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Abstract. We consider a dynamic process of frictional contact betweena non clamped viscoelastic body and a foun-
dation. We assume that the normal contact response depends on the depth of penetration of the foundation by the
considered body, and the dependence between these two quantities is governed by normal compliance conditions. On
the other hand, the friction force is assumed to be a nonmonotone function of the slip rate where the friction threshold
also depends on the depth of the penetration. Our aim in this paper is twofold. The first one is to prove the existence
and the uniqueness of a weak solution for the contact problemunder consideration. The second one is to provide the
numerical analysis of the process involving its semi-discrete and fully discrete approximation as well as estimation of
the error for both numerical schemes and the validation of such a result.

Keywords: non clamped conditions, dynamic process, viscoelastic material, normal compliance, nonmonotone friction
law, finite element method, error estimate.

2010 Mathematics Subject Classification:65M15, 65M60, 74M10, 74M15, 74S05, 74S20.

1. Introduction

Mechanical contact phenomena occur in many branches of engineering sciences and everyday life. They appear for
example when two or more parts of a device touch each other andin many other situations as well. The researchers take
into account many various aspects when creating models of contact phenomena. For instance, physical parameters of
materials, dynamics of the processes, phenomena like adhesion, wear, heat transfer, electrical conduction and friction
provide a variety of possibilities in this field. As a consequence we are given a broad spectrum of complicated mathe-
matical problems that require various mathematical techniques. Regarding this fact, one can confirm that mathematical
modelling of contact problems has become an important and rapidly developing branch of science in last years. For
recent mathematical results devoted to contact mechanics we refer to W. Han & M. Sofonea (2002); M. Shilloret al.
(2004); M. Sofonea & A. Matei (2012, 2009) and all the works referenced therein.

The theory of hemivariational inequalities, which allows to represent nonmonotone and nonsmooth contact prob-
lems, is a relatively new approach. Early comprehensive references in the area are (Z. Naniewicz & P. D. Panagiotopou-
los, 1995; P.D. Panagiotopoulos, 1993, 1985, 1995). For a more recent work, we refer to (S. Migórskiet al., 2013) and
the references therein. We refer the reader to (Y. Ayyadet al., 2009; M. Barboteuet al., 2013, 2014; M. Barboteuet
al. , 2015, 2008; M. Barboteuet al., 2008, 2002; M. Campoet al., 2005, 2006; P. Hild & Y. Renard, 2007; T. Laursen,
2002; P. Wriggers, 2002) for more discussion about various numerical aspects of contact problems in mechanics.

In this paper we deal with a mathematical model of a dynamic contact between a non clamped viscoelastic body
and a foundation. The foundation is assumed to be composed bya deformable basis covered by a thin deformable layer
with a different rigidity. Namely, the penetration of the foundation is modelled by a monotone relation between the
normal stress and the normal displacement. However, the useof several deformable materials allows to characterize
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the hardening phenomena of the foundation after reaching a certain penetration. On the other hand, the dependence of
the tangential stress with respect to the tangential velocity (slip rate) is modelled by a nonmonotone slip rate dependent
friction law (cf. (M. Barboteuet al., 2015; S. Migórskiet al., 2013)), in which the friction bound also depends explic-
itly on the depth of the penetration.

The first result of our paper provides the existence and uniqueness of a weak solution to the considered problem.
The proof of the solvability is based on a fixed point technique where, for the existence of a solution to an auxiliary
intermediate problem, we use an abstract theorem from (K. Bartosz, submitted). In the second part of the paper, we
deal with a numerical analysis of the problem. To this end, weconsider two numerical schemes, semi-discrete and
fully discrete one. In the first case, the Galerkin spatial approximation is used, while the time is kept continuous. This
method is called Faedo-Galerkin approximation. In the second scheme, both space and time are discretized. For both
schemes we provide abstract theorems concerning error estimates. Moreover, in the case when the spatial Galerkin
approximation is based on a finite element technique involving first order polynomials, we conclude that the error
depends linearly on the discretization parameters, provided the solution satisfies additional regularity conditions.

The results obtained by the first two authors in (M. Barboteuet al. , 2015) and (M. Barboteuet al., 2015) motivate
the present paper. Namely in (M. Barboteuet al. , 2015), we obtained analogous error estimates result but for much
simpler bilateral contact condition. In (M. Barboteuet al., 2015), a nonmonotone slip rate dependent friction law has
been used as well. However, for the contact conditions, a normal compliance model was coupled with a unilateral
constraint. In that case, only a finite penetration of the foundation is allowed. In fact these frictional contact conditions
introduce some difficulty in the mathematical model. In particular the variational formulation of such problem has the
form of a non local variational inequality. This kind of relation is called in literature "very weak formulation". In con-
trast to (M. Barboteuet al., 2015) we provide the existence and additionally the uniqueness of a solution to the problem
that, in the variational formulation, has the form of a localinclusion. Hence we deal with the weak, but not very weak
solution. From this point of view our result is stronger thanthe one obtained in (M. Barboteuet al., 2015). On the
other hand, the error estimates for the model studied in (M. Barboteuet al., 2015) remain an open problem while in
this work, the numerical analysis of the problem is provided. Furthermore, we also underline that the contact problems
studied in (M. Barboteuet al. , 2015) and (M. Barboteuet al., 2015) are assumed to use clamped boundary conditions,
that is, the displacement vanishes at a part of the boundaryΓD that has a positive Lebesgue measure. It is well known
that the assumption of clamped boundary conditions helps a lot in the variational analysis of the problem. Namely, it
allows to use the Korn inequality and introduce the norm‖v‖2

V =
∫

Ω ε(v) : ε(v)dx on the spaceV used in variational
formulation. As a consequence, the viscosity and elasticity tensors are coercive or strongly monotone with respect to
the norm‖ · ‖V . In contrast, in this work, we consider non clamped case and deal with the spaceV = H1(Ω ;Rd) with
the usual Sobolev norm. Such an assumption leads to work withthe viscosity operator that is not coercive nor strongly
monotone in spaceV, but satisfies a slightly weaker condition (see (3.13)(c)).On the other hand, the elasticity operator
does not have to satisfy a coercivity condition. It introduces a significant difficulty to be handled in the present paper.
Moreover, in (M. Barboteuet al. , 2015) a smallness condition for the constants of the problem is assumed (see (3.22)
of (M. Barboteuet al. , 2015)). In our paper we use a more sophisticated method thatallows to avoid such constraint
and makes the result even stronger.

The rest of the paper is structured as follows. In Section 2, we introduce notation that will be used in the rest
of the paper and provide preliminary material. In Section 3,we describe the mechanical problem of our interest and
provide its mathematical description in both classical andvariational forms. Moreover, we formulate and prove the
main result, existence and uniqueness theorem for the problem in variational form. In Section 4 and 5, we deal with
error estimates for a semi-discrete and fully discrete approximation, respectively. Finally, in Section 6, we providea
numerical validation of the optimal error estimate established in Section 5.

2. Notation and preliminaries

In this section we present the notation and some preliminarymaterial which will be of use later on. We use the notation
N andR for the set of natural and real numbers respectively. The symbolR+ will represent the set of nonnegative real
numbers, i.e.R+ = [0,+∞). Given a normed space(X,‖ · ‖X), and two real numbersa< b, we denote byC(a,b;X)
the space of all continuous functionsf : [a,b] → X equipped with the norm‖ f‖C(a,b;X) = maxx∈[a,b] ‖ f (x)‖X for all
f ∈ C(a,b;X). For a time dependent functionf , we use symbolṡf and f̈ for its first and second time derivative,
respectively. For a real valued functionf , we denote byf+ its positive part defined byf+(x) = max{ f (x),0} for all x.
Let d ∈ {2,3}. Then, we denote bySd the space of symmetricd×d matrices. The inner product and norm onRd and
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Sd are defined by

u·v= uivi , ‖v‖
Rd = (v·v) 1

2 for all u,v∈R
d,

σ : τ = σi j τi j , ‖τ‖
Sd = (τ : τ)

1
2 for all σ ,τ ∈ S

d.

Here and below the indicesi and j run between 1 andd, and unless stated otherwise, the summation convention over
repeated indices is used.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundaryΓ . We use the notationx= (xi) for a typical point in
Ω̄ and we denote byν = (νi) the outward unit normal atΓ . Also, an index that follows a comma represents the partial
derivative with respect to the corresponding component of the spatial variable, e.g.ui, j = ∂ui/∂x j . We use standard
notation for the Lebesgue and Sobolev spaces associated with Ω andΓ and, moreover, we consider the spaces

H = L2(Ω ;Rd), Q= L2(Ω ;Sd),

V = {u= (ui) | ε(u) ∈ Q}, Q1 = {τ ∈ Q | Divτ ∈ H }.

Hereε : V → Q and Div : Q1 → H represent the deformation and divergence operators given by

ε(v) = (εi j (v)), εi j (v) =
1
2
(vi, j + v j ,i), Divσ = (σi j , j).

The spacesH, Q, V andQ1 are real Hilbert spaces endowed with the inner products

(u,v)H =
∫

Ω
uivi dx, (σ ,τ)Q =

∫

Ω
σi j τi j dx,

(u,v)V = (u,v)H +(ε(u),ε(v))Q, (σ ,τ)Q1 = (σ ,τ)Q+(Divσ ,Divτ)H ,

and the associated norms‖ · ‖H , ‖ · ‖Q, ‖ · ‖V and‖ · ‖Q1, respectively. We denote byvν andvτ the normal and the
tangential component ofv onΓ , respectively, given byvν = v·ν andvτ = v−vνν . We denote byσν andσ τ the normal
and tangential traces ofσ , i.e. σν = (σν) ·ν andσ τ = σν −σνν .

We recall Theorem 2.25 of (S. Migórskiet al., 2013) concerning Green formula.

THEOREM 2.1 LetΩ be an open bounded and connected set ofRd with Lipschitz boundaryΓ . Then

∫

Ω
σ : ε(v)dx+

∫

Ω
Divσ ·vdx=

∫

Γ
σν ·vdΓ (2.1)

for all v∈V andσ ∈C1(Ω̄ ;Sd).

Now we pass to the definition of the subdifferential in the sense of Clarke.

Definition 2.2 Let X be a Banach space andX∗ its dual. The Clarke generalized directional derivative ofa locally
Lipschitz functionϕ : X →R at the pointx∈ X in the directionv∈ X is defined by

ϕ0(x;v) = limsup
y→x,λ↓0

ϕ(y+λv)−ϕ(y)
λ

.

