is correct, i.e.
VerE(L,SigE(sski,m,L, j),m) = 1.

Link: We show that given two signatures σ1 =
SigE(sski,m1, L1, j) and σ2 = SigE(sski,m2, L2, j),
then LinkE(L1, L2, σ1, σ2,m1,m2) = 1. Using the same
event E, the same secret key sski = (xi, {xi,j}1≤j≤k)

and the same witness j, the first part of the signature
is T1 = Axi,j where A = H0(E, 0). Let T1,1 and T2,1

be the first part of the two signatures (σ1, σ2), clearly
T1,1 = T2,1 = Axi,j .

Match: We show that given two signatures σ1 =
SigE(sski,m1, L1, j) and σ2 = SigE(sski,m2, L2, j)
then MatchE(L1, L2, σ1, σ2,m1,m2) outputs the public
key of the signer svki:

id =

(
T1,2

T2,2

) 1
u1−u2

=

(
Bxi,j · gu1·xi

1

Bxi,j · gu2·xi
1

) 1
u1−u2

= g
xi·u1−u2

u1−u2
1 = gxi1

Then the algorithm outputs svki = (gxi , {gxi,j}1≤j≤ki)
which is the public key corresponding to sski.

Trace: Given two signatures σ1 = SigE(sski,m1, L1, j)
and σ2 = SigE(sski,m2, L2, j) we show that
MatchE(L1, L2, σ1, σ2,m1,m2) outputs a tracer ω(E,i)

such that:

ω(E,i) =

(
T1,3

T2,3

) 1
(v1−v2)

=

(
Cxi,j ·W v1·xi

Cxi,j ·W v2·xi

) 1
(v1−v2)

= W xi· v1−v2v1−v2 = W xi

Then, using any m, E, L and l, we show that
TraceE(L,SigE(sski,m,L, l),m, ω(E,i)) = 1. Indeed,
using SigE(sski,m,L, l) = (T1, T2, T3, T4, T5, T6) such
that T4 = gr2 and T5 = e(W,T4)xi , we have:

e(ω(E,i), T4) = e(W xi , T4) = e(W,T4)xi = T5

E. Security

According to the security model introduced in Section III,
we have the following theorem.

Theorem 13. Ktrace is (n,k)-EUF-CMA secure, (n, k)-
traceable and (n, k)-anonymous under the decisional Diffie-
Hellman assumption in G1 (Def. 1) and the 2-bilinear de-
cisional Diffie-Hellman assumption (Def. 3) in the random
oracle model for any polynomial bounded k and n.

Full proof of this theorem will appear in the full version of
this paper. In the following, we just give some proof intuitions
for each properties.

(n,k)-EUF-CMA security: In order to build a valid sig-
nature of m using E, the adversary must to compute a valid
NIZKP in T6. This proof convinces the verifier that the signer
has used a valid secret key ssk according to the set of public
keys L. As a consequence, since the NIZKP is sound, the
signer cannot generate a valid signature except with negligible
probability.

(n, k)-traceability: In a similar way, as Π is sound,
a signature that success the verification check is correctly
constructed. Since the adversary is not able to forge a signature
using the secret key of an honest user under the soundness of
Π, the traceability of Ktrace is a direct implication of the
correctness of the algorithms link, match and trace.

7

(n, k)-anonymity: Let T1 = Axi,j , T2 = Bxi,j ·gu·xi1 and
T3 = Cxi,j ·W v·xi be the three first parts of the challenge.
To discover the user’s identity using this three values, the
adversary must deduce gxi1 or g

xi,j
1 from T1, T2 and T3

knowing the public hash values A, B and C. However, since
the key xi,j is used only once per event, Axi,j , Bxi,j and
Cxi,j are computationally indistinguishable to three random
elements according to the Diffie-Hellman assumption in G1.
As a consequence, these three values hide all the information
about the signer public key contained in T1, T2 and T3. On the
other hand, let T4 = gr2 , T5 = e(W xi , g2) and T6 be the three
last terms of the signatures. Clearly, T6 leaks no information
about the user identity since it is zero-knowledge. Moreover,
it seems to be hard to deduce the signer identity from T5

since it is hard to guess that T5 = e(W xi , gr2) knowing W ,
gxi1 and gr2 under the BDDH assumption. Actually, we do
not reduce the security of Ktrace to BDDH but to 2BDDH
because asking the signing oracle, the adversary can learn the
part T ′5 = e(W xi , gr

′

2) of an other signature using the same
key as the challenge. Thus, the adversary wins the experiment
if he guesses whether T5 = e(W xi , gr2) or not knowing W ,
gxi1 , gr2 , gr

′

2 and e(W xi , gr
′

2). Finally, it is computationally
infeasible to guess the identity of an honest user from one of
its signatures under the decisional Diffie-Hellman assumption
in G1 and the 2-bilinear decisional Diffie-Hellman assumption.

F. Performances

The performances of the scheme Ktrace depend of n the
number of users in the group and k = max0≤i≤n(ki) the
maximum in the set of all user threshold values ki. The secret
key of each user contains at most (k+ 1) elements of Z∗p, i.e.
the size of the public key of each user is (k + 1) · sp where
sp = log2(p) is the bit size of the elements of Z∗p. Thus, the
group public key size is (k+ 1) ·n ·s1 where s1 is the bit size
of an element of G1.

In the signature algorithm, we use the NIZKP Π which is
constructed using the generic transformation [23] on Π1. The
size of this NIZKP is 6 ·s1 +s2 +sT +3 ·sp where s2 is the bit
size of an element of G2 and sT is the bit size of an element
of Gt. The size of a NIZKP built from [23] is x times the
size of the original proof, where x is the number of instances
used. In our scheme, the cardinal of the set of instances S =
{(Q, gxi , gxi,j)}(i,j)∈I×{1,··· ,ki} is at most n·k. Then the size
of the NIZKP is bounded by (6 · s1 + s2 + sT + 3 · sp) · n · k.
Finally, the size of a signature σ = (T1, T2, T3, T4, T5, T6) is
(6 · s1 + s2 + sT + 3 · sp) · n · k + 3 · s1 + s2 + sT which is
in O(n · k). The complexity of the signing algorithm and the
verification algorithm are in O(n · k).

The complexity of the three algorithms link, match and
trace are constant. Moreover, the tracer outputted by the
match algorithm is also in constant size s1. According to the
comparative table in Figure 2, we show that the signature size
of our scheme loses at least a factor k compared to other ring
signature schemes, particulary comparing to the list signature
scheme [2]. However, it is the only one which is k-times, ad-

hoc and fully traceable together. Note that a 1-times scheme
is allways full traceable by construction.

Finally, note that in both applications given in the next
section, k is a priori much smaller than n. Moreover, our
applications do not implicate that k increases when n does.
Thus, depending to the context, the signature size O(n ·k) can
be often considered to be relatively closed to O(n).

V. APPLICATIONS

A. k-times Proxy E-Voting

Linkability in group and ring signatures is a useful property
to design cryptographic e-voting schemes. As a matter of fact,
one can built a simple e-voting scheme from any linkable
group signature scheme as follows. To vote for the candidate
c, the voter signs c in σ using a linkable group signature
scheme. He then publishes (c, σ) on a public bulletin board.
The bulletin board is a publicly readable storage such that
everybody can write data on the board but it is not possible to
discard any data from it. To compute the result of the election,
it is sufficient to remove all non-valid signatures according to
the group public key and all linked signatures, and to count the
number of ballots for each candidate. Such a scheme presents
several properties:
• Ballots are anonymous thanks to the anonymity of the

group signature.
• A voter cannot vote more than his number of authorized

vote thanks to the linkability of the group signature.
• The result of the election can be publicly computed by

anyone.
• Using linkable ring signature, this scheme does not re-

quire any manager or trust party.
• Using event oriented signatures, voters can use the same

keys for several elections. In a multi-group context, using
the group identity as event allows the users to use the
same signing key for different groups.

