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Abstract. We consider a dynamic process of frictional contact betweeraon clamped viscoelastic body and a foun-
dation. We assume that the normal contact response departtie aepth of penetration of the foundation by the
considered body, and the dependence between these twatigsdatgoverned by normal compliance conditions. On
the other hand, the friction force is assumed to be a nonneoedtinction of the slip rate where the friction threshold
also depends on the depth of the penetration. Our aim in #psms twofold. The first one is to prove the existence
and the uniqueness of a weak solution for the contact probleser consideration. The second one is to provide the
numerical analysis of the process involving its semi-diteand fully discrete approximation as well as estimation o
the error for both numerical schemes and the validation cif suresult.

Keywords: non clamped conditions, dynamic process, viscoelasttemad normal compliance, nonmonotone friction
law, finite element method, error estimate.
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1. Introduction

Mechanical contact phenomena occur in many branches ofieeigng sciences and everyday life. They appear for
example when two or more parts of a device touch each othénamdny other situations as well. The researchers take
into account many various aspects when creating modelsmhcbphenomena. For instance, physical parameters of
materials, dynamics of the processes, phenomena like isdhegear, heat transfer, electrical conduction and fitti
provide a variety of possibilities in this field. As a conseqoe we are given a broad spectrum of complicated mathe-
matical problems that require various mathematical teqes. Regarding this fact, one can confirm that mathematical
modelling of contact problems has become an important apidlyadeveloping branch of science in last years. For
recent mathematical results devoted to contact mechamagfer to W. Han & M. Sofonea (2002); M. Shillet al.
(2004); M. Sofonea & A. Matei (2012, 2009) and all the workigrenced therein.

The theory of hemivariational inequalities, which allowsrépresent nonmonotone and nonsmooth contact prob-
lems, is a relatively new approach. Early comprehensiwresices in the area are (Z. Naniewicz & P. D. Panagiotopou-
los, 1995; P.D. Panagiotopoulos, 1993, 1985, 1995). Forra nezent work, we refer to (S. Migorsét al, 2013) and
the references therein. We refer the reader to (Y. Aysiaal,, 2009; M. Barbotewet al, 2013, 2014; M. Barboteat
al., 2015, 2008; M. Barboteet al, 2008, 2002; M. Campet al., 2005, 2006; P. Hild & Y. Renard, 2007; T. Laursen,
2002; P. Wriggers, 2002) for more discussion about variausarical aspects of contact problems in mechanics.

In this paper we deal with a mathematical model of a dynamittazzi between a non clamped viscoelastic body
and a foundation. The foundation is assumed to be composadéfprmable basis covered by a thin deformable layer
with a different rigidity. Namely, the penetration of theufadation is modelled by a monotone relation between the
normal stress and the normal displacement. However, thefuseveral deformable materials allows to characterize

TThe research was supported by the Marie Curie InternatReakarch Staff Exchange Scheme Fellowship within the 7thfan Community
Framework Programme under Grant Agreement No. 295118nthmhtional Project co-financed by the Ministry of Scieand Higher Education
of Republic of Poland under grant no. W111/7.PR/2012 and\thtional Science Center of Poland under Maestro Advancejkérno. DEC-
2012/06/A/ST1/00262.
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the hardening phenomena of the foundation after reachiegtaic penetration. On the other hand, the dependence of
the tangential stress with respect to the tangential vigl¢slip rate) is modelled by a nonmonotone slip rate depende
friction law (cf. (M. Barbotetet al,, 2015; S. Migérsket al., 2013)), in which the friction bound also depends explic-
itly on the depth of the penetration.

The first result of our paper provides the existence and wmegss of a weak solution to the considered problem.
The proof of the solvability is based on a fixed point techeigthere, for the existence of a solution to an auxiliary
intermediate problem, we use an abstract theorem from (KoBa, submitted). In the second part of the paper, we
deal with a numerical analysis of the problem. To this end caesider two numerical schemes, semi-discrete and
fully discrete one. In the first case, the Galerkin spatigiragimation is used, while the time is kept continuous. This
method is called Faedo-Galerkin approximation. In the sdazheme, both space and time are discretized. For both
schemes we provide abstract theorems concerning erranagss. Moreover, in the case when the spatial Galerkin
approximation is based on a finite element technique inaglVirst order polynomials, we conclude that the error
depends linearly on the discretization parameters, pealilde solution satisfies additional regularity conditions