The Clarke subdifferential ofϕ at x is a subset ofX∗ given by

∂ϕ(x) = {ζ ∈ X∗ |ϕ0(x;v)> 〈ζ ,v〉X∗×X for all v∈ X}.

We will need the following Gronwall inequalities proved in (W. Han & M. Sofonea, 2002).

LEMMA 2.1 Let f ,g∈C(a,b;R) andg be nondecreasing. Assume that

f (t)6 g(t)+ c
∫ t

a
f (s)ds for all t ∈ [a,b],

wherec is a positive constant. Then
f (t) 6 g(t)ec(t−a) for all t ∈ [a,b].
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LEMMA 2.2 LetT > 0 be given. For a positive integerN we definek = T/N. Assume that{gn}N
n=1 and{en}N

n=1 are
two sequences of nonnegative numbers satisfying

en 6 c̃gn+ c̃
n

∑
j=1

kej , for all n= 1, ...,N

for a positive constant ˜c independent ofN or k. Then there exists a positive constantc, independent ofN or k, such that

max
16n6N

en 6 c max
16n6N

gn.

We introduce now the Ehrling lemma proved in (R. Temam, 1984).

LEMMA 2.3 LetX0, X andX1 be three Banach spaces such that

X0 ⊂ X ⊂ X1,

the injection ofX into X1 being continuous and the injection ofX0 into X is compact. Then, for eachε > 0, there exists
a constantC(ε) such that

‖v‖X 6 ε‖v‖X0 +C(ε)‖v‖X1 for all v∈ X0.

At the end of this section, we recall the Young inequality that will be used several times in the paper.

ab6
1
2

a2+
1
2

b2 for all a,b> 0, (2.2)

and, in general,

ab6 εa2+
1
4ε

b2 for all a,b,ε > 0. (2.3)

In the rest of the paper, we denote byC a generic positive constant that may differ from place to place.

3. Mechanical problem and variational formulation

In this section, we describe a mechanical contact problem and present its classical mathematical formulation. Next
we introduce a list of assumptions on the data of the problem and pass to its variational formulation. The main result
of this section is Theorem 3.1 that guarantees an existence and uniqueness of a weak solution to the problem under
consideration.

3.1 Classical formulation

We consider a viscoelastic body that occupies in its reference configuration an open bounded regionΩ ⊂ Rd with
Lipschitz boundary∂Ω = Γ . The body may undergo a deformation under the influence of volume and boundary
forces. The boundaryΓ is divided into two disjoint partsΓN andΓC, namelyΓ = Γ̄N ∪ Γ̄C andΓN ∩ΓC = /0. We assume
that the external forces may act on the partΓN and the contact of the body with a foundation is possible on the partΓC.
Our interest is to describe the behaviour of the body in a timeinterval [0,T], whereT > 0. We denote byu(x, t) and
σ(x, t) the displacement and the stress at pointx∈ Ω at momentt ∈ [0,T], respectively. Keeping notation introduced
in Section 2 for vectors and tensors, we consider the following classical formulation of the dynamic contact problem.

Problem P. Find a displacement field u: Ω × (0,T)→Rd and a stress fieldσ : Ω × (0,T)→ Sd such that

σ = C ε(u̇)+E ε(u) in Ω × (0,T), (3.1)

ρ ü−Div σ = f 0 in Ω × (0,T), (3.2)

σν = f 2 onΓN × (0,T), (3.3)

−σν = p(uν)+
1
r
(uν −g)+ onΓC× (0,T), (3.4)







‖σ τ‖Rd 6 µ(‖u̇τ‖Rd)(p(uν)+
1
r (uν −g)+)

−σ τ = µ(‖u̇τ‖Rd)(p(uν )+
1
r (uν −g)+)

u̇τ
‖u̇τ‖Rd

if u̇τ 6= 0
onΓC× (0,T), (3.5)

u(0) = u0, u̇(0) = u1 in Ω . (3.6)
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Now we shortly describe the physical meaning of relations (3.1)-(3.6). Equation (3.1) represents a viscoelastic
constitutive law whereC and E denote the viscosity and the elasticity tensor, respectively. Relation (3.2) is the
equation of motion that governs the evolution of the mechanical state of the body. Hereρ is the mass density andf 0 is
the density of applied volume forces. The traction boundarycondition (3.3) states that the stress vectorσν is given on
partΓN of the boundary, and is equal to the boundary force of densityf 2. Now we explain the contact condition (3.4)
that expresses the dependence of the normal stressσν on the normal displacementuν on the contact part of boundary
ΓC. Recall that it models the contact with a foundation which ismade by a deformable basis covered by a thin layer
made of elastic material, of thicknessg. As far as the normal displacement does not reach the boundg, the contact is
described with a normal compliance condition−σν = p(uν). Once the depth of the penetration exceeds thicknessg,
the additional contribution of normal reaction,1

r (uν −g), occurs due to the resistance of the deformable basis of the
foundation. Nevertheless, the basis is not perfectly rigid, namely it allows to be penetrated. The given constant 1/r > 0
represents the rigidity of the basis. Condition (3.5) represents the slip rate dependent friction law, where the value
µ(‖u̇τ‖Rd)(p(uν )+

1
r (uν − g)+) plays the role of the friction bound andµ is not necessary monotone with respect

to the slip rate‖u̇τ‖Rd . Hence we may deal with a nonmonotone friction law. Finally,in (3.6) we impose the initial
conditions.

In the study of ProblemP we assume the following properties on the data.

H(C ): The viscosity operatorC : Ω ×Sd → Sd satisfies


















































(a) C (·,ε) is measurable onΩ for all ε ∈ Sd;

(b) (C (x,ε1)−C (x,ε2)) : (ε1− ε2)> c2‖ε1− ε2‖2
Sd for all ε1,ε2 ∈ Sd,

a.e.x∈ Ω with c2 > 0;

(c) ‖C (x,ε1)−C (x,ε2)‖Sd 6 LC ‖ε1− ε2‖Sd for all ε1,ε2 ∈ Sd,

a.e.x∈ Ω with LC > 0;

(d) C (x,0) = 0 a.e.x∈ Ω .

H(E ): The elasticity operatorE : Ω ×Sd → Sd is a bounded, symmetric, nonnegatively definite fourth order tensor,
i.e.















(a) Ei jkl ∈ L∞(Ω), 16 i, j,k, l 6 d;

(b) E (x)σ · τ = σ ·E (x)τ for all σ ,τ ∈ Sd, a.e. x∈ Ω ;

(c) E (x)τ · τ > 0 for all τ ∈ Sd, a.e. x∈ Ω .

H(p): The normal compliance functionp: ΓC×R→R+ satisfies



































(a) p(·,s) is measurable onΓC for all s∈R;

(b) |p(x,s1)− p(x,s2)|6 Lp|s1− s2| for all s1,s2 ∈ R,

a.e. x∈ ΓC with Lp > 0;

(c) p(x,s)6 c3 for all s∈ R, a.e. x∈ ΓC with c3 > 0;

(d) p(x,s) = 0 for all s6 0, a.e. x∈ ΓC.

H(µ): The friction boundµ : [0,∞)→R+ satisfies














(a) µ is continuous;

(b) |µ(s)|6 c4 for all s> 0, with c4 > 0;

(c) µ(s1)− µ(s2)>−λ (s1− s2) for all s1 > s2 > 0 with λ > 0.

H(g): The gap function satisfiesg∈ L2(ΓC) andg(x)> 0 a.e.x∈ ΓC.

H( f ): The force and the traction densities satisfy

f 0 ∈ L2(0,T;H), f 2 ∈ L2(0,T;L2(ΓN;Rd)).
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Also, we assume that the initial values satisfy

H0: u0 ∈V andu1 ∈ H.

Let us consider an auxiliary functionq: ΓC×R→ R+ defined by

q(x,s) = p(x,s)+
1
r
(s−g(x))+ for all s∈R, a.e.x∈ ΓC.

UsingH(p) andH(g) we obtain

H(q): The functionq satisfies






































(a) q(·,s) is measurable onΓC for all s∈R;

(b) |q(x,s1)−q(x,s2)|6 Lq|s1− s2| for all s1,s2 ∈R, a.e. x∈ ΓC,

with Lq = Lp+
1
r ;

(c) q(x,s)6 c3+
1
r |s| for all s∈ R, a.e. x∈ ΓC;

(d) q(x,s) = 0 for all s6 0, a.e.x∈ ΓC.

(3.7)

Now we introduce the function ˜p, defined by

p̃(x,s) = min{q(x,s), c̃3} for all s∈ R, a.e.x∈ ΓC.

H(p̃): The function ˜p: ΓC×R→ R+ satisfies



































(a) p̃(·,s) is measurable onΓC for all s∈R;

(b) |p̃(x,s1)− p̃(x,s2)|6 L̃p|s1− s2| for all s1,s2 ∈ R,

a.e. x∈ ΓC with L̃p = Lq;

(c) p̃(x,s)6 c̃3 for all s∈ R, a.e. x∈ ΓC with c̃3 > 0;

(d) p̃(x,s) = 0 for all s6 0, a.e. x∈ ΓC.

Note that such a function was only introduced for mathematical reasons; from the practical point of view, if ˜c3 is
large enough,q(uν) = p̃(uν) for all u, solution of ProblemP.

3.2 Variational formulation

We turn now to the variational formulation of ProblemP.

Let V andH be the spaces defined in Section 2. We denote by〈·, ·〉V∗×V and by(·, ·)H the duality pairing between
V and its dualV∗ and the inner product inH, respectively. IdentifyingH with its dual, we have an evolution triple
V ⊂ H ⊂ V∗ with dense, continuous and compact embeddings. We denote byγ : V → L2(ΓC;Rd) the trace operator
and for the elementv∈V we still denote byv its traceγv. By the Sobolev trace theorem there exists a positive constant
c0 depending only on the domainΩ andΓC such that

‖v‖L2(ΓC;Rd) 6 c0‖v‖V for all v∈V. (3.8)

In what follows we need the spacesV = L2(0,T;V), H = L2(0,T;H) andW = {v ∈ V | v̇ ∈ V ∗} where the time
derivative involved in the definition ofW is understood in the sense of vector valued distributions. Equipped with

the norm‖v‖W =
(

‖v‖2
V
+ ‖v̇‖2

V ∗
)1/2

the spaceW becomes a separable Hilbert space. It is well known that the
embeddingsW ⊂ C(0,T;H) and{w ∈ V | ẇ ∈ W } ⊂ C(0,T;V) are continuous. Now we provide the following
lemma.