• Using traceable signatures, the identity of a cheater is
public, and it is possible to revoke the cheaters.

On the other hand, k-times schemes can be used to design
such an e-voting scheme with proxy mechanism. In proxy
voting, a signer who receives a proxy vote from another one
must be able to vote one more time. Thus, any voter can vote k
times where k is the number of proxy that he has received. Of
course, if the voter votes more than k times, he must be traced
and revoked. In this case, we would like to discard all votes
of the cheater during the counting of votes. However, such
a property cannot be achieved with a basic k-times signature
scheme since it is not full traceable. To solve this problem, we
propose the following k-times proxy e-voting scheme based
on our k-FTRS scheme.
Setup: Each voter uses Gen to generate secret/public keys

depending on his number of proxy k. The voters construct
the group public key GPK which is the set of all voters
public keys.

Initialization of an election: Users choose the event E and
the set of candidates C.

8

Papers Schemes Sig. size Ad-hoc Times Pub. link. Pub. trac. Full trac. Events
[5] Ring signature O(n) Yes ∞ - - - -
[6] Short group sig. O(1) No ∞ - - - -
[7] Linkable ring sig. O(n) Yes 1 Yes No No No
[2] List sig. (Ad-hoc) O(n) Yes 1 Yes Yes Yes Yes
[9] Short link. ring sig. O(1) Yes 1 Yes No No No
[13] Id-based link. ring sig. O(1) Yes 1 Yes Yes Yes Yes
[1] k-times group sig. O(1) No k Yes Yes No Yes

Ktrace O(n · k) Yes k (fine-grained) Yes Yes Yes Yes
Fig. 2. Comparison of the group/ring signatures schemes, where - means that the property is not relevent for the scheme.

Voting protocol: Each user chooses k candidates
(c1, . . . , ck) ∈ Ck and publishes on the public
bulletin board the ballots (cj ,SigE(ssk, cj ,GPK, j)) for
all j ∈ {1, . . . , k} using his secret key svk.

Counting of votes: Copy all ballots from the bulletin board.
First, everyone removes each ballot which contains in-
valid signature using the algorithm Ver. Then anyone uses
the Link algorithm on each pair of ballots, and the Match
algorithm on each pair of linked ballots to obtain the
cheaters identities and the corresponding tracers. For each
tracer, we can use the Trace algorithm on each ballot, and
remove it if Trace returns 1. Finally, everyone counts the
number of ballots for each candidate and deduces the
election winner.

Note that cheaters can also be revoked of the group for the
future elections.

B. k-times Anonymous Veto
A k-times anonymous veto allows members of a group to

anonymously express k vetos. For example, during the organi-
zation of a conference, the members of the steering committee
constitute the list of members of the technical committee.
For some reason, a member of the steering committee might
want to refuse the designation of some people on this list.
However, members who exclude people might want to be
anonymous. On the other hand, it is desirable that the number
of people excluded per member is limited to a fixed value k.
Members who exceed the limit must be revoked to the steering
committee. In this case, it is necessary to discard all requests
produced by the revoked members. Such a veto scheme can
be easily designed using a k-FTRS scheme:
Setup: Each group member uses Gen to generate se-

cret/public keys depending to his number of veto k. The
members construct the group public key GPK which is
the set of all members public keys.

Initialization: Users choose the event E and the set of items
C.

Veto protocol: Each member chooses l items (c1, . . . , cl) ∈
Ck such that l ≤ k. To veto each item cj , the mem-
ber publish on the public bulletin board the witness
(cj ,SigE(ssk, cj ,GPK, j)) for all j ∈ {1, . . . , l} using
his secret key svk.

Cheater detection: Anybody can use the following proce-
dure to detect a member who places more than k vetos:

we use Link algorithm on each pair of witness, and Match
algorithm on each pair of linked witness to obtain the
cheater’s identities and the corresponding tracers. Thanks
to Match, it is possible to revoke the cheaters.

Finding invalid witness: All witnesses which contain an in-
valid signature are invalid. If the previous procedure
detects cheaters, the Trace algorithm is used on each
witness for each tracer outputted by Match. If Trace
outputs 1 then the corresponding witness is invalid.
Limitation of other k-times schemes: Since other schemes

in the literature are not full traceable, they present some limi-
tation for building k-times anonymous veto schemes. Without
full traceability, it is not possible to discard all witnesses
produced by a cheater. However, the cheater is revoked, so
he is no longer in the committee, and he no longer has
the right to exclude people from the list. In this case, other
members of the committee have no other choice but to restart
the veto procedure since other witness of the cheater remain
anonymous. Our scheme allows to solve this problem.

VI. CONCLUSION

In this paper, we give a more general definition of k-
times linkable/traceable signatures and their security. Our
construction allows members to chose a different threshold k
for each group member, and anybody can trace all signatures
generated by the same member. Future work will investigate
the design of such a scheme with smaller (or constant) size
of signature. On the other hand, we aim at designing k-times
full traceable schemes using the same methodology on other
existing linkable/traceable ring/group signatures.

REFERENCES

[1] M. H. Au, W. Susilo, and S.-M. Yiu, “Event-oriented k-times revocable-
iff-linked group signatures,” in Information Security and Privacy, 11th
Australasian Conference - ACISP. Springer, 2006.

[2] S. Canard, B. Schoenmakers, M. Stam, and J. Traoré, “List signature
schemes,” Discrete Appl. Math., vol. 154, no. 2, pp. 189–201, Feb.
2006. [Online]. Available: http://dx.doi.org/10.1016/j.dam.2005.08.003

[3] H. Jonker, S. Mauw, and J. Pang, “Privacy and verifiability
in voting systems: Methods, developments and trends,” Computer
Science Review, vol. 10, pp. 1–30, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.cosrev.2013.08.002

[4] D. Chaum and E. van Heyst, “Group signatures,” in EUROCRYPT91,
ser. LNCS, vol. 547. Springer, 1991.

[5] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
ASIACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol. 2248. Springer, Dec.
2001, pp. 552–565.

9

[6] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
CRYPTO 2004, ser. LNCS, M. Franklin, Ed., vol. 3152. Springer,
Aug. 2004, pp. 41–55.

[7] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous
group signature for ad hoc groups,” in ACISP 04, ser. LNCS, vol. 3108.
Springer, 2004.

[8] J. K. Liu and D. S. Wong, “Linkable ring signatures: Security models
and new schemes,” in ICCSA, ser. LNCS. Springer, 2005.

[9] P. P. Tsang and V. K. Wei, “Short linkable ring signatures for e-voting,
e-cash and attestation,” in ISPEC 05. Springer, 2005.

[10] M. H. Au, S. S. M. Chow, W. Susilo, and P. P. Tsang, “Short linkable
ring signatures revisited,” in EuroPKI 06. Springer, 2006.

[11] E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in ACM CCS 04. ACM Press, 2004, p. 132145.

[12] S. Canard and J. Traoré, “List signature schemes and application to
electronic voting,” in WCC, 2003.

[13] M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen, “Constant-size id-
based linkable and revocable-iff-linked ring signature,” in Progress in
Cryptology, 7th International Conference on Cryptology in India -
INDOCRYPT. Springer, 2006.

[14] I. Teranishi, J. Furukawa, and K. Sako, “k-times anonymous authenti-
cation (extended abstract),” in ASIACRYPT. Springer, 2004.