The results obtained by the first two authors in (M. Barbeteal. , 2015) and (M. Barboteet al, 2015) motivate
the present paper. Namely in (M. Barbottal. , 2015), we obtained analogous error estimates result bumhfich
simpler bilateral contact condition. In (M. Barbotetial, 2015), a nonmonotone slip rate dependent friction law has
been used as well. However, for the contact conditions, enabcompliance model was coupled with a unilateral
constraint. In that case, only a finite penetration of thenftation is allowed. In fact these frictional contact coiuais
introduce some difficulty in the mathematical model. In jgatar the variational formulation of such problem has the
form of a non local variational inequality. This kind of rétan is called in literature "very weak formulation". In con
trast to (M. Barboteet al,, 2015) we provide the existence and additionally the umess of a solution to the problem
that, in the variational formulation, has the form of a locadlusion. Hence we deal with the weak, but not very weak
solution. From this point of view our result is stronger ththa one obtained in (M. Barboteat al, 2015). On the
other hand, the error estimates for the model studied in (MbBteuet al,, 2015) remain an open problem while in
this work, the numerical analysis of the problem is providegarthermore, we also underline that the contact problems
studied in (M. Barboteet al., 2015) and (M. Barboteet al,, 2015) are assumed to use clamped boundary conditions,
that is, the displacement vanishes at a part of the bourf@atiyat has a positive Lebesgue measure. It is well known
that the assumption of clamped boundary conditions helpsia the variational analysis of the problem. Namely, it
allows to use the Korn inequality and introduce the ndig = [, €(v) : £(v) dx on the spac¥ used in variational
formulation. As a consequence, the viscosity and elagtieiisors are coercive or strongly monotone with respect to
the norm|| - ||v. In contrast, in this work, we consider non clamped case aatiwith the spac¥’ = H1(Q;RY) with
the usual Sobolev norm. Such an assumption leads to workhathiscosity operator that is not coercive nor strongly
monotone in spacé, but satisfies a slightly weaker condition (see (3.13)(©)) the other hand, the elasticity operator
does not have to satisfy a coercivity condition. It introgsi@ significant difficulty to be handled in the present paper.
Moreover, in (M. Barboteet al., 2015) a smallness condition for the constants of the pmlideassumed (see (3.22)
of (M. Barboteuet al. , 2015)). In our paper we use a more sophisticated methodlioats to avoid such constraint
and makes the result even stronger.

The rest of the paper is structured as follows. In Section & jntroduce notation that will be used in the rest
of the paper and provide preliminary material. In Sectiow8,describe the mechanical problem of our interest and
provide its mathematical description in both classical sadational forms. Moreover, we formulate and prove the
main result, existence and uniqueness theorem for thegaroll variational form. In Section 4 and 5, we deal with
error estimates for a semi-discrete and fully discrete @ypration, respectively. Finally, in Section 6, we proviale
numerical validation of the optimal error estimate estt#dd in Section 5.

2. Notation and preliminaries

In this section we present the notation and some prelimimeatgrial which will be of use later on. We use the notation
N andR for the set of natural and real numbers respectively. ThebgyiR, will represent the set of nonnegative real
numbers, i.eR; = [0,+). Given a normed spadg, || - ||x), and two real numbes < b, we denote byC(a,b; X)

the space of all continuous functioris [a,b] — X equipped with the nornjf||ciap:x) = MaXcap || F(X)||x for all

f € C(a,b;X). For a time dependent functioh we use symbold and f for its first and second time derivative,
respectively. For a real valued functiénwe denote by its positive part defined by, (x) = max{ f(x),0} for all x.
Letd € {2,3}. Then, we denote b§ the space of symmetritx d matrices. The inner product and norm&f and
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SY are defined by

u-v=uVv, HVHRd:(V'V)% for allu,v e RY,
0:T=0jTj, ||r|\Sd:(r:r)% forallo,t e SY.
Here and below the indicésand j run between 1 and, and unless stated otherwise, the summation conventian ove
repeated indices is used.
_ LetQ c RY be a bounded domain with a Lipschitz boundBryWe use the notation= (x;) for a typical point in
Q and we denote by = (v;) the outward unit normal dt . Also, an index that follows a comma represents the partial

derivative with respect to the corresponding componenhefspatial variable, e.gy j = du;/Jx;. We use standard
notation for the Lebesgue and Sobolev spaces associate@veihd/” and, moreover, we consider the spaces

H=L2(Q;RY), Q=L?%Q;sY),
V={u=(u)]| e(u) € Q}, Qi={re€Q|DivteH}.