LEMMA 3.1 For allε > 0 there existsC(ε)> 0 such that

‖v‖L2(ΓC;Rd) 6 ε‖v‖V +C(ε)‖v‖H for all v∈V. (3.9)
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Proof. We takeδ ∈ (0, 1
2). Since the embeddingV ⊂ H1−δ (Ω ;Rd) is compact and the embeddingH1−δ (Ω ;Rd)⊂ H

is continuous, we can apply Lemma 2.3. Thus, for anyε > 0 there isC(ε) > 0 such that for allv∈V

‖v‖H1−δ (Ω ;Rd) 6 ε‖v‖V +C(ε)‖v‖H . (3.10)

Furthermore, we denote byi : V →H1−δ (Ω ;Rd), the continuous embedding operator, byγ1 : H1−δ (Ω ;Rd)→H
1
2−δ (Γ ;Rd)

the compact trace operator and byj : H
1
2−δ (Γ ;Rd)→ L2(ΓC;Rd) the continuous embedding operator. Thusγ = j ◦γ1◦ i

is linear, continuous and compact. Using above notation, wehave

‖v‖L2(ΓC;Rd) = ‖γv‖L2(ΓC;Rd) = ‖( j ◦ γ1◦ i)v‖L2(ΓC;Rd) 6 c‖iv‖H1−δ (Ω ;Rd) for all v∈V

with c> 0. This together with (3.10) completes the proof. �

We introduce the functionj : Rd → R defined by

j(z) =
∫ ‖z‖

Rd

0
µ(s)ds for allz∈R

d.

The properties of the functionj are summarized in the next lemma.

LEMMA 3.2 If the assumptionsH(µ)(a)–(b) hold, then the functionj is locally Lipschitz, and

‖ξξξ‖
Rd 6 c4 for all ξξξ ∈ ∂ j(z), z∈R

d.

Furthermore, if the assumptionH(µ)(c) holds then

(ξξξ 1− ξξξ 2) · (z1− z2)>−λ‖z1− z2‖2
Rd for all ξξξ i ∈ ∂ j(ui) ui ∈ R

d, i = 1,2.

Proof. First, we have to prove thatj is locally Lipschitz. In order to do so, letz∈ R
d andr > 0. Forz1,z2 ∈ B(z, r),

we get
| j(z1)− j(z2)|6 max

x∈B(z,r)
µ(‖x‖

Rd)‖z1− z2‖Rd .

With H(µ)(a) and Proposition 5.6.28(ii) in (Z. Denkowskiet al. , 2003) we have the following characterization of the
Clarke subdifferential∂ j of j.

∂ j(z) =







B(0,µ(0)) for z= 0,

µ(‖z‖
Rd)

z
‖z‖

Rd
for z 6= 0.

(3.11)

Then, the other properties follow straightforwardly.� Now we observe that due to (3.11), the contact condition (3.5)
is equivalent to the following subdifferential inclusion

−σ τ ∈ p̃(uν)∂ j(u̇τ) onΓC× (0,T). (3.12)

We introduce the operatorsA: V →V∗, B: V →V∗, and the functionf : (0,T)→V∗, defined by

〈Au,v〉V∗×V =

∫

Ω
C ε(u) : ε(v)dx for all u,v∈V,

〈Bu,v〉V∗×V =

∫

Ω
E ε(u) : ε(v)dx for all u,v∈V,

〈 f (t),v〉V∗×V = ( f 0(t),v)H +( f 2(t),v)L2(ΓN;Rd) for all v∈V.

Using assumptionsH(C ) andH(E ) we easily find that operatorsA andB satisfy














(a)‖Au−Av‖V∗ 6 LC ‖u− v‖V for all u,v∈V;

(b)A0= 0;

(c) 〈Au−Av,u− v〉V∗×V > c2‖u− v‖2
V − c2‖u− v‖2

H for all u,v∈V.

(3.13)

and














(a) B∈ L (V;V∗) is symmetric;

(b) 〈Bv,v〉V∗×V 6 LE ‖v‖2
V for all v∈V, whereLE = ‖B‖L (V,V∗);

(c) 〈Bv,v〉V∗×V > 0 for all v∈V.

(3.14)
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We consider a multivalued mappingS2
∂ j : L2(ΓC;Rd)→ 2L2(ΓC;Rd) defined by

ξξξ ∈ S2
∂ j(v) ⇔ ξξξ ∈ L2(ΓC;Rd) andξξξ (x) ∈ ∂ j(v(x)) for a.e.x∈ ΓC, v∈ L2(ΓC;Rd).

It follows directly fromH(µ) and Lemma 3.2 thatS2
∂ j satisfies















(a) ‖ξξξ‖L∞(ΓC;Rd) 6 c4 for all ξξξ ∈ S2
∂ j(v), v∈ L2(ΓC;Rd);

(b) (ξξξ 1− ξξξ 2,v1− v2)L2(ΓC;Rd) >−λ‖v1− v2‖2
L2(ΓC;Rd)

for all ξξξ i ∈ S2
∂ j(vi),

vi ∈ L2(ΓC;Rd), i = 1,2.

(3.15)

Now we give the following variational formulation of Problem P.

Problem PV Find a displacement field u∈ V with u̇∈ W such that

〈ρ ü(t)+Au̇(t)+Bu(t)− f (t),v〉V∗×V +(p̃(uν(t)),vν )L2(ΓC;R) (3.16)

+(p̃(uν(t))ξξξ (t),vτ)L2(ΓC;Rd) = 0 f orall v ∈V, a.e. t ∈ (0,T),

and

u(0) = u0, u̇(0) = u1, (3.17)

where the corresponding friction densityξξξ ∈ L2(0,T,L2(ΓC;Rd)) satisfies

ξξξ (t) ∈ S2
∂ j(u̇τ(t)) f ora.e. t ∈ (0,T). (3.18)

Note that formally we obtain (3.16) multiplying the equation of motion (3.1) by a test functionv∈V, integrating
overΩ , applying the Green formula (2.1), the definitions of operatorsA andB and functionf and using (3.12).

We complete this section with an existence and uniqueness result for ProblemPV .

THEOREM 3.1 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Then there exists a unique solutionu of
ProblemPV .

Before the proof of Theorem 3.1 we consider an auxiliary problem. To this end we fixη ∈C(0,T;V) and define
the functionf η ∈ V ∗ by the formula

〈 f η(t),v〉V∗×V = 〈 f (t),v〉V∗×V − (p̃(ην (t)),vν)L2(ΓC;R) for all v∈V, a.e.t ∈ (0,T).

It follows from the propertyH( f ), H(p̃)(c) and (3.8), that functionf η is well defined.

We consider the following problem.

Problem PVη Find uη ∈ V with u̇η ∈ W such that

〈ρ üη(t)+Au̇η(t)+Buη (t),v〉V∗×V +(p̃(ην (t))ξξξ η(t),vτ)L2(ΓC;Rd) = 〈 f η (t),v〉V∗×V (3.19)

for all v ∈V, a.e. t∈ (0,T),

and

uη (0) = u0, u̇η (0) = u1 (3.20)

with

ξξξ η(t) ∈ S2
∂ j(u̇ητ(t)) for a.e. t∈ (0,T). (3.21)

Our aim is to study the existence of solution of ProblemPVη . To this end we will consider a more general problem.
Namely, we define the functionalJη : (0,T)×L2(ΓC;Rd)→ R given by

Jη(t,u) =
∫

ΓC

p̃(x,ην(x, t)) j(u(x))dΓ for all u∈ L2(ΓC;Rd).

The next lemma deals with properties of the functionalJ.
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LEMMA 3.3 If the assumptionsH(p̃) andH(µ) hold, then functionalJη satisfies

(i) Jη(·,u) is measurable for allu∈ L2(ΓC;Rd);

(ii) Jη(t, ·) is locally Lipschitz for a.e.t ∈ (0,T).

Proof. The properties(i) and(ii) follow from Theorem 3.47(ii) and (iii) of (S. Migórskiet al., 2013), respectively.�
Note that Lemma 3.3(ii) ensures that under assumptionsH(p̃) andH(µ), functionalJη is locally Lipschitz with

respect to the second variable for a.e.t ∈ (0,T). Hence, for a.e.t ∈ (0,T) there exist Clarke subdifferential ofJη with
respect to the second variable denoted by∂Jη(t, ·). Now we deal with its properties.

LEMMA 3.4 If the assumptionsH(p̃) andH(µ) hold, then for allu∈ L2(ΓC;Rd), a.e.t ∈ (0,T), we have

∂Jη(t,u)⊂
∫

ΓC

∂ [p̃(x,ην (x, t)) j(u(x))]dΓ , (3.22)

where∂ [p̃(x,ην (x, t)) j(u(x))] denotes the Clarke subdifferential of the function
p̃(x,ην(x, t)) j(u(x)) with respect tou.

Proof. Lemma 3.4 follows from Theorem 3.47 of (S. Migórskiet al., 2013). �

REMARK 3.1 The inclusion (3.22) is understood in the sense that for eachθ ∈ ∂Jη (t,u) there existsζ ∈ L2(ΓC;Rd)
such that

(θ ,v)L2(ΓC;Rd) =

∫

ΓC

ζ (x) ·v(x)dΓ for all v∈ L2(ΓC;Rd),

and
ζ (x) ∈ ∂ [p̃(x,ην (x, t)) j(u(x))] for a.e.x∈ ΓC.

Moreover, since the function ˜p(x,ην(x, t)) does not depend onu, we have∂ [p̃(x,ην(x, t)) j(u(x))] = p̃(x,ην (x, t))∂ j(u(x)).
Hence, the last inclusion is equivalent to

ζ (x) = p̃(x,ην (x, t))ξ (x) for a.e.x∈ ΓC,

with ξ (x) ∈ ∂ j(u(x)) for a.e.x∈ ΓC. Additionally, by Lemma 3.2, we haveξ ∈ L2(ΓC;Rd).

LEMMA 3.5 If the assumptionsH(p̃) andH(µ) hold, then

(i) ∂Jη (·,u) is measurable for allu∈ L2(ΓC;Rd);

(ii) ∂Jη (t,u) is nonempty, convex and weakly* compact subset ofL2(ΓC;Rd) for all u ∈ L2(ΓC;Rd) and a.e.t ∈
(0,T);

(iii) the mapping∂Jη(t, ·) is upper semicontinuous from the strong topology ofL2(ΓC;Rd) into weak topology in
L2(ΓC;Rd) for a.e.t ∈ (0,T);

(iv) ‖ζ‖L2(ΓC;Rd) 6 c̃3c4meas(ΓC) for all ζ ∈ ∂Jη (t,u), u∈ L2(ΓC;Rd) and a.e.t ∈ (0,T).