[15] L. Nguyen and R. Safavi-Naini, “Dynamic k-times anonymous au-
thentication,” in Applied Cryptography and Network Security, Third
International Conference - ACNS. Springer, 2005.

[16] I. Teranishi and K. Sako, “k-times anonymous authentication with a
constant proving cost,” in 9th International Conference on Theory and
Practice in Public-Key Cryptography - PKC. Springer, 2006.

[17] D. Boneh, “The decision Diffie-Hellman problem,” in Third Algorithmic
Number Theory Symposium (ANTS), ser. LNCS, vol. 1423. Springer,
1998, invited paper.

[18] D. Boneh and M. K. Franklin, “Identity based encryption from the Weil
pairing,” SIAM Journal on Computing, vol. 32, no. 3, pp. 586–615, 2003.

[19] S. D. Galbraith, F. Hess, and F. Vercauteren, “Aspects of pairing
inversion,” in Information Theory, IEEE Transactions, vol. 54. IEEE,
2008, pp. 5719 – 5728.

[20] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on Computing, pp. 186–208,
1989.

[21] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in EUROCRYPT89, ser. LNCS, vol. 434. Springer, 1989.

[22] A. Fiat and A. Shamir, Advances in Cryptology — CRYPTO’ 86:
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987,
ch. How To Prove Yourself: Practical Solutions to Identification
and Signature Problems, pp. 186–194. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-47721-7 12

[23] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in CRYPTO94,
ser. LNCS, vol. 839. Springer, 1994.

[24] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
CRYPTO’92, ser. LNCS, E. F. Brickell, Ed., vol. 740. Springer, Aug.
1993, pp. 89–105.

APPENDIX A
PROOF OF LEMMA 10

Lemma 10. Completeness: Knowing the solution (x, y, z) of
the instance (T1 = Ax, T2 = Bx · gu·y1 , T3 = Cx ·W v·y, T4 =
gz2 , T5 = e(W y, T4), h = gx1 , l = gy1), an honest prover is
always able to compute (x̄, ȳ, z̄) from any commitments R0 =
gr1 ; R1 = Ar ; R2 = Br ; R3 = Cr ; S0 = gs1 ; S1 = W s

; S2 = e(W,T4)s and Q0 = gq2 following the protocol. Then
the following equations hold:

Ax̄ = Ar ·Ax·ε = R1 · T1
ε

Bx̄ · gu·ȳ1 = Br · gs·u1 ·Bx·ε · gu·y·ε1 = R2 · Su0 · T ε2
C x̄ ·W v·ȳ = Cr ·W s·v · Cx·ε ·W v·y·ε = R3 · Sv1 · T ε3
gz̄2 = gq2 · gz·ε2 = Q0 · T4

ε

e(W,T4)ȳ = e(W,T4)s · e(W,T4)y·ε = S2 · T5
ε

gx̄1 = gr1 · gx·ε1 = R0 · hε; gȳ1 = gs1 · g
y·ε
1 = S0 · lε

Soundness: We consider a prover who is able to respond to
two different challenges ε0

$← Z∗p and ε1
$← Z∗p from the same

commitment (R0, R1, R2, R3, S0, S1, S2, Q0). We then prove
that this prover is able to compute a valid witness (x, y, z). Let
(x̄0, ȳ0, z̄0) (resp. (x̄1, ȳ1, z̄1)) be the response to the challenge
ε0 (resp. ε1). By hypothesis:

Ax̄0 = R1 · T1
ε0 ; Ax̄1 = R1 · T1

ε1

Bx̄0 · gu·ȳ0

1 = R2 · Su0 · T
ε0
2 ; Bx̄1 · gu·ȳ1

1 = R2 · Su0 · T
ε1
2

C x̄0 ·W v·ȳ0 = R3 · Sv1 · T
ε0
3 ; C x̄1 ·W v·ȳ1 = R3 · Sv1 · T

ε1
3

gz̄02 = Q0 · T ε04 ; gz̄12 = Q0 · T ε14

e(W,T4)ȳ0 = S2 · T ε05 ; e(W,T4)ȳ1 = S2 · T ε15

gx̄0
1 = R0 · hε0 ; gx̄1

1 = R0 · hε1

gȳ0

1 = S0 · lε0 ; gȳ1

1 = S0 · lε1

We prove that (x, y, z) = (x̄1−x̄0

ε1−ε0 ,
ȳ1−ȳ0

ε1−ε0 ,
z̄1−z̄0
ε1−ε0) is a valid

witness. We then check that:

Ax = A
x̄1−x̄0
ε1−ε0 =

(
R1 · T1

ε1

R1 · T1
ε0

) 1
ε1−ε0

= T1

Bx · gu·y1 = B
x̄1−x̄0
ε1−ε0 · g

u· ȳ1−ȳ0ε1−ε0
1 =

(
Bx̄1 · gu·ȳ1

1

Bx̄0 · gu·ȳ0

1

) 1
ε1−ε0

=

(
R2 · Su0 · T

ε1
2

R2 · Su0 · T
ε0
2

) 1
ε1−ε0

= T2

Cx ·W v·y = C
x̄1−x̄0
ε1−ε0 ·W v· ȳ1−ȳ0ε1−ε0 =

(
C x̄1 ·W v·ȳ1

C x̄0 ·W v·ȳ0

) 1
ε1−ε0

=

(
R3 · Sv1 · T

ε1
3

R3 · Sv1 · T
ε0
3

) 1
ε1−ε0

= T3

gz2 = g
z̄1−z̄0
ε1−ε0
2 =

(
Q0 · T ε14

Q0 · T ε04

) 1
ε1−ε0

= T4

e(W y, T4) = e(W,T4)
ȳ1−ȳ0
ε1−ε0 =

(
S2 · T ε15

S2 · T ε05

) 1
ε1−ε0

= T5

gx1 = g
x̄1−x̄0
ε1−ε0

1 =

(
R0 · hε1
R0 · hε0

) 1
ε1−ε0

= h

gy1 = g
ȳ1−ȳ0
ε1−ε0
1 =

(
S0 · lε1
S0 · lε0

) 1
ε1−ε0

= l

This concludes the proof.
Honest verifier zero knowledge: We show how to construct
a simulator Sim that outputs a valid transcript for Π1 from the
same distribution as a real Π1 transaction. Sim picks x̄ $← Z∗p,
ȳ

$← Z∗p, z̄ $← Z∗p, ε $← Z∗p and S1
$← G1. It then computes

the following values: S0 = gȳ1/l
ε; S2 = e(W,T4)ȳ/T ε5 ;

R0 = gx̄1/h
ε; R1 = Ax̄/T1

ε; R2 = Bx̄ · gu·ȳ1 /Su0 · T ε2 ;
R3 = C x̄ ·W v·ȳ/Sv1 · T ε3 ; Q0 = gz̄2/T

ε
4 . Then the transcript

〈(R0, R1, R2, R3, S0, S1, S2, Q0), ε, (x̄, ȳ, z̄)〉 is valid for Π1.
Moreover, since x̄, ȳ, z̄ and ε come from a uniform dis-
tribution, then Sim outputs valid transcripts from the same
distribution as real Π1 transactions, it concludes the proof.

10

APPENDIX B
PROOF OF THEOREM 13

Lemma 14. Ktrace is (n,k)-EUF-CMA secure for any polyno-
mial n and k under the soundness of Π in the random oracle
model.

Proof. LetA be an adversary such that λ = Adv
(n,k)-euf-cma
P,A (t)

is non negligible. We show how to construct an algorithm B
that forges a non-interactive proof from Π without knowing
any secret corresponding to one of the instances in the set
used. Since Π is zero-knowledge, B can use the simulation
algorithm Sim as a black box during the experiment. We say
that B wins if the proof that he outputs do not come from
Sim. We describe B as follows:
initialization: B receives as inputs the values {gxi1 }i∈{0,...,n}.