Heree: V — Qand Div: Q; — H represent the deformation and divergence operators given b

£) = (5 (), (V) =5 (Wi +V;i), DV = (0 ).

The spacesl, Q, V andQ; are real Hilbert spaces endowed with the inner products

(U,V)H :/Q uv; dx, (O',T)Q:/(; Gij Tij dx,
(u,v)v = (U, V)4 + (£(u),&(V))a, (0,7)g, = (0,T)g+ (Divo,DivT)y,

and the associated normis ||y, || - [|q, || - [lv and|| - [|g,, respectively. We denote by, andv; the normal and the
tangential component efon ™, respectively, given by, = v-v andv; =v—v,v. We denote by, ando; the normal
and tangential traces @f, i.e. o, = (ov)-v ando; = gv — gy V.

We recall Theorem 2.25 of (S. Mig6rsét al., 2013) concerning Green formula.

THEOREM2.1 LetQ be an open bounded and connected s&%bivith Lipschitz boundary™. Then
/ o: s(v)dx—i—/ Div0~vdx:/ ov-vdr (2.2)
Q Q r

forallveV ando e C1(Q;sY).

Now we pass to the definition of the subdifferential in thesseof Clarke.
Definition 2.2 Let X be a Banach space aiXd its dual. The Clarke generalized directional derivativadbcally
Lipschitz functiong : X — R at the poini € X in the directiorv € X is defined by

¢O(X;V) _ IImSup¢(y+AV) — ¢(y) )
y—Xx,A 10 A

The Clarke subdifferential af atx is a subset oK* given by
AP (x) = {7 € X*[°(x;v) = ({,V)x:xx forallve X}.

We will need the following Gronwall inequalities proved W(Han & M. Sofonea, 2002).

LEMMA 2.1 Letf,g e C(a,b;R) andg be nondecreasing. Assume that

f(t)gg(t)+c/tf(s)ds forallt € [a,b], —I_

wherec is a positive constant. Then
f(t) <gt)e™=@ forallt e [a,h].



4 of 26

LEMMA 2.2 LetT > 0 be given. For a positive integdrwe definek = T /N. Assume tha{g,}\_; and{e,}\_, are
two sequences of nonnegative numbers satisfying

n
engégn—l—éz ke, foralln=1,...,N
=1

for a positive constartindependent ol or k. Then there exists a positive constanindependent dfl or k, such that

max e, < ¢ max gn.
1<n<N 1<n<N

We introduce now the Ehrling lemma proved in (R. Temam, 1984)
LEMMA 2.3 LetXy, X andX; be three Banach spaces such that
Xo C X C Xq,

the injection ofX into X; being continuous and the injectionX into X is compact. Then, for each> 0, there exists
a constan€(¢) such that
IVIx < &[IVilx, +C(€)[Vlx, for all ve Xo.

At the end of this section, we recall the Young inequalityt thél be used several times in the paper.

ab< %a2+%b2 forall a,b > 0, (2.2)
and, in general,
ab< ea®+ 4—18b2 forall a,b,e > 0. (2.3)

In the rest of the paper, we denote®y generic positive constant that may differ from place teagla

3. Mechanical problem and variational formulation

In this section, we describe a mechanical contact problesinpaesent its classical mathematical formulation. Next
we introduce a list of assumptions on the data of the problednpass to its variational formulation. The main result

of this section is Theorem 3.1 that guarantees an existant@rigueness of a weak solution to the problem under
consideration.

3.1 Classical formulation

We consider a viscoelastic body that occupies in its refera@nfiguration an open bounded regi@nc RY with
Lipschitz boundarypQ = I'. The body may undergo a deformation under the influence afrweland boundary
forces. The boundary is divided into two disjoint partéy andlc, namelyl” = yUTlc andiyNlc = 0. We assume
that the external forces may act on the garand the contact of the body with a foundation is possible erp#rt/c.
Our interest is to describe the behaviour of the body in a timerval [0, T], whereT > 0. We denote by(x,t) and
o(x,t) the displacement and the stress at pwiatQ at moment < [0, T], respectively. Keeping notation introduced
in Section 2 for vectors and tensors, we consider the foligwiassical formulation of the dynamic contact problem.