Proof. The property(i) follows from Lemma 3.3 and Proposition 3.23 of (S. Migórskiet al., 2013). The properties
(ii) and(iii ) follow from Proposition 3.23(iv) and (vi) respectively of (S. Migórskiet al., 2013). Finally,(iv) follows
from H(p̃)(c), H(µ)(b) and Lemma 3.4. �

Now, we introduce the operatorγτ : V → L2(ΓC;Rd) defined byγτ u= (γu)τ = uτ for all u∈V. In what follows,
γ∗τ : L2(ΓC;Rd)→V∗ denotes its adjoint operator given by

〈γ∗τ ξ ,v〉V∗×V = (ξ ,γτ v)L2(ΓC;Rd) for all ξ ∈ L2(ΓC;Rd), v∈V. (3.23)

Consider the following problem.

Problem QVη Find uη ∈ V with u̇η ∈ W such that (3.20) holds and

ρ üη(t)+Au̇η (t)+Buη (t)+ γ∗τ ∂Jη (t,γτ u̇(t)) ∋ fη (t) in V∗ for a.e.t ∈ (0,T).

LEMMA 3.6 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Then there exists a solution of ProblemQVη .
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Proof. Having in mind properties of multivalued mapping∂Jη (·,v) provided by Lemma 3.5, we are in a position to
apply Theorem 24 of (K. Bartosz, submitted) concerning the solvability of a class of dynamic inclusions that covers
problemQVη as a special case. Hence, we deduce that ProblemQVη has a solution. �

LEMMA 3.7 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Then there exists a unique solution of Problem
PVη .

Proof. By Lemma 3.6, we know, that there exists a solutionuη of ProblemQVη . Thus, in particularuη ∈ V , u̇η ∈ W ,
uη satisfies (3.20) and, for a.e.t ∈ (0,T), there existsθη (t) ∈ L2(ΓC;Rd) such that

〈

ρ üη(t)+Au̇η (t)+Buη (t)+ γ∗τ θ η (t),v
〉

V∗×V =
〈

fη (t),v
〉

V∗×V (3.24)

for all v∈V a.e.t ∈ (0,T);

θη (t) ∈ ∂Jη (t,γτ u̇η(t)) for a.e.t ∈ (0,T). (3.25)

Using (3.25), Lemma 3.4 and Remark 3.1, we claim, that for a.e. t ∈ (0,T), there existsξ η (t) ∈ L2(ΓC;Rd) such that

(θ η (t),v)L2(ΓC;Rd) =

∫

ΓC

p̃(x,ην (x, t))ξ η (t)(x) ·v(x)dΓ for all v∈V, (3.26)

and
ξ η(x, t) ∈ ∂ j(γτ u̇(x, t)) for a.e.x∈ ΓC. (3.27)

It follows from (3.23) and (3.26) that

〈

γ∗τ θ η(t),v
〉

V∗×V = (p̃(ην (t))ξ η(t),vτ)L2(ΓC;Rd) for all v∈V. (3.28)

Combining (3.24) with (3.28) we claim thatuη satisfies (3.19). Moreover, it follows from (3.27) thatξ η satisfies
(3.21). We conclude thatuη is a solution of ProblemPVη .

To show the uniqueness, suppose thatu1
η andu2

η solve ProblemPVη . Thus, there existξξξ 1
η , ξξξ 2

η ∈L2(0,T;L2(ΓC;Rd))
such that fori = 1,2, we have

〈ρ üi
η (t)+Au̇i

η (t)+Bui
η(t),v〉V∗×V +(p̃(ην (t))ξξξ i

η(t),vτ)L2(ΓC;Rd) = 〈 f η ,v〉V∗×V (3.29)

for all v∈V, a.e.t ∈ (0,T)

with

ξξξ i
η(t) ∈ S2

∂ j(u̇
i
ητ(t)) for a.e.t ∈ (0,T), (3.30)

and

ui
η (t) = u0, u̇i

η(t) = u1. (3.31)

We subtract equation (3.29) withi = 2 from the equation (3.29) withi = 1 and takev= ṙ(t), wherer(t) = u1
η(t)−u2

η (t).
We integrate the result over interval(0, t) and, using (3.9), (3.13)-(3.15) andH(p̃)(c), we obtain

‖ṙ(t)‖2
H +

∫ t

0
‖ṙ(s)‖2

V ds6C
∫ t

0
‖ṙ(s)‖2

H ds for all t ∈ [0,T].

By Lemma 2.1, we conclude, that‖ṙ(t)‖H = 0 for all t ∈ [0,T]. Thus, using (3.31), we have

‖r(t)‖H 6 ‖r(0)‖H +
∫ t

0
‖ṙ(s)‖H ds= 0,

and we getu1
η (t) = u2

η(t), which completes the proof of uniqueness. �

Now, we define the operatorΛ : C(0,T;V)→C(0,T;V) by Λη = uη , whereuη is the unique solution of Problem
PVη . We remind that{w∈ V | ẇ∈ W } ⊂C(0,T;V), and thus operatorΛ is well defined.

LEMMA 3.8 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Then there exists a unique fixed point ofΛ .
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Proof. Let η1, η2 ∈ C(0,T;V) anduη i = Λη i for i = 1,2. By the definition of operatorΛ , we know, thatuη i is a
solution of ProblemPVη i , i = 1,2. Letξ η i denote the function corresponding touη i such that the pair(uη i ,ξ η i ) satisfy

(3.19)-(3.21) withη = η i , i = 1,2. For simplicity, we denoteui = uη i andξ i = ξ η i , i = 1,2. We subtract equation
(3.19) withi = 2 from the equation (3.19) withi = 1, and takev= u̇1(t)− u̇2(t) to obtain

ρ
(

ü1(t)− ü2(t), u̇1(t)− u̇2(t)
)

H + 〈Au̇1(t)−Au̇2(t), u̇1(t)− u̇2(t)〉V∗×V (3.32)

+ 〈Bu1(t)−Bu2(t), u̇1(t)− u̇2(t)〉V∗×V

+
(

p̃(η1
ν (t))ξξξ

1
τ(t)− p̃(η2

ν (t))ξξξ
2
τ(t), u̇

1
τ(t)− u̇2

τ(t)
)

L2(ΓC;Rd)

=
(

p̃(η2
ν (t))− p̃(η1

ν (t)), u̇
1
ν (t)− u̇2

ν(t)
)

L2(ΓC;R) .

Now, usingH(p̃)(a)-(c), (3.9), (3.15) and (2.3), we estimate
(

p̃(η1
ν (t))ξξξ

1
τ(t)− p̃(η2

ν (t))ξξξ
2
τ(t), u̇

1
τ(t)− u̇2

τ(t)
)

L2(ΓC;Rd)
(3.33)

=
(

p̃(η1
ν (t))(ξξξ

1
τ (t)− ξξξ 2

τ (t)), u̇
1
τ(t)− u̇2

τ(t)
)

L2(ΓC;Rd)

+
(

(p̃(η1
ν (t))− p̃(η2

ν (t)))ξξξ
2
τ (t), u̇

1
τ (t)− u̇2

τ(t)
)

L2(ΓC;Rd)

>−c̃3λ‖u̇1(t)− u̇2(t)‖2
L2(ΓC;Rd)

− c4L̃p‖η1(t)−η2(t)‖L2(ΓC;Rd)‖u̇1(t)− u̇2(t)‖L2(ΓC;Rd)

>−ε c̃3λ‖u̇1(t)− u̇2(t)‖2
V −C(ε)c̃3λ‖u̇1(t)− u̇2(t)‖2

H

− ε‖u̇1(t)− u̇2(t)‖2
V − c4L̃p

2c2
0

4ε
‖η1(t)−η2(t)‖2

V

for ε > 0. UsingH(p̃)(b),(3.9) and (2.3), we obtain

(

p̃(η2
ν (t))− p̃(η1

ν (t)), u̇
1
ν (t)− u̇2

ν(t)
)

L2(ΓC;R) 6 ε‖u̇1(t)− u̇2(t)‖2
V +

L̃p
2c2

0

4ε
‖η1(t)−η2(t)‖2

V . (3.34)

Integrate overt for t ∈ [0,T], takingε > 0 small enough and applying (3.13)(c), (3.14)(c) and (3.33)–(3.34) in (3.32),
we derive

‖u̇1(t)− u̇2(t)‖2
H+

∫ t

0
‖u̇1(s)− u̇2(s)‖2

V ds6C
∫ t

0
‖η1(s)−η2(s)‖2

V ds

+C
∫ t

0
‖u̇1(s)− u̇2(s)‖2

H ds for all t ∈ [0,T]. (3.35)

Applying Lemma 2.1, we find, that

‖u̇1(t)− u̇2(t)‖2
H 6C

∫ t

0
‖η1(s)−η2(s)‖2

V ds for all t ∈ [0,T].

Integrating and combining this with (3.35), we obtain
∫ t

0
‖u̇1(s)− u̇2(s)‖2

V ds6C
∫ t

0
‖η1(s)−η2(s)‖2

V ds (3.36)

Using (3.36), we get

‖Λη1(t)−Λη2(t)‖V = ‖u1(t)−u2(t)‖V 6

∫ t

0
‖u̇1(s)− u̇2(s)‖2

V 6C
∫ t

0
‖η1(s)−η2(s)‖2

V ds.

Using Proposition 3.1 of (M. Sofonea & A. Matei, 2012), we obtain the thesis. �

Now, we pass to the proof of Theorem 3.1.
Proof. It is easy to observe that every functionu is a solution of ProblemPV if and only if it is a fixed point of
operatorΛ . Thus, by Lemma 3.8, we obtain the existence of a unique solution of ProblemPV . �
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4. Spatially semi-discrete approximation

In this section we consider and analyse a spatially semi-discrete approximation of ProblemPV . LetVh ⊂V be a finite
dimensional subspace of spaceV andh > 0 denote the spatial discretization parameter. Letuh

0,u
h
1 ∈ Vh be suitable

approximations ofu0 andu1, characterized by

(uh
0−u0,v

h)V = 0, (uh
1−u1,v

h)H = 0 for all vh ∈Vh. (4.1)

The semi-discrete approximation of ProblemPV is the following.