He then picks values xi,j
$← Z∗p for all (i, j) ∈

{0, . . . , n} × {1, . . . , k} and computes the key set U =
{(gxi1 , {g

xi,j
1 }j∈{1,...,k})}i∈{0,...,n}.

Experiment: B sends U to A. He initializes the lists Σ0 ← ∅,
Σ1 ← ∅ and E ← ∅ and simulates the two random oracles
H0 and H1 and the signing oracle SO(·) as follows:
H0: A sends X to the oracle. If ∃(X ′, Y ′) ∈ Σ0 such

that X = X ′ then B returns Y ′. Else if X = (E,N)
Such that E is an event (i.e. a l-bits string) and N an
integer such that 0 ≤ N ≤ 3, then B picks aE , bE , cE
and wE in Z∗p and adds (E, aE , bE , cE , wE) to E .
He also adds ((E, 0), gaE1), ((E, 1), gbE1), ((E, 2), gcE1)
and ((E, 3), gwE1) to Σ0 and returns the value Y such
that (X,Y) ∈ Σ0. Else B picks Y $← G1, adds (X,Y)
to Σ0 and outputs Y .

H1: A sends X to the oracle. If ∃(X ′, Y ′) ∈ Σ1 such that
X = X ′ then B returns Y ′. Else B picks Y $← Zp,
adds (X,Y) to Σ1 and outputs Y .

SO(·): A sends (svki, L,E,m, j). If
@(X, aX , bX , cX , wX) ∈ E such that X = E,
then B picks aE , bE , cE and wE in Z∗p and adds
(E, aE , bE , cE , wE) to E . He also adds ((E, 0), gaE1),
((E, 1), gbE1), ((E, 2), gcE1) and ((E, 3), gwE1) to Σ0.
Next B picks r

$← Z∗p, uses the random oracle H1

procedure to computes u = H1(E,m, 0, gr2) and
v = H1(E,m, 1, gr2) and computes the following
values:

T1 = g
aE ·xi,j
1 T2 = g

bE ·xi,j
1 · (gxi1)u

T3 = g
cE ·xi,j
1 · (gxi1)wE ·v T4 = gr2

T5 = e(gxi1 , T4)wE

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
aE
1 , gbe1 , g

cE
1 , gwE1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,...,k}

Finally, B uses Sim to generate a non-interactive proof
of knowledge T6 using Π of the solution (xi, xi,j , r) of
one instance I = (Q, gxi1 , g

xi,j
1) out of the instance set

S. It outputs the signature σ = (T1, T2, T3, T4, T5, T6)
to A.

Guess: A outputs (σ∗,m∗, E∗, L∗). Let T ∗6 be the T6

part of the signature σ∗. B returns the proof T ∗6 .

Analysis: If VerE∗(L∗, σ∗,m∗) = 1 and (σ∗,m∗, E∗) 6∈
outSO then T ∗6 is a valid proof for Π. Thus, using A as a
black box, B breaks the soundness of Π with probability λ,
which is non negligible.

Lemma 15. Ktrace is (n, k)-traceable for any polynomial n
and k under the DDH assumption in G1 in the random oracle
model.

Proof. Let A be an adversary such that λ = Adv
(n,k)-trace
P,A (t)

is non negligible. We show how to construct an algorithm
B that breaks the DDH assumption in G1. Since Π is zero-
knowledge, B can use the simulation algorithm Sim as a black
box during the experiment.

initialization: B receives as inputs the DDH instance
(ga∗1 , gx∗1 , gz∗1). He picks π $← {0, . . . , n} and generates
(sskπ, svkπ) ← Gen(init, k). For all ı ∈ {0, . . . , n}
such that i 6= π, B picks xi

$← Z∗p and x′i,j
$← Z∗p for

all j ∈ {1, . . . , k}. He then computes the verification
keys svki = (gxi1 , {(g

x∗
1)x

′
i,j}j∈{1,...,k}). Finally, he sets

U = {svki}ı∈{0,...,n}.
Phase 1: B sends U to A. He initializes the lists Σ0 ← ∅,

Σ1 ← ∅ and E ← ∅ and simulates the two random oracles
H0 and H1 and the signing oracle SO(·) as follows:

H0: A sends X to the oracle. If ∃(X ′, Y ′) ∈ Σ0 such that
X = X ′ then B returns Y ′. Else if X = (E,N) Such
that E is an event (i.e. a l-bits string) and N an integer
such that 0 ≤ N ≤ 3, then B picks aE , bE , cE and
wE in Z∗p and adds (E, aE , bE , cE , wE) to E . He also
adds ((E, 0), (ga∗1)aE), ((E, 1), gbE1), ((E, 2), gcE1) and
((E, 3), gwE1) to Σ0 and returns the value Y such that
(X,Y) ∈ Σ0. Else B picks Y $← G1, adds (X,Y) to
Σ0 and outputs Y .

H1: A sends X to the oracle. If ∃(X ′, Y ′) ∈ Σ1 such that
X = X ′ then B returns Y ′. Else B picks Y $← Zp,
adds (X,Y) to Σ1 and outputs Y .

SO(·): A sends (svki, L,E,m, j). If i = π then
B computes and returns σ = SigE(sskπ,m,L, j).
Else, If @(X, aX , bX , cX , wX) ∈ E such that
X = E, then B picks aE , bE , cE and wE in
Z∗p and adds (E, aE , bE , cE , wE) to E . He also
adds ((E, 0), (ga∗1)aE), ((E, 1), gbE1), ((E, 2), gcE1) and
((E, 3), gwE1) to Σ0. Next B picks r

$← Z∗p, uses
the random oracle H1 procedure to computes u =
H1(E,m, 0, gr2) and v = H1(E,m, 1, gr2) and com-

11

putes the following values:

T1 = (gz∗1)aE ·x
′
i,j T2 = (gx∗1)bE ·x

′
i,j · (gxi1)u

T3 = (gx∗1)cE ·x
′
i,j · (gxi1)wE ·v T4 = gr2

T5 = e(gxi1 , T4)wE

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, (g
a∗
1)aE , gbe1 , g

cE
1 , gwE1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

Finally, B uses Sim to generate a non-interactive proof
of knowledge T6 using Π of the solution (xi, xi,j , r) of
one instance I = (Q, gxi1 , g

xi,j
1) out of the instance set

S. It outputs the signature σ = (T1, T2, T3, T4, T5, T6)
to A.

Phase 2: A sends π′ to B. If π 6= π′ then B aborts,
else he sends (svkπ, sskπ) to A. He then simulates
the three oracles as in the first phase.

Guess: A returns (z, {σi}1≤i≤z, {mi}1≤i≤z, E). B
chooses σ̄ = (T̄1, T̄2, T̄3, T̄4, T̄5, T̄6) ∈ {σi}1≤i≤z
such that the first part of σ̄ denoted T̄1 is not equals
to (ga∗1)aE ·xπ . We set m̄ the message signed in σ̄.
If such a signature does not exist, B aborts the ex-
periment. Then B chooses i ∈ {0, . . . , n} such that
e(g1, T̄4)wE ·xi = T̄5. If such an element does not
exist, B aborts the experiment. Finally, B chooses
j ∈ {1, . . . , k} such that T̄2 = (gx∗1)bE ·x

′
i,j · (gxi1)u

where u = H1(E, m̄, 0, T̄4). Once again, if such an
element does not exist, B aborts the experiment. Else
if (T̄1)1/aE ·x′i,j = gz∗1 then B outputs 1, else he outputs
0.