Problem 2. Find a displacement field:uQ x (0,T) — RY and a stress field': Q x (0,T) — S% such that

0 =%¢(U)+E€(u) in Q x(0,T), (3.1)
pli—Divo = fg in Q x (0,T), (3.2)
ov=rf, only x (0,T), (3.3)
— 0y = plU)+ £ (U~ 9)- onicx(OT),  (34)
Otllga < H([[Ur]|ga) (P(Uy) + F(Uy — g
loellg .(|| l[za) (P( )1 ( )+)u - onfex (0T), (3.5)—|—
—07r = U([|Urlga) (P(Uy) + 7 (Uy — g)+)m if U #0

u(0) =up, U(0)=ug in Q. (3.6)
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Now we shortly describe the physical meaning of relation$)(83.6). Equation (3.1) represents a viscoelastic
constitutive law whereg” and & denote the viscosity and the elasticity tensor, respdgtivRelation (3.2) is the
equation of motion that governs the evolution of the meatelrsitate of the body. Hegis the mass density arig is
the density of applied volume forces. The traction boundandition (3.3) states that the stress vecteris given on
partly of the boundary, and is equal to the boundary force of derisitfNow we explain the contact condition (3.4)
that expresses the dependence of the normal stkees the normal displacemenj on the contact part of boundary
l'c. Recall that it models the contact with a foundation whicmesde by a deformable basis covered by a thin layer
made of elastic material, of thicknegsAs far as the normal displacement does not reach the bguthe contact is
described with a normal compliance conditiew, = p(uy). Once the depth of the penetration exceeds thickgess
the additional contribution of normal reactioiqguv — @), occurs due to the resistance of the deformable basis of the
foundation. Nevertheless, the basis is not perfectly rigémely it allows to be penetrated. The given constgnt10
represents the rigidity of the basis. Condition (3.5) repres the slip rate dependent friction law, where the value
p(]|ug || o) (p(uy) + £(uy — g)+) plays the role of the friction bound andis not necessary monotone with respect
to the slip ratg|U;||za. Hence we may deal with a nonmonotone friction law. Finafiy3.6) we impose the initial
conditions.

In the study of Problen®”” we assume the following properties on the data.
H(%): The viscosity operatae’: Q x S — S satisfies

(a) (-, &) is measurable of for all £ € SY;

(b) (€ (x,€1) — € (X, €2)) : (€1— €2) = Co||€1— £2|\§d forall 1,62 € Y,
a.exe Q with ¢, > 0;

(€) [|T(x €1) — €'(x,€2)l|s0 < Lis[| €1~ €2|a for all &1, 2 € 8,
a.exe Q with Ly > 0;

(d) €(x,0)=0 a.exe Q.

H(&): The elasticity operatof: Q x S — S% is a bounded, symmetric, nonnegatively definite fourth otelesor,
e (@) & € L=(Q), 1<i,j,k | <d;

(b) &(x)o-T1=0-&(X)71 forall 0,1 €SY, aexe Q;

(c)&(x)t-T>0forall TS, ae xe Q.

H(p): The normal compliance functigm: Ic x R — R satisfies

(&) p(-,s) is measurable ofic for all se R;
(b) [p(x;81) — P(x;82)| < Lpls1 — | forall ;.5 € R,
ae xe lc with Lp > 0;

(c) p(x,s) < cg forall se R, ae x & lc with c3 > 0;

(d) p(x,s) =0 forall s<0, ae. xe Ic.
H(u): The friction boundu : [0,) — R satisfies
(a) u is continuous;
(b) |u(s)| < cq forall s> 0, with ¢4 > 0;
(€) p(s1) — H(s2) = —A(s1— %) forall sy >, > 0 with A > 0.
H(g): The gap function satisfiegc L?(I'c) andg(x) > 0 a.e.x € Ic. —I_

H(f): The force and the traction densities satisfy

foeL?(0,T;H), f,eL?(0,T;L3(R;RY).
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Also, we assume that the initial values satisfy
Ho: Up € V andu; € H.
Let us consider an auxiliary functian I'c x R — R, defined by
q(x,s) = p(x,s) + %(s— g(x))+ forall se R, a.exe lc.
UsingH (p) andH(g) we obtain

H(q): The functionq satisfies

(@ q(-,s) is measurable ofic for all s€ R;
(b) [a(x,s1) —a(x,52)| < Lg|si — s forall 51,5, € R, ae. xe Ic,
with Lg=Lp+7; (3.7)

(c) q(x,s) < cz+1|s forall se R, ae xe Ic;

(d) g(x,s) =0 foralls< 0, a.exe lc.
Now we introduce the functiop, defined by
p(x,s) = min{q(x,s),C3} forall se R, a.exe lc.
H(p): The functionp® I'c x R — R, satisfies
(&) p(-,s) is measurable ofic for all se R;

(b) [B(x,51) — B(X,%2)| < Lp|s1 — 52| forall sy, € R,
ae x e e with Lp = Lg;

(c) p(x,s) < C3 forall se R, ae. x e lc with &3> 0;

(d) p(x,s) =0 forall s< 0, ae xe Ic.