Problem Ph
V Find a displacement field uh ∈ L2(0,T;Vh) with u̇h, üh ∈ L2(0,T;Vh) such that

〈ρ üh(t)+Au̇h(t)+Buh(t)− f (t),vh〉V∗×V +(p̃(uh
ν(t)),v

h
ν )L2(ΓC;R) (4.2)

+(p̃(uh
ν(t))ξξξ

h
,vh

τ)L2(ΓC;Rd) = 0 for all vh ∈Vh, a.e. t ∈ (0,T)

and

uh(0) = uh
0, u̇h(0) = uh

1, (4.3)

where the corresponding friction densityξξξ h ∈ L2(0,T;L2(ΓC;Rd)) satisfies

ξξξ h
(t) ∈ S2

∂ j(u̇
h
τ(t)) for a.e. t ∈ (0,T). (4.4)

In what follows, we provide a result on the error estimate between the solutions of ProblemPV and its semi-discrete
approximation ProblemPh

V .

THEOREM 4.1 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Let u anduh be solutions of ProblemsPV

andPh
V , respectively. Then, we have

‖u̇− u̇h‖2
C(0,T;H)+ ‖u̇− u̇h‖2

V + ‖u−uh‖2
C(0,T;V) (4.5)

6C(‖u0−uh
0‖2

V + ‖u1−uh
1‖2

H + ‖u1− vh(0)‖2
H

+‖u̇− vh‖2
V + ‖ü− v̇h‖2

V ∗ + ‖u̇τ − vh
τ‖L2(0,T;L2(ΓC;Rd)))

for all vh ∈ L2(0,T;Vh) with v̇h ∈ V ∗.

Proof. Let vh ∈ L2(0,T;Vh). For a.e.t ∈ (0,T), we take the same elementvh(t) ∈Vh as a test function in (3.16) and
(4.2). Next, we subtract (4.2) from (3.16) and get

〈ρ(ü(t)− üh(t))+A(u̇(t))−A(u̇h(t))+B(u(t)−uh(t)),vh(t)〉V∗×V (4.6)

+(p̃(uν (t))− p̃(uh
ν(t)),v

h
ν (t))L2(ΓC;R)+(p̃(uν(t))ξξξ (t)− p̃(uh

ν(t))ξξξ
h
(t),vh

τ (t))L2(ΓC;Rd) = 0.

We observe that (4.6) holds in particular forvh = u̇h(t). Hence, we obtain

〈ρ(ü(t)− üh(t))+A(u̇(t))−A(u̇h(t))+B(u(t)−uh(t)),vh(t)〉V∗×V (4.7)

+(p̃(uν(t))− p̃(uh
ν(t)),v

h
ν (t))L2(ΓC;R)+(p̃(uν(t))ξξξ (t)− p̃(uh

ν(t))ξξξ
h
(t),vh

τ (t))L2(ΓC;Rd)

= 〈ρ(ü(t)− üh(t))+A(u̇(t))−A(u̇h(t))+B(u(t)−uh(t)), u̇h(t)〉V∗×V

+(p̃(uν(t))− p̃(uh
ν(t)), u̇

h
ν(t))L2(ΓC;R)+(p̃(uν(t))ξξξ (t)− p̃(uh

ν(t))ξξξ
h
(t), u̇h

τ(t))L2(ΓC;Rd).
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Using (4.7), it is easy to get

〈ρ(ü(t)− üh(t))+A(u̇(t))−A(u̇h(t))+B(u(t)−uh(t)), u̇(t)− u̇h(t)〉V∗×V (4.8)

+(p̃(uν(t))− p̃(uh
ν(t)), u̇ν(t)− u̇h

ν(t))L2(ΓC;R)

+(p̃(uν(t))ξξξ (t)− p̃(uh
ν(t))ξξξ

h
(t), u̇τ (t)− u̇h

τ(t))L2(ΓC;Rd)

= 〈ρ(ü(t)− üh(t))+A(u̇(t))−A(u̇h(t))+B(u(t)−uh(t)), u̇(t)− vh(t)〉V∗×V

+(p̃(uν(t))− p̃(uh
ν(t)), u̇ν(t)− vh

ν(t))L2(ΓC;R)

+(p̃(uν(t))ξξξ (t)− p̃(uh
ν(t))ξξξ

h
(t), u̇τ (t)− vh

τ(t))L2(ΓC;Rd).

Therefore, after an elementary manipulation, we derive

〈ρ(ü(t)− üh(t))+A(u̇(t)− u̇h(t))+B(u(t)−uh(t)), u̇(t)− u̇h(t)〉V∗×V (4.9)

+(p̃(uh
ν(t))ξξξ (t)− p̃(uh

ν(t))ξξξ
h
(t), u̇τ(t)− u̇h

τ (t))L2(ΓC;Rd)

= 〈ρ(ü(t)− üh(t))+A(u̇(t)− u̇h(t))+B(u(t)−uh(t)), u̇(t)− vh(t)〉V∗×V

+(p̃(uν(t))− p̃(uh
ν(t)),(u̇

h
ν(t)− u̇ν(t))+ (u̇ν(t)− vh

ν(t)))L2(ΓC;R)

+(p̃(uν(t))ξξξ (t)− p̃(uh
ν(t))ξξξ (t), u̇τ(t)− vh

τ(t))L2(ΓC;Rd)

+(p̃(uh
ν(t))ξξξ (t)− p̃(uh

ν(t))ξξξ
h
(t), u̇τ(t)− vh

τ(t))L2(ΓC;Rd)

+(p̃(uh
ν(t))ξξξ (t)− p̃(uν(t))ξξξ (t), u̇τ(t)− u̇h

τ (t))L2(ΓC;Rd).

In what follows we integrate (4.9) over[0, t] wheret ∈ [0,T]. We can easily show that

∫ t

0
〈ρ(ü(s)− üh(s)), u̇(s)− u̇h(s)〉V∗×V ds=

ρ
2

∫ t

0

d
ds

‖u̇(s)− u̇h(s)‖2
H ds (4.10)

=
ρ
2
‖u̇(t)− u̇h(t)‖2

H − ρ
2
‖u1−uh

1‖2
H .

Applying (3.13)(c), we get

∫ t

0
〈Au̇(s)−Au̇h(s), u̇(s)− u̇h(s)〉V∗×V ds (4.11)

> c2

∫ t

0
‖u̇(s)− u̇h(s)‖2

V ds− c2

∫ t

0
‖u̇(s)− u̇h(s)‖2

H ds.

It follows from (3.14)(a) that

∫ t

0
〈Bu(s)−Buh(s), u̇(s)− u̇h(s)〉V∗×V ds

=
1
2

∫ t

0

d
ds

〈Bu(s)−Buh(s),u(s)−uh(s)〉V∗×V ds

=
1
2
〈Bu(t)−Buh(t),u(t)−uh(t)〉V∗×V − 1

2
〈Bu(0)−Buh(0),u(0)−uh(0)〉V∗×V

>−1
2

LE ‖u0−uh
0‖2

V . (4.12)
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From (3.9),H(p̃)(c), (3.18), (4.4) and (3.15)(b), we have

∫ t

0
(p̃(uh

ν(s))ξξξ (s)− p̃(uh
ν(s))ξξξ

h
(s), u̇τ (s)− u̇h

τ (s))L2(ΓC;Rd)ds

>−λ c̃3

∫ t

0
‖u̇τ (s)− u̇h

τ (s)‖2
L2(ΓC;Rd)

ds

>−λ c̃3

(

ε
∫ t

0
‖u̇(s)ds− u̇h(s)‖2

V ds+C(ε)
∫ t

0
‖u̇(s)− u̇h(s)‖2

H ds

)

. (4.13)

In what follows, we apply the integration by parts formula and use (2.2) and (2.3). Hence, we obtain

∫ t

0
〈ü(s)− üh(s), u̇(s)− vh(s)〉V∗×Vds= (u̇(t)− u̇h(t), u̇(t)− vh(t))H (4.14)

−(u̇(0)− u̇h(0), u̇(0)− vh(0))H −
∫ t

0
〈u̇(s)− u̇h(s), ü(s)− v̇h(s)〉V∗×Vds

6 ‖u̇(t)− u̇h(t)‖H‖u̇(t)− vh(t)‖H + ‖u1−uh
1‖H‖u1− vh(0)‖H

+
∫ t

0
|〈u̇(s)− u̇h(s), ü(s)− v̇h(s)〉V∗×V |ds

6
1
4
‖u̇(t)− u̇h(t)‖2

H + ‖u̇(t)− vh(t)‖2
H +

1
2
‖u1−uh

1‖2
H +

1
2
‖u1− vh(0)‖2

H

+ε
∫ t

0
‖u̇(s)− u̇h(s)‖2

V ds+
1
4ε

‖ü− v̇h‖2
V ∗

with ε > 0. Applying Lipschitz continuity of operatorsA andB (see (3.13)(a) and (3.14)(b), respectively), and using
(2.2) and (2.3), we get

∫ t

0
〈Au̇(s)−Au̇h(s), u̇(s)− vh(s)〉V∗×Vds6

∫ t

0
LC ‖u̇(s)− u̇h(s)‖V‖u̇(s)− vh(s)‖V ds

6 ε
∫ t

0
‖u̇(s)− u̇h(s)‖2

V ds+
L2

C

4ε
‖u̇− vh‖2

V (4.15)

and

∫ t

0
〈Bu(s)−Buh(s), u̇(s)− vh(s)〉V∗×Vds6

∫ t

0
LE ‖u(s)−uh(s)‖V‖u̇(s)− vh(s)‖V ds

6
1
2

∫ t

0
‖u(s)−uh(s)‖2

V ds+
L2

E

2
‖u̇− vh‖2

V . (4.16)

Using (3.8), andH(p̃)(b), we have

∫ t

0
(p̃(uν(s))− p̃(uh

ν(s)), u̇
h
ν (s)− u̇ν(s))L2(ΓC;R)ds (4.17)

6

∫ t

0
c2

0L̃p‖u(s)−uh(s)‖V‖u̇h(s)− u̇(s)‖Vds

6
c4

0L̃p
2

4ε

∫ t

0
‖u(s)−uh(s)‖2

Vds+ ε
∫ t

0
‖u̇h(s)− u̇(s)‖2

V

and

∫ t

0
(p̃(uν(s))− p̃(uh

ν(s)), u̇ν (s)− vh
ν(s))L2(ΓC;R)ds (4.18)