Analysis: We say that a Ktrace signature
(T1, T2, T3, T4, T5, T6) is correct when T6 is a valid
proof and there exists r ∈ Z∗p and (x, y) such that there exists
svk = (gx1 , {g

xj
1 }1≤j≤k) ∈ U such that gy ∈ {gxj1 }1≤j≤k and

such that:

T1 = Ay T2 = By · gu·x1

T3 = Cy ·W v·x T4 = gr2

T5 = e(W,T4)x

Where:

A = H0(E, 0) B = H0(E, 1)

C = H0(E, 2) W = H0(E, 3)

u = H1(E,m, 0, gr2) v = H1(E,m, 1, gr2)

We set WA (resp. WB) the event that A (resp. B) wins his
experiment. We consider the following probability events:
• X1 is the event: ”z∗ = a∗ · x∗, π = π′, A wins his

experiment such that all signature of {σi}1≤i≤z are valid

and B wins his experiment”. First note that if A wins
his experiment such that all signature of {σi}1≤i≤z are
valid then B wins the experiment with probability 1.
Note that from the soundness of Π we can deduce that
the probability that A performs a non-valid signature is
negligible. We note this negligiblze probability ε. Finally,
note that if ”z∗ = a∗ ·x∗ and π = π′ then the experiment
is perfectly simulated for A and A wins the experiment
with the non-negligible probability λ. We then evalute
Pr[X1] as follows:

Pr[X1] =Pr[z∗ = a∗ · x∗] · Pr[π = π]

· Pr[WA|z∗ = a∗ · x∗ ∧ π = π′]

· Pr[σi is valid ∀1 ≤ i ≤ z]

=
1

2
· 1

n+ 1
· λ · (1− ε)

• X2 is the event: ”z∗ = a∗ · x∗, π = π′ and A looses the
experiment”. if this event occure then B returns a random
bit and wins with probability 1

2 . We then evalute Pr[X1]
as follows:

Pr[X2] =Pr[z∗ = a∗ · x∗] · Pr[π = π]

· Pr[¬WA|z∗ = a∗ · x∗ ∧ π = π′]

=
1

2
· 1

n+ 1
· (1− λ)

• X3 is the event: ”z∗ = a∗·x∗, π 6= π′”. if this event occure
then B returns a random bit and wins with probability 1

2 .
We then evalute Pr[X1] as follows:

Pr[X3] =Pr[z∗ = a∗ · x∗] · Pr[π¬ = π]

=
1

2
·
(

1− 1

n+ 1

)
• X4 is the event: ”z∗ 6= a∗ · x∗, π = π′, A wins his

experiment such that all signature of {σi}1≤i≤z are valid
and B wins his experiment”. Note that if ”z∗ 6= a∗ ·x∗ and
π = π′ then the experiment is not perfectly simulated for
A but A have less information than in the original game,
then his advantage λ′ in this scenario is lower than λ. We
then evalute Pr[X1] as follows:

Pr[X4] =Pr[z∗ 6= a∗ · x∗] · Pr[π = π]

· Pr[WA|z∗ 6= a∗ · x∗ ∧ π = π′]

· Pr[σi is valid ∀1 ≤ i ≤ z]

=
1

2
· 1

n+ 1
· λ′ · (1− ε)

• X5 is the event: ”z∗ 6= a∗ · x∗, π = π′ and A looses the
experiment”. if this event occure then B returns a random
bit and wins with probability 1

2 . We then evalute Pr[X1]
as follows:

Pr[X5] =Pr[z∗ 6= a∗ · x∗] · Pr[π = π]

· Pr[¬WA|z∗ 6= a∗ · x∗ ∧ π = π′]

=
1

2
· 1

n+ 1
· (1− λ′)

12

• X6 is the event: ”z∗ 6= a∗·x∗, π 6= π′”. if this event occure
then B returns a random bit and wins with probability 1

2 .
We then evalute Pr[X1] as follows:

Pr[X6] =Pr[z∗ 6= a∗ · x∗] · Pr[π¬ = π]

=
1

2
·
(

1− 1

n+ 1

)
Finally, we evaluate the probability that B wins the experi-
ment:

Pr[WB] ≥
6∑
l=1

Pr[X1] · Pr[WB|X1]

≥1

2
· 1

n+ 1
· λ · (1− ε) +

1

2
· 1

n+ 1
· (1− λ) · 1

2
+

1

2
·
(

1− 1

n+ 1

)
· 1

2
+

1

2
· 1

n+ 1
· λ′ · (1− ε)+

1

2
· 1

n+ 1
· (1− λ′) · 1

2
+

1

2
·
(

1− 1

n+ 1

)
· 1

2

≥1

2
·
(

λ+ λ′

2(n+ 1)
− ε(λ+ λ′)

(n+ 1)
+ 1

)
≥1

2
·
(

λ

2(n+ 1)
− 2λε

(n+ 1)
+ 1

)
≥1

2
+

(
λ

4(n+ 1)
− λε

(n+ 1)

)

Then B wins the experiment with the non negligible advantage
λB =

(
λ

2(n+1) −
ε

(n+1)

)
.

In order to prove the anonymity of our schemes, we define
the two following new cryptographic problems.

Definition 16 (k-PB). Let G1,G2 and Gt be three groups
of prime order p and e : G1 × G2 → Gt be a type
3 non-degenerate bilinear pairing. Let g1 ∈ G1 and
g2 ∈ G2 be two generators. The k-PB problem consists to
decide whether φ = w · xi · r∗ given the following tuple:
(ga1 , {g

xi,j
1 }1≤j≤k, {g

a·xi,j
1 }1≤j≤k, {uj}1≤j≤k, {vj}1≤j≤k, gb1,

gxi1 , {g
b·xi,j
1 · g

uj ·xi
1 }1≤j≤k, gc1, {g

c·xi,j
1 · g

w·vj ·xi
1 }1≤j≤k,

{grj1 }1≤j≤k, gw1 , {e(gw1 , g
rj
2)xi}1≤j≤k, g

xi,∗
1 , u∗, v∗, g

r∗
2 , g

a·xi,∗
1 ,

g
b·xi,∗
1 · gu∗·xi1 , g

c·xi,∗
1 · gw·v∗·xi1 , e(g1, g2)φ).

Definition 17 (k-PB0). Let G1,G2 and Gt be three
groups of prime order p and e : G1 × G2 → Gt be a
type 3 non-degenerate bilinear pairing. Let g1 ∈ G1 and
g2 ∈ G2 be two generators. The k-PB0 problem consists to
decide whether φ = w · xi · r∗ given the following tuple:
(ga1 , {g

xi,j
1 }1≤j≤k, {g

a·xi,j
1 }1≤j≤k, {uj}1≤j≤k, {vj}1≤j≤k, gb1,

gxi1 , {g
b·xi,j
1 · g

uj ·xi
1 }1≤j≤k, gc1, {(gc·z1 · gw·v∗·xi1 ·

g
c·x′i,j
1)v

′
j}1≤j≤k, {g

rj
1 }1≤j≤k, gw1 , {e(gw1 , g

rj
2)xi}1≤j≤k, g

xi,∗
1 ,

u∗, v∗, g
r∗
2 , g

a·xi,∗
1 , g

b·xi,∗
1 · gu∗·xi1 , gc·z1 · gw·v∗·xi1 , e(g1, g2)φ)

where vj = v∗ · v′j and xi,j = (xi,∗ + x′i,j) · v′j for all
j ∈ {1, . . . , k}.

Lemma 18. There does not exist any polynomial time al-
gorithm that solves the k-PB0 problem with non negligible
advantage under the 2BDDH assumption.