Note that such a function was only introduced for matherabtiasons; from the practical point of viewci i§
large enoughg(uy) = p(uy) for all u, solution of Problemz”.

3.2 Variational formulation

We turn now to the variational formulation of Probleta.

LetV andH be the spaces defined in Section 2. We denoté. by« v and by(-,-)n the duality pairing between
V and its duaM* and the inner product ifl, respectively. Identifyindd with its dual, we have an evolution triple
V C H ¢ V* with dense, continuous and compact embeddings. We dengte Wy L%(Ic;RY) the trace operator
and for the elemente V we still denote by its traceyv. By the Sobolev trace theorem there exists a positive consta
cop depending only on the domaiR andl¢ such that

IVlli2(ropey < oVl forallveV. (3.8)

In what follows we need the spac#s= L2(0,T;V), 2 = L2(0,T;H) and# = {ve ¥ | v€ ¥*} where the time
derivative involved in the definition o is understood in the sense of vector valued distributiorguigped with

the norm|\v|» = (IVIIZ + V3 *)1/2 the space#”” becomes a separable Hilbert space. It is well known that the
embeddings# € C(0,T;H) and{we ¥ |we #} C C(0,T;V) are continuous. Now we provide the followin
lemma. I

LEMMA 3.1 For alle > 0 there exist€(&) > 0 such that

IVl 2(rerey < €[IVIIv +C(€)||V[|w forall ve V. (3.9)



7 of 26

Proof. We taked € (0,31). Since the embedding ¢ H1~%(Q;RY) is compact and the embeddikg—°(Q;RY) c H
is continuous, we can apply Lemma 2.3. Thus, for any0 there isC(¢) > 0 such that for alv e V

IVlg1-5(qra) < EVIV +C(&)[IV][1- (3.10)

Furthermore, we denote byV — H1-3(Q;RRY), the continuous embedding operatorypy H1-3(Q;RY) — H2~3("; RY)
the compact trace operator andjoyH 2-3(I"; RY) — L2(I; RY) the continuous embedding operator. Thus j o y; o
is linear, continuous and compact. Using above notatiorhave

IVl L2(re ey = W 2(remey = (T e Ve VIl 2 ma) < ClliV[ga-6(o.pa) forall veV
with ¢ > 0. This together with (3.10) completes the proof. O
We introduce the functiof: RY — R defined by
, 2] a d
i(2 :/ u(s)dsforalize R,
0

The properties of the functiopare summarized in the next lemma.
LEMMA 3.2 If the assumptiond (i) (a)—(b) hold, then the function is locally Lipschitz, and
|€|lga < cs forall & € dj(z), ze R
Furthermore, if the assumptidh(ut)(c) holds then
&,-&) (@m—z)=>-A ||21—22|\%d forall & € dj(u) u eRY, i=1,2.

Proof. First, we have to prove thatis locally Lipschitz. In order to do so, lete RY andr > 0. Forz;,z € B(zr),
we get

i — < ma — .
lj(z2) — ()] XeB(Zﬁ)H(|\X||Rd)||21 2| ga

With H(u)(a) and Proposition 5.6.28(ii) in (Z. Denkowséd al. , 2003) we have the following characterization of the

Clarke subdifferentiad j of j.
B(0, u(0)) forz=0,
2i(2) =

(3.11)

IJ(HZHRd)m forz#0.

Then, the other properties follow straightforwardly] Now we observe that due to (3.11), the contact condition) (3.5
is equivalent to the following subdifferential inclusion

—0or € p(uy)dj(ur) onlex(0,T). (3.12)

We introduce the operatofs V — V*, B: V — V*, and the functiorf : (0,T) — V*, defined by
(AU Vv v :/ %e(u):g(v)dx forallu,veV,
Q
(BU, V) v :/ &e(u):g(v)dx forallu,veV,
Q

(Ft),Vivexv = (Fo(t),V)H + (F2(t),V) 2 ;me)  forallveVv.
Using assumptions (¥’) andH (&) we easily find that operatofsandB satisfy
(@) [|Au— Avi|y+ < Ly |lu—vlly for all u,veV;
(b) A0 = O; (3.13)
() (Au—AV,U—V)y+xy = Col|u—V||& — c|lu—V||3 forall u,ve V.
and _I_
(@) Be.Z(V;V*¥)is symmetric;
(b) (Bv,V)v+xv < Lg
(c) (Bv,V)y=xy =0 forallve V.