6

∫ t

0
c2

0L̃p‖u(s)−uh(s)‖V‖u̇(s)− v(s)‖Vds

6
c4

0L̃p
2

2

∫ t

0
‖u(s)−uh(s)‖2

Vds+
1
2
‖u̇− vh‖2

V .
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On the other hand, using again (3.8),H(p̃)(a)-(c), (3.15)(a), (2.2) and (2.3), we get
∫ t

0
(p̃(uν(s))ξξξ (s)− p̃(uh

ν(s))ξξξ (s), u̇τ(s)− vh
τ(s))L2(ΓC;Rd)ds (4.19)

6

∫ t

0
c2

0L̃pc4‖u(s)−uh(s)‖V‖u̇(s)− vh(s)‖Vds

6
c4

0L̃p
2c2

4

2

∫ t

0
‖u(s)−uh(s)‖2

Vds+
1
2
‖u̇− vh‖2

V ,

∫ t

0
(p̃(uh

ν(s))ξξξ (s)− p̃(uh
ν(s))ξξξ

h
(s), u̇τ(s)− vh

τ(s))L2(ΓC;Rd)ds

6 2c̃3c4

∫ t

0
‖u̇τ(s)− vh

τ (s)‖L2(ΓC;Rd)ds6 2c̃3c4

√
T‖u̇τ − vh

τ‖L2(0,T;L2(ΓC;Rd)) (4.20)

and
∫ t

0
(p̃(uh

ν(s))ξξξ (s)− p̃(uν(s))ξξξ (s), u̇τ (s)− u̇h
τ (s))L2(ΓC;Rd)ds (4.21)

6

∫ t

0
c2

0L̃pc4‖u(s)−uh(s)‖V‖u̇(s)− u̇h(s)‖Vds

6
c4

0L̃p
2c2

4

4ε

∫ t

0
‖u(s)−uh(s)‖2

Vds+ ε
∫ t

0
‖u̇(s)− u̇h(s)‖2

V ds.

We integrate (4.9) and combine (4.10)–(4.21) to obtain

ρ
4
‖u̇(t)− u̇h(t)‖2

H +(c2− (λ c̃3+3+ρ)ε)
∫ t

0
‖u̇(s)− u̇h(s)‖2

Vds (4.22)

6
1
2

LE ‖u0−uh
0‖2

V +
ρ
2
‖u1−uh

1‖2
H +ρ‖u̇(t)− vh(t)‖2

H +
ρ
2
‖u1−uh

1‖2
H

+
ρ
2
‖u1− v(0)h‖2

H +
ρ
4ε

‖ü− v̇h‖2
V ∗ +

(

L2
C

4ε
+

L2
E

2
+1

)

‖u̇− vh‖2
V

+

(

1
2
+ c4

0

(

L̃p
2
+ L̃p

2c2
4

)

(

1
2
+

1
4ε

))

∫ t

0
‖u(s)−uh(s)‖2

Vds

+2c̃3c4

√
T‖u̇τ − vh

τ‖L2(0,T;L2(ΓC;Rd))+(c2+λ c̃3C(ε))
∫ t

0
‖u̇(s)− u̇h(s)‖2

Hds.

Next, we recall that

‖u(s)−uh(s)‖2
V 6 2‖u0−uh

0‖2
V +2T

∫ s

0
‖u̇(z)− u̇h(z)‖2

Vdz.

Integrating this over[0, t], we get

∫ t

0
‖u(s)−uh(s)‖2

Vdt 6 2T‖u0−uh
0‖2

V +2T
∫ t

0

(

∫ s

0
‖u̇(z)− u̇h(z)‖2

Vdz

)

ds. (4.23)

Let us introduce the following function

y(t) = ‖u̇(t)− u̇h(t)‖2
H +

∫ t

0
‖u̇(s)− u̇h(s)‖2

Vds (4.24)

and the notation

α =‖u0−uh
0‖2

V + ‖u1−uh
1‖2

H + ‖u1− vh(0)‖2
H + max

t∈[0,T]
‖u̇(t)− vh(t)‖2

H (4.25)

+ ‖u̇− vh‖2
V + ‖ü− v̇h‖2

V ∗ + ‖u̇τ − vh
τ‖L2(0,T;L2(ΓC;Rd)).

We fix ε = 1
2c2(λ c̃3+3+ρ)−1. Thenc2− (λ c̃3+3+ρ)ε > 0 and, combining (4.22) with (4.23), we get

y(t)6Cα +C
∫ t

0
y(s)ds. (4.26)
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From Lemma 2.1, we deduce

y(t)6CαeCT. (4.27)

Sincet ∈ [0,T] is arbitrary, it follows that

‖u̇− u̇h‖2
C(0,T;H)+ ‖u̇− u̇h‖2

V 6Cα. (4.28)

Hence

‖u−uh‖2
C(0,T;V) 6 2‖u0−uh

0‖2
V +2T‖u̇− u̇h‖2

V 6Cα. (4.29)

We recall that the embedding{v∈ V | v̇∈ V ∗} ⊂C(0,T;H) is continuous, i.e.

max
t∈[0,T]

‖u̇(t)− vh(t)‖2
H = ‖u̇− vh‖C(0,T;H) 6C(‖u̇− vh‖2

V + ‖ü− v̇h‖2
V ∗). (4.30)

Combining (4.25), (4.27) and (4.30), we get the thesis. � Theorem 4.1 is valid for any finite dimensional
subspaceVh of V. In applications,Vh is usually taken to be a finite element space. As a particular example, assume
Ω is a polygonal/polyhedral domain and{T h} is a regular family of finite element triangulations ofΩ into triangles
(d = 2) or tetrahedrons (d = 3). For an elementT ∈ T h, denote byP1(T) the space of polynomials of a total degree
less than or equal to one inT. Then we can use the linear element space of continuous piecewise affine functions

Vh = {vh ∈ [C(Ω)]d | vh|T ∈ [P1(T)]
d for all T ∈ T

h}. (4.31)

Then, by considering the previous finite element spaceVh and some additional regularity conditions, we obtain the
following corollary which provides the optimal order errorestimates.

COROLLARY 4.1 Keep the assumptions stated in Theorem 4.1. AssumeΩ is a polygonal/polyhedral domain, and
{Vh} is the family of linear element spaces defined by (4.31), corresponding to a regular family of finite element
triangulations ofΩ into triangles or tetrahedrons. Letu anduh be solutions of ProblemsPV andPh

V , respectively.
Assumeu0 ∈ H2(Ω ;Rd), u1 ∈ H1(Ω ;Rd), and takeuh

0,u
h
1 ∈Vh to be projections ofu0 andu1 defined by (4.1). Under

the following regularity condition

u̇∈ L2(0,T;H2(Ω ;Rd)), ü∈ L2(0,T;H2(Ω ;Rd)), u̇τ ∈ L2(0,T;H2(ΓC;Rd)),

we have the optimal order error estimate

‖u−uh‖C(0,T;V)+ ‖u̇− u̇h‖C(0,T;H)+ ‖u̇− u̇h‖V 6Ch. (4.32)

Proof. Note that under the stated regularity assumptions, for a.e.t ∈ [0,T], u̇(t), ü(t) are continuous onΩ , andu̇τ(t)
is continuous onΓC. Let vh(t) = Πhu̇(t) ∈ Vh be the finite element interpolant of ˙u(t), for a.e. t ∈ [0,T]. Note that
vh

τ (t) = (Πhu̇(t))τ is the continuous piecewise linear interpolant of ˙uτ (t) on ΓC. Moreover,v̇h(t) is the continuous
piecewise linear interpolant of ¨u(t). Then, by the standard finite element interpolation error estimates ((K. Atkinson &
W. Han, 2009; S.C. Brenner & L.R. Scott, 2008; P.G. Ciarlet, 1978)), we have the following approximation properties

‖u̇(t)− vh(t)‖V 6 ch‖u̇(t)‖H2(Ω ;Rd),

‖ü(t)− v̇h(t)‖V∗ 6 ch‖ü(t)‖H2(Ω ;Rd),

‖u̇τ(t)− vh
τ(t)‖L2(ΓC;Rd) 6 ch2‖u̇τ‖H2(ΓC;Rd)

and

‖u0−uh
0‖V 6 ch‖u0‖H2(Ω ;Rd),

‖u1−uh
1‖H 6 ch‖u1‖H1(Ω ;Rd).

Hence, it follows that

‖u̇− vh‖V 6 ch‖u̇‖L2(0,T;H2(Ω ;Rd)),

‖ü− v̇h‖V ∗ 6 ch‖ü‖L2(0,T;H2(Ω ;Rd)),

‖u̇τ − vh
τ‖L2(0,T;L2(ΓC;Rd)) 6 ch2‖u̇τ‖L2(0,T;H2(ΓC;Rd)).

Then the error bound (4.32) is a consequence of (4.5). �
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5. Fully discrete error estimates

We introduce a fully discrete approximation of ProblemPV in order to bound the error of the fully discrete solutions.
To this end, we consider again a finite dimensional subspaceVh of spaceV, whereh> 0 denote the spatial discretiza-
tion parameter. Moreover, on the time interval[0,T], we consider a positive integerN and we define the time step size
k= T/N and the time nodal pointstn = nk, 06 n6 N.

For any time dependent functionh we use notationhn = h(tn) for n = 1, ...,N and for any sequence{xn}N
n=0 we

denoteδxn = (xn− xn−1)/k for n= 1, ...,N.

The fully discrete approximation of ProblemPV is the following.

Problem Phk
V Find a displacement field{uhk

n }N
n=0 ⊂Vh such that

〈ρδwhk
n +Awhk

n +Buhk
n − f n,v

h〉V∗×V +(p̃(uhk
nν),v

h
ν)L2(ΓC;R) (5.1)

+(p̃(uhk
nν)ξξξ

hk
n ,vh

τ)L2(ΓC;Rd) = 0 for all vh ∈Vh, n= 1, ...,N,

and

uhk
0 = uh

0, (5.2)

where the sequence{whk
n }N

n=0 ⊂Vh is defined by

whk
0 = uh

1, (5.3)

and

whk
n = δuhk

n , for all n= 1, ...,N, (5.4)

and the corresponding friction density{ξξξ hk
n }N

n=0 ⊂ L2(ΓC;Rd) satisfies

ξξξ hk
n ∈ S2

∂ j(w
hk
nτ) a.e. onΓC, n= 1, ...,N. (5.5)

Note that (5.4) is equivalent to

uhk
n = uhk

0 +
n

∑
j=1

kwhk
j for all n= 1, ...,N. (5.6)

In what follows, we present the theorem concerning error estimate between the solution of ProblemPV and the
solution of its fully discrete approximation, ProblemPhk

V .