Proof. Let A be an algorithm that solve the k-PB0 with some
non-negligible advantage λ. We show how to construct an
algorithm B that solves the 2BDDH problem with the same
advantage λ. We define B as follows:
initialization: B receives as inputs the 2BDDH instance

(gxi1 , g
w
1 , g

r0
1 , g

r∗
1 , e(g1, g2)w·xi·r0 , e(g1, g2)φ).

Experiment: B picks a $← Z∗p, b $← Z∗p, c $← Z∗p, v∗
$← Z∗p,

xi,∗
$← Z∗p and Z0

$← G1. For all j ∈ {1, . . . , k}, he
picks x′i,j

$← Z∗p, uj
$← Z∗p, rj

$← Z∗p, v′j
$← Z∗p and

he computes Zj = (Z0 · g
c·x′i,j
1)v

′
j . Note that there exists

an element z of Z∗p such that Z0 = gc·z1 · gw·v∗·xi1 and

Zj = (gc·z1 · gw·v∗·xi1 · gc·x
′
i,j

1)v
′
j for all j ∈ {1, . . . , k}.

Finally, B runs A using the following tuple as input:
(ga1 , {(g

xi,∗
1 · gx

′
i,j

1)v
′
j}1≤j≤k, {(g

xi,∗
1 · gx

′
i,j

1)a·v
′
j}1≤j≤k,

{uj}1≤j≤k, {v∗ · v′j}1≤j≤k, gb1, g
xi
1 , {(g

xi,∗
1 · gx

′
i,j

1)b·v
′
j ·

(gxi1)uj}1≤j≤k, gc1, {Zj}1≤j≤k, {(g
r0
1)r

′
j}1≤j≤k, gw1 ,

{(e(g1, g2)w·xi·r0)r
′
j}1≤j≤k, g

xi,∗
1 , u∗, v∗, g

r∗
2 , g

a·xi,∗
1 ,

g
b·xi,∗
1 · gu∗·xi1 , Z0, e(g1, g2)φ)
A outputs a bite α.

Guess B returns α.
Analysis: Since the experiment is perfectly simulated for

A, B wins with the same advantage that A, i.e. λ.

Lemma 19. There does not exist any polynomial time al-
gorithm that solves the k-PB problem with non negligible
advantage under the DDH assumption in G1 and the 2BDDH
assumption.

Proof. Let A be an algorithm that solve the k-PB with some
non-negligible advantage λ. We show how to construct an
algorithm B that solves the DDH problem in G1 with a non-
negligible advantage λ′. We define B as follows:
initialization: B receives as inputs the DDH instance

(gc1, g
xi,∗
1 , gz1).

Experiment: B picks φ0, r∗, u∗, v∗, xi, w, a and b from the
uniform distribution on Z∗p, and he picks a random bit ε.
For all j in {1, . . . , k}, he picks rj , uj , v′j and x′i,j from
the uniform distribution on Z∗p. It then sets φ1 = w ·xi ·r∗
and constructs the following tuple:
(ga1 , {(g

xi,∗
1 · gx

′
i,j

1)v
′
j}1≤j≤k, {(g

xi,∗
1 · gx

′
i,j

1)a·v
′
j}1≤j≤k,

{uj}1≤j≤k, {v∗ · v′j}1≤j≤k, gb1, g
xi
1 , {(g

xi,∗
1 · gx

′
i,j

1)b·v
′
j ·

(gxi1)uj}1≤j≤k, gc1, {(gz1 · g
w·v∗·xi
1 · gc·x

′
i,j

1)v
′
j}1≤j≤k,

{grj1 }1≤j≤k, gw1 , {e(g1, g2)w·xi·rj}1≤j≤k, g
xi,∗
1 , u∗, v∗,

gr∗2 , (g
xi,∗
1)a, (g

xi,∗
1)b · gu∗·xi1 , gz1 · g

w·v∗·xi
1 , e(g1, g2)φ)

Finally, B runs the algorithm A using the previous tuple
as input. A returns the bit ε′.

Guess If (ε = ε′), B outputs 1, else he returns 0.
Analysis: When z 6= c · xi,∗, A receives an instance of

k-PB0. However There does not exist any polynomial time
algorithm that solves the k-PB0 problem with non-negligible

13

advantage under the 2BDDH assumption (Lemma 18). Let
θ be the negligible advantage of A on k-PB0. On the other
hand, when z = c · xi,∗ then setting vj = v∗ · v′j and xi,j =
(xi,∗+x′i,j) · v′j for all j ∈ {1, . . . , k}, A receives an instance
of k-PB. Indeed, for all j ∈ {1, . . . , k}:

(g
xi,∗
1 · gx

′
i,j

1)v
′
j = g

xi,j
1

(g
xi,∗
1 · gx

′
i,j

1)a·v
′
j = g

a·xi,j
1

(g
xi,∗
1 · gx

′
i,j

1)b·v
′
j · (gxi1)uj = g

b·xi,j
1 · guj ·xi1

(gz1 · g
w·v∗·xi
1 · gc·x

′
i,j

1)v
′
j = g

c·xi,j
1 · gw·vj ·xi1

gz1 · g
w·v∗·xi
1 = g

c·xi,∗
1 · gw·v∗·xi1

Then by hypothesis A wins his experiment with probability
λ. We set WA (resp. WB) the event that A (resp. B) wins his
experiment. We fist remark that:

Pr[WB|z = c · xi,∗] = Pr[ε = ε′|z = c · xi,∗]
= Pr[WA|z = c · xi,∗]

Pr[WB|z 6= c · xi,∗] = Pr[ε 6= ε′|z 6= c · xi,∗]
= 1− Pr[WA|z 6= c · xi,∗]

Finally:

Pr[WB] =
1

2
· Pr[WB|z = c · xi,∗] +

1

2
· Pr[WB|z 6= c · xi,∗]

=
1

2
· Pr[WA|z = c · xi,∗] +

1

2
− 1

2
· Pr[WA|z 6= c · xi,∗]

To conclude, we compute the advantage of B:∣∣∣∣Pr[WB]− 1

2

∣∣∣∣
=

∣∣∣∣12 · Pr[WA|z = c · xi,∗]−
1

2
· Pr[WA|z 6= c · xi,∗]

∣∣∣∣
=

1

2
·
∣∣∣∣(Pr[WA|z = c · xi,∗]−

1

2

)
−
(

Pr[WA|z 6= c · xi,∗]−
1

2

)∣∣∣∣
≥ 1

2
· (λ− θ)

Since λ is non-snegligible and θ is negligible, 1
2 · (λ − θ) is

non-negligible.

Lemma 20. Let Exp(n,k)-anon0

Ktrace,A (t) be the same experiment

that Exp(n,k)-anon
Ktrace,A (t) except that the part T5 of the challenge

σ = (T1, T2, T3, T4, T5, T6) given to A is chosen in the
uniform distribution on Gt. Then the corresponding advantage
Adv

(n,k)-anon0

Ktrace (t) is negligible under the DDH assumption in
G1.

Proof. We suppose that there exists A such that
Adv

(n,k)-anon0

Ktrace,A (t) is non-negligible. We show how to
construct B that have a non-negligible advantage on the DDH
problem.
initialization: B receives as inputs the DDH instance

(gx∗1 , ga1 , g
z
1).