v|[§ forall veV, whereLs = ||B|| #vy+); (3.14)
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We consider a multivalued mappilgj; : L2(re; RY) — 2R defined by
§eS5(v) & &cl?’(IciRY) and&(x) € 9j(v(x)) fora.exe I, ve LA(Ig;RY).
It follows directly fromH (u) and Lemma 3.2 tha&%i satisfies
(@) 1€l (1 ey < ca forall & € S5, (v), ve L2(Ie;RY);
(b) (§1—&2,v1—V2) 2(r o) = —AIVi— V2||Ez(,—C;Rd) forall §; € ng (Vi), (3.15)
vi € L2(Ig;RY), i =1,2.
Now we give the following variational formulation of ProlnleZ?.
Problem 22, Find a displacement field @ ¥ with U € % such that
(pu(t) +Au(t) +Bu(t) — f(t),V)vexv + (B(uv (1), W) 2 ) (3.16)
+(B(uv(t)& (1), vr) 2 ray =0 forall ve V, ae te (0,T),
and
u(0) =up, U(0) =uy, (3.17)
where the corresponding friction densifye L2(0,T,L?(Ic;RY)) satisfies
&(t) € ;(te(t)) foraete(0,T). (3.18)

Note that formally we obtain (3.16) multiplying the equatiof motion (3.1) by a test functione V, integrating
overQ, applying the Green formula (2.1), the definitions of oparsf andB and functionf and using (3.12).

We complete this section with an existence and uniquenesat fer Problem,.

THEOREM 3.1 AssumeH (%), H(&), H(p), H(u), H(g), H(f) andHp. Then there exists a unique solutiarof
Problem4,.

Before the proof of Theorem 3.1 we consider an auxiliary b To this end we fixy € C(0,T;V) and define
the functionf,, € 7* by the formula

(Fr ), Vivesv = (F(), V)vesv — (B(Nu (1)), W) 2w forallveV, aet € (0,T).
It follows from the propertyH (f), H(f)(c) and (3.8), that functiof , is well defined.

We consider the following problem.

Problem 24, Find u; € 7 with U, € % such that
(pUn (t) + Alp (t) + By (t), V)vey + (B(Nv ()& 5 (1), Vo) L2y = (F (), V)vesw (3.19)
forallveV, a.e.te (0,T),
and
Un(0) =up, Up(0)=uwy (3.20)
with
&, (t) € S5j(Une(t)) forae.te (0,T). (3.21)

Our aim is to study the existence of solution of Problefy, . To this end we will consider a more general problem.
Namely, we define the functiond} : (0,T) x L?(Ic;RY) — R given by

In(t,u) = /FC B(x Mv(x,1))j (u(x))dr for all ue L2(re;RY).

The next lemma deals with properties of the functichal
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LEMMA 3.3 If the assumptiond (p) andH (1) hold, then functional), satisfies
(i) Jn(-,u) is measurable for ali € L?(Ic; RY);
(i) Jn(t,-) is locally Lipschitz for a.et € (0, T).

Proof. The propertiesi) and(ii) follow from Theorem 3.47(ii) and (iii) of (S. Migorslet al,, 2013), respectively]

Note that Lemma 3.8ii) ensures that under assumptidh&d) andH (1), functionald, is locally Lipschitz with
respect to the second variable for &.e.(0,T). Hence, for a.et € (0, T) there exist Clarke subdifferential df with
respect to the second variable denotedby(t, -). Now we deal with its properties.

LEMMA 3.4 If the assumptionid () andH (i) hold, then for allu € L?(Ic;RY), a.e.t € (0,T), we have
o3t © [ OB nu(x1)i(uCx)]dr (3:22)
JIc

whered[p(x, nv(X,1))](u(x))] denotes the Clarke subdifferential of the function
P(x, nv(x,1))j(u(x)) with respect tau.

Proof. Lemma 3.4 follows from Theorem 3.47 of (S. Migérsiial.,, 2013). O

REMARK 3.1 The inclusion (3.22) is understood in the sense thatdoh @ € dJ, (t,u) there existg] € L?(Ic;RY)
such that

(e,v)szc;Rd):/r' Z(x)-v(x)dr forall ve LA(I:RY),
C

and
(x) € a[P(X, Nv(x,t))j(u(x))] fora.e.x € Ic.