THEOREM 5.1 AssumeH(C ), H(E ), H(p̃), H(µ), H(g), H( f ) andH0. Let u anduhk be solutions of ProblemsPV

andPhk
V , respectively. Moreover, suppose that the solutionu has the following regularity

u∈C2(0,T;H)∩C1(0,T;V), u̇ν ∈C(0,T;L2(ΓC;R)), u̇τ ∈C(0,T;L2(ΓC;Rd)). (5.7)

Then

max
16n6N

‖un−uhk
n ‖2

V + max
16n6N

‖wn−whk
n ‖2

H +
N

∑
j=1

k‖wj −whk
j ‖2

V (5.8)

6C
[ N

∑
j=1

k(‖ẇj − δwj‖2
H + ‖wj − vh

j‖2
V + ‖wjτ − vh

jτ‖L2(ΓC;Rd))

+‖u0−uh
0‖2

V + ‖w0−whk
0 ‖2

H + max
16n6N

‖wn− vh
n‖2

H + ‖w1− vh
1‖2

H

+k2‖u‖2
H2(0,T;V)+

N−1

∑
j=1

1
k
‖wj − vh

j − (wj+1− vh
j+1)‖2

H

]

for all {vh
j}N

j=1 ⊂Vh.
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Proof. We takev= vh in (3.16) and we combine it with (5.1) in order to get

〈ρ(ẇn− δwhk
n )+A(wn−whk

n )+B(un−uhk
n ),vh〉V∗×V (5.9)

+(p̃(unν)− p̃(uhk
nν),v

h
ν)L2(ΓC;R)+(p̃(unν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,vh

τ )L2(ΓC;Rd) = 0.

Note that (5.9) holds, in particular, forvh = whk
n . Hence, we have

〈ρ(ẇn− δwhk
n )+A(wn−whk

n )+B(un−uhk
n ),vh〉V∗×V (5.10)

+(p̃(unν)− p̃(uhk
nν),v

h
ν )L2(ΓC;R)+(p̃(unν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,vh

τ)L2(ΓC;Rd)

= 〈ρ(ẇn− δwhk
n )+A(wn−whk

n )+B(un−uhk
n ),whk

n 〉V∗×V

+(p̃(unν)− p̃(uhk
nν),w

hk
nν )L2(ΓC;R)+(p̃(unν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,whk

nτ)L2(ΓC;Rd).

After a reformulation of (5.10) under the form(.,wn−whk
n ) = (.,wn− vh), we have

〈ρ(ẇn− δwhk
n )+A(wn−whk

n )+B(un−uhk
n ),wn−whk

n 〉V∗×V (5.11)

+(p̃(unν)− p̃(uhk
nν),wnν −whk

nν)L2(ΓC;R)+(p̃(unν)ξξξ n− p̃(uhk
nν)ξξξ

hk
n ,wnτ −whk

nτ)L2(ΓC;Rd)

= 〈ρ(ẇn− δwhk
n )+A(wn−whk

n )+B(un−uhk
n ),wn− vh〉V∗×V

+(p̃(unν)− p̃(uhk
nν),wnν − vh

ν)L2(ΓC;R)+(p̃(unν)ξξξ n− p̃(uhk
nν)ξξξ

hk
n ,wnτ − vh

τ )L2(ΓC;Rd).

Therefore, after an elementary manipulation, we infer

(ρ(δwn− δwhk
n ),wn−whk

n )H + 〈A(wn−whk
n ),wn−whk

n 〉V∗×V (5.12)

+(p̃(uhk
nν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,wnτ −whk

nτ)L2(ΓC;Rd) =

(ρ(ẇn− δwn),w
hk
n −wn)H +(ρ(δwn− δwhk

n ),wn− vh)H

+(ρ(ẇn− δwn),wn− vh)H + 〈A(wn−whk
n ),wn− vh〉V∗×V

+〈B(un−uhk
n ),(whk

n −wn)+ (wn− vh)〉V∗×V

+(p̃(unν)− p̃(uhk
nν),(w

hk
nν −wnν)+ (wnν − vh

ν))L2(ΓC;R)

+(p̃(unν)ξξξ n− p̃(uhk
nν)ξξξ n,wnτ − vh

τ)L2(ΓC;Rd)

+(p̃(uhk
nν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,wnτ − vh

τ)L2(ΓC;Rd)

+(p̃(uhk
nν)ξξξ n− p̃(unν)ξξξ n,wnτ −whk

nτ)L2(ΓC;Rd).

Applying the identity 2(a−b,a)H = ‖a−b‖2
H + ‖a‖2

H −‖b‖2
H with a= wn−whk

n andb= wn−1−whk
n−1, we obtain

ρ
2k

(‖wn−whk
n ‖2

H −‖wn−1−whk
n−1‖2

H)6 ρ((δwn− δwhk
n ),wn−whk

n )H . (5.13)

From (3.13)(c), we get

c2‖wn−whk
n ‖2

V − c2‖wn−whk
n ‖2

H 6 〈A(wn−whk
n ),wn−whk

n 〉V∗×V . (5.14)

Using (3.9),H(p̃)(c) and (3.15)(b), we have

(p̃(uhk
nν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,wnτ −whk

nτ)L2(ΓC;Rd) >−λ c̃3‖wnτ −whk
nτ‖2

L2(ΓC;Rd)
(5.15)

>−λ c̃3(ε‖wn−whk
n ‖2

V +C(ε)‖wn−whk
n ‖2

H).
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By the definitions of spacesH andV, we easily have‖v‖H 6 ‖v‖V for all v∈V. Hence, using (2.3) and (2.2), we can
estimate

(ρ(ẇn− δwn),w
hk
n −wn)H 6 ρ‖ẇn− δwn‖H‖whk

n −wn‖V

6 ε‖whk
n −wn‖2

V +
ρ2

4ε
‖ẇn− δwn‖2

H , (5.16)

and

(ρ(ẇn− δwn),wn− vh)H 6 ρ‖ẇn− δwn‖H‖wn− vh‖V

6
1
2
‖wn− vh‖2

V +
ρ2

2
‖ẇn− δwn‖2

H . (5.17)

Applying Lipschitz continuity of operatorsA andB (see (3.13)(a) and (3.14)(b), respectively), and applyingusing (2.3)
and (2.2), we get

〈A(wn−whk
n ),wn− vh〉V∗×V 6 LC ‖wn−whk

n ‖V‖wn− vh‖V

6 ε‖wn−whk
n ‖2

V +
L2

C

4ε
‖wn− vh‖2

V , (5.18)

〈B(un−uhk
n ),whk

n −wn〉V∗×V 6 LE ‖un−uhk
n ‖V‖whk

n −wn‖V

6 ε‖whk
n −wn‖2

V +
L2

E

4ε
‖un−uhk

n ‖2
V (5.19)

and

〈B(un−uhk
n ),wn− vh〉V∗×V 6 LE ‖un−uhk

n ‖V‖wn− vh‖V

6
L2

E

2
‖un−uhk

n ‖2
V +

1
2
‖wn− vh‖2

V . (5.20)

Using (3.8),H(p̃)(b), (2.3) and (2.2), we have

(p̃(unν)− p̃(uhk
nν),w

hk
nν −wnν)L2(ΓC;R) 6 c2

0L̃p‖un−uhk
n ‖V‖wn−whk

n ‖V

6 ε‖wn−whk
n ‖2

V +
L̃p

2c4
0

4ε
‖un−uhk

n ‖2
V (5.21)

and

(p̃(unν)− p̃(uhk
nν),wnν − vh

ν)L2(ΓC;R) 6 c2
0L̃p‖un−uhk

n ‖V‖wn− vh‖V

6
L̃p

2c4
0

2
‖un−uhk

n ‖2+
1
2
‖wn− vh‖2

V . (5.22)

On the other hand, from (3.8),H(p̃)(b), (3.15)(a), (2.3) and (2.2), we obtain

(p̃(unν)ξξξ n− p̃(uhk
nν)ξξξ n,wnτ − vh

τ)L2(ΓC;Rd) 6 c2
0L̃pc4‖un−uhk

n ‖V‖wn− vh‖V

6
c4

0c2
4L̃p

2

2
‖un−uhk

n ‖2
V +

1
2
‖wn− vh‖2

V , (5.23)

(p̃(uhk
nν)ξξξ n− p̃(uhk

nν)ξξξ
hk
n ,wnτ − vh

τ)L2(ΓC;Rd) 6 2c̃3c4‖wnτ − vh
τ‖L2(ΓC;Rd) (5.24)
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and

(p̃(uhk
nν)ξξξ n− p̃(unν)ξξξ n,wnτ −whk

nτ)L2(ΓC;Rd) 6 c2
0L̃pc4‖un−uhk

n ‖V‖wn−whk
n ‖V

6
c4

0c2
4L̃p

2

4ε
‖un−uhk

n ‖2
V + ε‖wn−whk

n ‖2
V . (5.25)

Thus, from (5.13)–(5.25), we get

ρ
2k

(‖wn−whk
n ‖2

H −‖wn−1−whk
n−1‖2

H)+ (c2− (λ c̃3+5)ε)‖wn−whk
n ‖2

V (5.26)

6 (ρ(δwn− δwhk
n ),wn− vh)H +(c2+λ c̃3C(ε))‖wn−whk

n ‖2
H

+

(

1
2
+

1
4ε

)

(

L2
E + c4

0(1+ c2
4)L̃p

2
)

‖un−uhk
n ‖2

V +ρ2
(

1
2
+

1
4ε

)

‖ẇn− δwn‖2
H

+

(

2+
L2

C

4ε

)

‖wn− vh‖2
V +2c̃3c4‖wnτ − vh

τ‖L2(ΓC;Rd).

We takeε = 1
2c2(λ c̃3+5)−1. Then

c2− (λ c̃3+5)ε > 0. (5.27)

Now, we replacen by j and takevh = vh
j ∈ Vh in (5.26). We sum the above inequalities overj from 1 ton, use

(5.27), and after a minor reformulation, we to obtain

‖wn−whk
n ‖2

H +
n

∑
j=1

k‖wj −whk
j ‖2

V 6C
n

∑
j=1

k((δw j − δwhk
j ),w j − vh

j )H (5.28)

+C
n

∑
j=1

k
(

‖ẇj − δwj‖2
H + ‖uj −uhk

j ‖2
V + ‖wj − vh

j‖2
V + ‖wjτ − vh

jτ‖L2(ΓC;Rd)

)

+C(ε)
n

∑
j=1

k‖wj −whk
j ‖2

H + ‖w0−whk
0 ‖2

H .