Phase 1: Let sE be the bit-size of an event of Ktrace. The
sE first bits of a qwery sending by A to one of the two

random oracles replacing the two hash functions H0 and
H1 are called the event part of the qwery. We set qE as
the number of different event parts sending to the oracles
by A during the experiment. Cleraly, qE is polynomially
bounded.
B picks θ $← {1, . . . , qE}, ψ $← {1, . . . , k} and τ

$←
{1, . . . , n}. For all i ∈ {0, . . . , n}/{τ}, he generates
(sski, svki) ← Gen(init, k). Then he picks xτ

$← Z∗p,
and for all j ∈ {1, . . . , k}/{ψ} he picks xτ,j

$← Z∗p.
Finally, he sets g

xτ,ψ
1 = gx∗1 and computes svkτ =

(gxτ1 , {gxτ,j1 }1≤j≤k). He sets U = {svki}0≤i≤n and
sends it to A. B initializes the three following lists:
• A list of event E ← ∅
• A list L0 ← ∅ of input/output of the random oracle of

the function H0

• A list L1 ← ∅ of input/output of the random oracle of
the function H1

B initializes a counter cnt ← 0 and simulates the two
random oracles H0 and H1 and the signing oracle SO(·)
as follows:
H0: A sends the input in. Let E be the event part of in.

If E 6∈ E then B adds E to E and compute cnt← cnt+
1. If cnt = θ, B picks b′ $← Z∗p, c′ $← Z∗p and w $← Z∗p
and adds ((E, 0), ga1), ((E, 1), (ga1)b

′
), ((E, 2), (gb1)c

′
)

and ((E, 3), gw1) to L0. Else, if cnt 6= θ, B sets l = cnt,
picks al

$← Z∗p, bl
$← Z∗p, cl

$← Z∗p and wl
$← Z∗p

and adds ((E, 0), gal1), ((E, 1), gbl1), ((E, 2), gcl1) and
((E, 3), gwl1) to L0 Finally, if ∃(in′,out′) ∈ L0 such
that in′ = in then B returns out′. Else, he picks
out $← Z∗p, adds (in,out) to L0 and returns it.

H1: A sends the input in. If ∃(in′,out′) ∈ L1 such
that in′ = in then B returns out′. Else, he picks
out $← Z∗p, adds (in,out) to L1 and returns it.

SO(·): A sends (svki, L,E,m, j) as input.
• If (i 6= τ) or (i = τ and j 6= ψ) then B knows xi

and xi,j . Using these values he can computes the
signature σ = SigE(sski,m,L, j). B returns σ.

• If (i = τ and j = ψ and E 6= Eθ) then B picks
r

$← Z∗p, computes T4 = gr2 and computes u =
H1(E,m, 0, T4) and v = H1(E,m, 1, T4) using the
oracle algorithm of H1. If E 6∈ E then B uses the
random oracle algorithm H0 on the input (E, 0).
Let l be the index such that E = El. He computes:

T1 = (gx∗1)al T2 = (gx∗1)bl · gu·xi1

T3 = (gx∗1)cl · gwl·v·xi1 T5 = e(gwl1 , T4)xi

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
al
1 , g

bl
1 , g

cl
1 , g

wl
1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

14

Finally, B uses Sim to generate a non-interactive
proof of knowledge T6 using Π of the solution
(xi, xi,j , r) of one instance I = (Q, gxi1 , g

xi,j
1)

out of the instance set S. It outputs the signature
σ = (T1, T2, T3, T4, T5, T6) to A.

• If (i = τ and j = ψ and E = Eθ) then B aborts
the experiment and returns a random bit.

Finally A returns (π0, π1, L∗, E∗,m∗, j∗).
Phase 2: If (π0 6= τ and π1 6= τ) or (E∗ 6= Eθ) or

(j∗ 6= ψ) then B aborts the experiment and returns a
random bit. Else, B sets πε = τ . He picks r $← Z∗p,
computes T4 = gr2 and computes u = H1(E∗,m∗, 0, T4)
and v = H1(E∗,m∗, 1, T4) using the oracle algorithm
of H1 and computes the other parts of the challange
σ∗ = (T1, T2, T3, T4, T5, T6) as follows:

T1 = gz1 T2 = (gz1)b
′
· gu·xi1

T3 = (gz1)c
′
· gwl·v·xi1 T5

$← Gt

Let I be the set of user indexes such that:

L∗ = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
a
1 , (g

a
1)b
′
, (ga1)c

′
, gw1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

Finally, B uses Sim to generate a non-interactive proof
of knowledge T6 using Π of the solution (xi, xi,j , r) of
one instance I = (Q, gxi1 , g

xi,j
1) out of the instance set

S. It outputs the challenge σ∗ = (T1, T2, T3, T4, T5, T6)
to A. During the second phase, B simulates the oracles
as in the first phase. Finally, A returns ε′.

Guess: If ε = ε′ then B returns 1, else he returns 0.
Analysis: Let X be the event that B does not abort during

the experiment. As a first step, we consider that X = "true".
In this case, if z = a · x∗ then B simulates perfectly the
experiment Exp(n,k)-anon0

Ktrace,A (t) for A. We set WA (resp. WB)
the event that A (resp. B) wins his experiment. Thus:

Pr[WB|z = a · x∗] = Pr[ε = ε′|z = a · x∗]
= Pr[WA|z = a · x∗]
= Pr[WA|z = a · x∗]

On the other hand, when z 6= a ·x∗, all the information about
the signer identity in the challenge is hidden by gz1 and A has
no other choice but to respond randomly. Thus:

Pr[WB|z 6= a · x∗] = Pr[ε = ε′|z 6= a · x∗]
= Pr[WA|z 6= a · x∗]

=
1

2

Finally, when X = "true":

Pr[WB] =
1

2
· Pr[WA|z = a · x∗] +

1

2
· 1

2

=
1

2
· (Pr[WA|z = a · x∗] +

1

2
·)

Now we examinate the case where X = "false". In this
case:

Pr[WB] =
1

2

Finally:

Pr[WB] = Pr[X] · Pr[WB|X] + Pr[¬X] · Pr[WB|¬X]

=
1

k · n · qE
· 1

2
·
(

Pr[WA|z = a · x∗] +
1

2

)
= +

(
1− 1

k · n · qE

)
· 1

2

=
1

2 · k · n · qE
·
(

1

2
± λ+

1

2
− 1

)
+

1

2

=
1

2
± λ

2 · k · n · qE

And B wins his experiment with the non negligible advantage
λ′ = λ

2·k·n·qE .

Lemma 21. Ktrace is anonymous under the hardness of k-PB.

Proof. We suppose that there exists A such that λ =

Adv
(n,k)-anon
P,A (t) is non-negligible. We show how to construct

B that have a non-negligible advantage on the k-PB problem.
initialization: B receives as inputs the k-PB instance:

(ga1 , {gx∗,j1 }1≤j≤k, {ga·x∗,j1 }1≤j≤k, {uj}1≤j≤k,
{vj}1≤j≤k, gb1, gx∗1 , {gb·x∗,j1 · g

uj ·x∗
1 }1≤j≤k,

gc1, {gc·x∗,j1 · g
w·vj ·x∗
1 }1≤j≤k, {grj1 }1≤j≤k, gw1 ,

{e(gw1 , g
rj
2)x∗}1≤j≤k, g

x∗,∗
1 , u∗, v∗, gr∗2 , g

a·x∗,∗
1 ,

g
b·x∗,∗
1 · gu∗·x∗1 , g

c·x∗,∗
1 · gw·v∗·x∗1 , e(g1, g2)φ)

Phase 1: Let sE be the bit-size of an event of Ktrace. The
sE first bits of a qwery sending by A to one of the two
random oracles replacing the two hash functions H0 and
H1 are called the event part of the qwery. We set qE as
the number of different event parts sending to the oracles
by A during the experiment. Cleraly, qE is polynomially
bounded.
B picks θ

$← {1, . . . , qE}, ψ ∈ {1, . . . , k} and τ
$←

{0, . . . , n}. For all i ∈ {0, . . . , n}/{τ}, he generates
(sski, svki) ← Gen(init, k). Then sets gxτ1 = gx∗1 ,
and for all j ∈ {1, . . . , k}/{ψ} he sets gxτ,j1 = g

x∗,j
1 .