Moreover, since the functiop(X, ny (x,t)) does not depend an we haved[(x, Ny (x,t))j(u(x))] = B(x, v (X,1))d ] (u(x)).
Hence, the last inclusion is equivalent to

2(x) = px 1y (x )€ (X) for a.e.xe I,

with &(x) € dj(u(x)) for a.e.x € Ic. Additionally, by Lemma 3.2, we hav € L2(I'c;RY).
LEMMA 3.5 If the assumptiond () andH (u) hold, then

(i) 83, (-,u) is measurable for all € L?(Ic;RY);

(i) 8J,(t,u) is nonempty, convex and weakly* compact subset&fc;RY) for all u € L2(I;RY) and a.e.t €
0, T);

(iii) the mappingdJ;,(t,-) is upper semicontinuous from the strong topologyt &f/c;RY) into weak topology in
L?(Ic;RY) fora.e.t € (0,T);

(i) 121l 2 me) < Cacameasrc) for all € 93, (t,u), ue L*(Iic;RY) and a.et € (0,T).
Proof. The property(i) follows from Lemma 3.3 and Proposition 3.23 of (S. Migdrskial,, 2013). The properties
(i) and(iii ) follow from Proposition 3.23(iv) and (vi) respectively d&.(Migdrskiet al,, 2013). Finally,(iv) follows
fromH (p)(c), H(u)(b) and Lemma 3.4. O

Now, we introduce the operatgs: V — L?(Ic;RY) defined byy;u = (yu); = u, for all u € V. In what follows,
yi: L2(Ie;RY) — V* denotes its adjoint operator given by

(Vi€ vy = (& ViV)12rme) Torall € € L2(Te;RY), ve V. (3.23)
Consider the following problem.
Problem 2y, Find u, € ¥ with U, € %" such that (3.20) holds and —I_
pUp (t) + Aly (t) +Buy (t) + v 83, (t, ¥z U(t)) 3 fy(t) in V* fora.e.t € (0,T).

LEMMA 3.6 AssumeH (%), H(&), H(p), H(u), H(g), H(f) andHo. Then there exists a solution of Proble#y, .
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Proof. Having in mind properties of multivalued mappiggj, (-,v) provided by Lemma 3.5, we are in a position to
apply Theorem 24 of (K. Bartosz, submitted) concerning thleability of a class of dynamic inclusions that covers
problem2y, as a special case. Hence, we deduce that Prollgnhas a solution. O

LEMMA 3.7 AssumeH (%), H(&), H(P), H(u), H(g), H(f) andHp. Then there exists a unique solution of Problem
Ay -

Proof. By Lemma 3.6, we know, that there exists a solutigrof Problem2y,,. Thus, in particulau, € 7', uy € 7/,

u, satisfies (3.20) and, for a.¢.c (0,T), there exist, (t) € L?(Ic; RY) such that

<pufl (t) +AUT7 (t) + BUn (t) + Vrkefl (t)’V>V*><V = <ff7 (t)7V>V*><V (3-24)
forallveV a.e.t € (0,T);
05 (t) € 93y (t, yrUp(t)) fora.e.t € (O,T). (3.25)

Using (3.25), Lemma 3.4 and Remark 3.1, we claim, that fartae(0, T), there exists , (t) € L?(Ic;RY) such that

(B (D)2 rey = [ B M (X )& (009 -VX)dr forall veV, (3.26)
and
& (1) € j(yru(x,t)) fora.e.x e lc. (3.27)
It follows from (3.23) and (3.26) that
(Vi 0n (1), V)ye oy = (BN (1)) & 5 (1), Vo) 2(r ey Torall ve V. (3.28)

Combining (3.24) with (3.28) we claim thak, satisfies (3.19). Moreover, it follows from (3.27) th@y satisfies
(3.21). We conclude that, is a solution of Probleny?, .

To show the uniqueness, suppose taandu? solve Problen4,, . Thus, there exisi,lp {% €L?(0,T;L?(Ic;RY))
such that foi = 1,2, we have

(Pl (t) + Atk () + Bty (1), Vv v + (B (£) &y (1), Vo) 2 o) = (F Vv (3:29)
forallveV, ae.te(0,T)
with

£, (t) € S5 (U (1) foraete(0,T), (3.30)
and

Uy (t) = Uo, U (t) = uy. (3.31)
We subtract equation (3.29) witk= 2 from the equation (3.29) with= 1 and takes = (t), wherer (t) = u,l7 t)— u% (t).
We integrate the result over interv@&, t) and, using (3.9), (3.13)-(3.15) aft{ f)(c), we obtain

t t
[FO1E+ [ 1@ ds<C [ (s dstoralte[o.T],
By Lemma 2.1, we conclude, thgit(t)||n = O for allt € [0, T]. Thus, using (3.31), we have
t
@)l < Ir@lln+ [ 1F(9)lns=0.

and we geu,l7 (t) = u,27 (t), which completes the proof of uniqueness. O |
Now, we define the operatdy: C(0,T;V) — C(0,T;V) by An = u,, whereuj, is the unique solution of Problem
Py, We remind thafw e ¥ |w e %'} C C(0,T;V), and thus operatoh is well defined.