In what follows, we deal with the first term of the right hand side of (5.28). We have

n

∑
j=1

k
(

δwj − δwhk
j ,wj − vh

j

)

H
=

n

∑
j=1

(

(w j −whk
j )− (wj−1−whk

j−1),w j − vh
j

)

H

= (w0−whk
0 ,w1− vh

1)H +
n−1

∑
j=1

(

wj −whk
j ,(w j − vh

j )− (wj+1− vh
j+1)

)

H

+(wn−whk
n ,wn− vh

n)H 6
1
2
‖w0−whk

0 ‖2
H +

1
2
‖w1− vh

1‖2
H +

1
2
‖wn−whk

n ‖2
H

+
1
2
‖wn− vh

n‖2
H +

n−1

∑
j=1

‖wj −whk
j ‖H‖wj − vh

j − (wj+1− vh
j+1)‖H

6
1
2
(‖w0−whk

0 ‖2
H + ‖w1− vh

1‖2
H + ‖wn−whk

n ‖2
H + ‖wn− vh

n‖2
H)

+
n−1

∑
j=1

k
4
‖wj −whk

j ‖2
H +

n−1

∑
j=1

1
k
‖wj − vh

j − (wj+1− vh
j+1)‖2

H . (5.29)

We recall the following classical inequality

‖uj −uhk
j ‖V 6 ‖u0−uh

0‖V +
j

∑
p=1

k‖wp−whk
p ‖V + I j , (5.30)
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whereI j is defined by the following relation

I j = ‖
∫ t j

0
w(s)ds−

j

∑
p=1

kwp‖V 6 k‖u‖H2(0,T;V).

Thus

‖uj −uhk
j ‖2

V 6 3
(

‖u0−uh
0‖2

V +
( j

∑
p=1

k‖wp−whk
p ‖V

)2
+ k2‖u‖2

H2(0,T;V)

)

6C
(

‖u0−uh
0‖2

V + j
j

∑
p=1

k2‖wp−whk
p ‖2

V + k2‖u‖2
H2(0,T;V)

)

. (5.31)

Therefore

n

∑
j=1

k‖uj −uhk
j ‖2

V 6CT
(

‖u0−uh
0‖2

V +
n

∑
j=1

k2
j

∑
p=1

‖wp−whk
p ‖2

V + k2‖u‖2
H2(0,T;V)

)

. (5.32)

Now, we introduce the notation

en = ‖wn−whk
n ‖2

H +
n

∑
j=1

k‖wj −whk
j ‖2

V , (5.33)

and

gn =
n

∑
j=1

k(‖ẇj − δwj‖2
H + ‖wj − vh

j‖2
V + ‖wjτ − vh

jτ‖L2(ΓC;Rd)) (5.34)

+‖u0−uh
0‖2

V + ‖w0−whk
0 ‖2

H + ‖w1− vh
1‖2

H + ‖wn− vh
n‖2

H

+k2‖u‖2
H2(0,T;V)+

n−1

∑
j=1

1
k
‖wj − vh

j − (wj+1− vh
j+1)‖2

H .

Then, we can rewrite (5.28) as follows

en 6Cgn+C
n

∑
j=1

kej , n= 1, ...,N. (5.35)

We are now in a position to apply Lemma 2.2 for (5.35) and obtain

max
16n6N

(‖wn−whk
n ‖2

H +
n

∑
j=1

k‖wj −whk
j ‖2

V) (5.36)

6C
[ N

∑
j=1

k(‖ẇj − δwj‖2
H + ‖wj − vh

j‖2
V + ‖wjτ − vh

jτ‖L2(ΓC;Rd))

+‖u0−uh
0‖2

V + ‖w0−whk
0 ‖2

H + max
16n6N

‖wn− vh
n‖2

H + ‖w1− vh
1‖2

H

+k2‖u‖2
H2(0,T;V)+

N−1

∑
j=1

1
k
‖wj − vh

j − (wj+1− vh
j+1)‖2

H

]

.

Combining this with (5.31), we obtain the thesis. As for the Section 4, by considering additional regularity assumptions,
we deduce the following optimal error estimate result. �

COROLLARY 5.1 Keep the assumptions stated in Theorem 4.1. AssumeΩ is a polygonal/polyhedral domain, and
{Vh} is the family of linear element spaces defined by (4.31), corresponding to a regular family of finite element
triangulations ofΩ into triangles or tetrahedrons. Letu and{uhk

n }N
n=1 be solutions of ProblemsPV andPhk

V , respectively.
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Assumeu0 ∈ H2(Ω ;Rd), u1 ∈ H1(Ω ;Rd), and takeuh
0,u

h
1 ∈Vh to be projections ofu0 andu1, defined by (4.1). Under

the following regularity condition

u∈C1(0,T;H2(Ω ;Rd))∩H3(0,T;H), u̇τ ∈C(0,T;H2(ΓC;Rd)),

we have the optimal order error estimate

max
16n6N

‖un−uhk
n ‖V + max

16n6N
‖wn−whk

n ‖H 6C(h+ k) (5.37)

with C> 0 independent ofh andk.

Proof. Let vh
j ∈Vh be the finite element interpolant ofu j , t ∈ [0,T] and 16 j 6 N. Then from ((W. Han & M. Sofonea,

2002)) we have

k
N

∑
j=1

‖ẇj − δwj‖2
H 6 ck2‖w‖2

H2(0,T;H),

1
k

N−1

∑
j=1

‖(wj − vh
j )− (wj+1− vh

j+1)‖2
H 6 ch2‖u‖2

H2(0,T;V).

Then, similarly to the proof of Corollary 4.1, we obtain (5.37) from the estimate (5.8). �

6. Numerical validation of the fully discrete error estimate

The aim of this section is to provide a numerical evidence of the convergence of the discrete scheme established in
Section 5. The numerical solution is based on a iterative procedure which leads to a sequence of convex programming
problems already used in (M. Barboteuet al., 2013, 2014; M. Barboteuet al. , 2015; M. Barboteuet al., 2015). For
each “convexification" iteration, the value of the frictioncoefficientµ(‖wτ‖Rd) is fixed to a given value depending
on the tangential velocity solutionwτ found in the previous iteration. Then, the resulting nonsmooth convex iterative
problems are solved by classical numerical methods. As a consequence, the frictional contact conditions can be treated
by using a numerical approach based on the combination of a penalized method for the normal compliance terms with
the augmented Lagrangian method (cf (P. Alart & A. Curnier, 1991; T. Laursen, 2002; P. Wriggers, 2002)) for the
friction conditions. To this end, we consider additional fictitious nodes for the Lagrange multiplier in the initial mesh.
The construction of these nodes depends on the frictional contact element used for the geometrical discretization of
the interfaceΓ3. In the case presented below, the discretization is based on“node-to-rigid" contact element, which
is composed by one node ofΓ3 and one Lagrange multiplier node. For more details on the discretization step and
Computational Contact Mechanics, we refer to (P. Alart & A. Curnier, 1991; H.B. Khenouset al., 2006,?; T. Laursen,
2002; P. Wriggers, 2002).
Numerical example. We consider the physical setting depicted in Figure 1. There, Ω = (0,L)× (0,L) ⊂ R2 with
L > 0 and

ΓN = [0,L]×{L}, ΓC = [0,L]×{0}.
The domainΩ represents the cross section of a three-dimensional linearly viscoelastic body subjected to the action of
body forces during the dynamic process in such a way that the plane stress hypothesis is assumed. The body, located
at a height ofh, can impact with friction an obstacle on the partΓC = [0,L]×{0} of the boundary when it reaches the
ground. Note that we used the viscosity in (3.1) for mathematical reasons, so far, but from the practical point of view,
one may take the viscosity as small as one wishes. Here, sinceit is not our main interest, we choose to neglect it.
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FIG. 1. Reference configuration of the two-dimensional body.
FIG. 2. Deformed mesh with the associated frictional contact forces
onΓc
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Therefore, the material response is governed by an elastic linear constitutive law defined by the elasticity tensorE

given by

(E τ)αβ =
Eκ

(1+κ)(1−2κ)
(τ11+ τ22)δαβ +

E
1+κ

ταβ , 16 α,β 6 2, ∀τ ∈ S
2.

Here,E andκ are Young’s modulus and Poisson’s ratio of the material andδαβ denotes the Kronecker delta.
The normal compliance functionp is defined by

p(r) = cν r+.

For the coefficient of friction we choose a functionµ : Rd →R+ of the form

µ(‖u̇τ‖) = (a−b) ·e−α‖u̇τ‖+b, (6.1)

with a,b,α > 0, a> b. Such a slip weakening phenomenon appears in the study of geophysical problems, see (C.H.
Scholz, 1990) for details. Indeed, in this case the coefficient of friction decreases with the slip from the valuea to the
limit valueb. And, for this reason, the corresponding friction law can becharacterized as being nonmonotone. For the
computation we use the following data:

L = 1 m, ρ = 1 kg/m3, T = 2 s,

u0 = (0,0) m, u1 = (0,−0.4) m/s, g= 5.01×10−3 m, h= 1 m,

E = 1 Gpa, κ = 0.3, f0 = (0,−0.2) GPa, f2 = (0,0) GPa.m,

cν = 1 GPa, 1
r = 5 GPa, a= 1, b= 0.2, α = 2000.

Error estimate. In order to check the convergence of the discrete scheme and to illustrate the optimal error estimate
obtained in Section 5, we report in Figure 3 numerical solution errors in the energy norm defined by

‖u‖E := 〈Bu,u〉1/2
V∗×V

which is equivalent to the norm‖u‖V . Since the true solutionu is not available, we use instead, the numerical solution
corresponding to a fine discretization ofΩ as the “reference” solutionuref in computing the solution errors. Here, the
numerical solution withh= 1/256 is taken to be the “reference” solutionuref. This fine discretization corresponds to
a problem with 132612 degrees of freedom, 131329 elements and was computed in 120573 CPU time (expressed in
seconds) on a IBM computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz). We observe in Figure
3 that the curve of the numerical error estimate is asymptotically linear, which is consistent with the theoretically
predicted optimal linear convergence of the numerical solution established in Section 5.
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FIG. 3. Numerical errors.
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