Finally, he sets g
xτ,ψ
1 = g

x∗,∗
1 and computes svkτ =

(gxτ1 , {gxτ,j1 }1≤j≤k). He sets U = {svki}0≤i≤n and
sends it to A. B initializes the three following lists:
• A list of event E ← ∅
• A list L0 ← ∅ of input/output of the random oracle of

the function H0

• A list L1 ← ∅ of input/output of the random oracle of
the function H1

15

B initializes a counter cnt ← 0 and simulates the two
random oracles H0 and H1 and the signing oracle SO(·)
as follows:
H0: A sends the input in. Let E be the event part of
in. If E 6∈ E then B adds E to E and compute
cnt ← cnt + 1. If cnt = θ, B adds ((E, 0), ga1),
((E, 1), gb1), ((E, 2), (glc) and ((E, 3), gw1) to L0. Else,
if cnt 6= θ, B sets l = cnt, picks al

$← Z∗p, bl
$← Z∗p,

cl
$← Z∗p and wl

$← Z∗p and adds ((E, 0), gal1),
((E, 1), gbl1), ((E, 2), gcl1) and ((E, 3), gwl1) to L0. Fi-
nally, if ∃(in′,out′) ∈ L0 such that in′ = in
then B returns out′. Else, he picks out $← Z∗p, adds
(in,out) to L0 and returns it.

H1: A sends the input in. If ∃(in′,out′) ∈ L1 such
that in′ = in then B returns out′. Else, he picks
out $← Z∗p, adds (in,out) to L1 and returns it.

SO(·): A sends (svki, L,E,m, j) as input.
• If (i 6= τ) then B knows xsski. Using

this key he can compute the signature σ =
SigE(sski,m,L, j). B returns σ.

• If (i = τ and E 6= Eθ) then B picks r $← Z∗p, com-
putes T4 = gr2 and computes u = H1(E,m, 0, T4)
and v = H1(E,m, 1, T4) using the oracle algo-
rithm of H1. If E 6∈ E then B uses the random
oracle algorithm H0 on the input (E, 0). Let l be
the index such that E = El. He computes:

T1 = (g
xi,j
1)al T2 = (g

xi,j
1)bl · (gxi1)u

T3 = (g
xi,j
1)cl · (gxi1)wl·v T5 = e(gxi1 , T4)wl

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
al
1 , g

bl
1 , g

cl
1 , g

wl
1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

Finally, B uses Sim to generate a non-interactive
proof of knowledge T6 using Π of the solution
(xi, xi,j , r) of one instance I = (Q, gxi1 , g

xi,j
1)

out of the instance set S. It outputs the signature
σ = (T1, T2, T3, T4, T5, T6) to A.

• If (i = τ and E = Eθ and j 6= ψ) then B
sets T4 = g

rj
2 and adds ((E,m, 0, T4), uj) and

((E,m, 1, T4), uj) to the list L1. If E 6∈ E then B
uses the random oracle algorithm H0 on the input
(E, 0). Let l be the index such that E = El. Using
values of his problem instance, he sets:

T1 = g
a·x∗,j
1 T2 = g

b·x∗,j
1 · guj ·x∗1

T3 = g
c·x∗,j
1 · gw·vj ·x∗1 T5 = e(gw1 , g

rj
2)x∗

Let I be the set of user indexes such that:

L = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
a
1 , g

b
1, g

c
1, g

w
1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

Finally, B uses Sim to generate a non-interactive
proof of knowledge T6 using Π of the solution
(xi, xi,j , r) of one instance I = (Q, gxi1 , g

xi,j
1)

out of the instance set S. It outputs the signature
σ = (T1, T2, T3, T4, T5, T6) to A.

• If (i = τ and E = Eθ and j = ψ) then B aborts
the experiment and returns a random bit.

Finally A returns (π0, π1, L∗, E∗,m∗, j∗).
Phase 2: If (π0 6= τ and π1 6= τ) or (E∗ 6= Eθ) or

(j∗ 6= ψ) then B aborts the experiment and returns a
random bit. Else, B sets πε = τ . He sets T4 = gr∗2
and adds ((E,m, 0, T4), u∗) and ((E,m, 1, T4), u∗) to
the list L1. he computes the other parts of the challange
σ∗ = (T1, T2, T3, T4, T5, T6) using values of his problem
instance as follows:

T1 = g
a·x∗,∗
1 T2 = g

b·x∗,∗
1 · gu∗·x∗1

T3 = g
c·x∗,∗
1 · gw·v∗·x∗1 T5 = e(g1, g2)φ

Let I be the set of user indexes such that:

L∗ = {(gxi1 , {g
xi,j
1 }1≤j≤k)}i∈I

We set:

Q = (g1, g2, g
a
1 , g

b
1, g

c
1, g

w
1 , u, v, T1, T2, T3, T4, T5)

B computes the following set:

S =
{(
Q, gxi1 , g

xi,j
1

)}
(i,j)∈I×{1,··· ,k}

Finally, B uses Sim to generate a non-interactive proof
of knowledge T6 using Π of the solution (xi, xi,j , r) of
one instance I = (Q, gxi1 , g

xi,j
1) out of the instance set

S. It outputs the challenge σ∗ = (T1, T2, T3, T4, T5, T6)
to A. During the second phase, B simulates the oracles
as in the first phase. Finally, A returns ε′.

Guess: If ε = ε′ then B returns 1, else he returns 0.

Analysis: Let X be the event that B does not abort during
the experiment. As a first step, we consider that X = "true".
In this case, if φ = w∗ · x∗ · r∗ then B simulates perfectly the
experiment Exp(n,k)-anon

Ktrace,A (t) for A. We set WA (resp. WB) the
event that A (resp. B) wins his experiment. Thus:

Pr[WB|φ = w∗ · x∗ · r∗] = Pr[ε = ε′|φ = w∗ · x∗ · r∗]
= Pr[WA|φ = w∗ · x∗ · r∗]

=
1

2
± λ

16

On the other hand, when φ 6= w∗ · x∗ · r∗then B simulates the
experiment Exp(n,k)-anon0

Ktrace,A (t) for A and A have a negligible
advantage γ on this experiment (Lemma 20). Thus:

Pr[WB|φ 6= w∗ · x∗ · r∗] = Pr[ε = ε′|φ 6= w∗ · x∗ · r∗]
= Pr[WA|φ 6= w∗ · x∗ · r∗]

=
1

2
± γ

Finally, when X = "true":

Pr[WB] =
1

2
·
(

1

2
± λ
)

+
1

2
·
(

1

2
± γ
)

=
1

2
+
±λ± γ

2

Now we examinate the case where X = "false". In this
case:

Pr[WB] =
1

2

Finally:

Pr[WB] = Pr[X] · Pr[WB|X] + Pr[¬X] · Pr[WB|¬X]

=
1

k · n · qE
·
(

1

2
+
±λ± γ

2

)
+

(
1− 1

k · n · qE

)
· 1

2

=
1

k · n · qE
·
(

1

2
+
±λ± γ

2
− 1

2

)
+

1

2

=
1

2
+

±λ± γ
2 · k · n · qE

And B wins his experiment with the non negligible advantage

λ′ =

∣∣∣∣Pr[WB]− 1

2

∣∣∣∣
=

∣∣∣∣ ±λ± γ2 · k · n · qE

∣∣∣∣
≥ λ− γ

2 · k · n · qE

17