LEMMA 3.8 AssumeH (%), H(&), H(P), H(u), H(g), H(f) andHp. Then there exists a unique fixed point/bf
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Proof. Letn? n? < C(0,T;V) and Upi = An' fori =1,2. By the definition of operatofi, we know, thatu,i is a
solution of Problem%/ni ,i=1,2. Let& ;i denote the function correspondingtg such that the paitu,i, £ i) satisfy

(3.19)-(3.21) withn = n', i = 1,2. For simplicity, we denote' = Upi andEi = &pi, 1 =1,2. We subtract equation
(3.19) withi = 2 from the equation (3.19) with= 1, and takes = U}(t) — U?(t) to obtain

p (Uh(t) — (L), Ut (t) — WA(L)), + (AUM(E) — AUP (L), U (1) — U2 () vy (3.32)
+ (BU(t) — BUA(), Ut (t) — UP(t) v v

S COHONHORGHON HORIOREC) N,

= (B(n2 (1) — B3 (0), 15 (0) = E()) iz -
Now, usingH (p)(a)-(c), (3.9), (3.15) and (2.3), we estimate

S ) €2 (1) — BISO)ER). 0ED) ~ (D),

COHONCHORE EGIRTORC) N

(3.33)

+ ((BnF(©) = BZ () &5 V), k(1) — (1))

L2(rc;RY)
—GaA [|Ut(t) — P ()| —calplnt(t) = n%() | 2oy UHE) = W)l 27
3 L2(re;rd) — Cabplln n L2(re;RY) L2(Ic;RY)
> —£GA [|Ut(t) — W(1)[IG — C(e)GaA [|Ut(t) — UP(1) ||

2
CZ
—e|ut(t) — PO IF ~ 4Lp Cntt) - n*®)|5

for € > 0. UsingH (p)(b),(3.9) and (2.3), we obtain

CZ
(B3 () = BNy (), Uy (1) = W5 (1)) 2y < ENUME) — WO + ng 2nt(t) M- (3.34)

Integrate ovet fort € [0, T], takinge > 0 small enough and applying (3.13)(c), (3.14)(c) and (3-8884) in (3.32),
we derive

t t
60— Rl+ [0 e as<C [ In*s) - n*(s) ds
t
+c/ |ul(s) — i2(s)||3 ds for all t € [0,T]. (3.35)
0
Applying Lemma 2.1, we find, that
t
I\Ul(t)—Uz(t)||ﬁ<C/ In*(s) —n*(9)|vds forallte[0,T].

0

Integrating and combining this with (3.35), we obtain

/Hu ) U ||Vds<C/ In* (9|2 ds (3.36)
Using (3.36), we get
't 't
AR = AP0 v = 60— Ol < [0 —EQIF <C [ 9 -n?9)lFds |
Using Proposition 3.1 of (M. Sofonea & A. Matei, 2012), weahtthe thesis.

Now, we pass to the proof of Theorem 3.1.
Proof. It is easy to observe that every functiaris a solution of Problen?, if and only if it is a fixed point of
operator\. Thus, by Lemma 3.8, we obtain the existence of a uniqueisalof Problem#, . O
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4. Spatially semi-discrete approximation

In this section we consider and analyse a spatially senci<etis approximation of Probles#?, . LetV" c V be a finite
dimensional subspace of spa¢eandh > 0 denote the spatial discretization parameter. ugeug € V" be suitable
approximations oflp anduy, characterized by

(W —up,V)y =0, (Ul —up,V)y =0 forall VeV (4.1)
The semi-discrete approximation of Proble#y is the following.
Problem 2} Find a displacement field'uz L?(0, T; V") with ", i € L2(0, T;V") such that
(PU"(t) + AU (t) + BU'(t) — (), V)veev + (BIUD (1), V) 2oz (4.2)
+(BUD (1)) E" VD) 2 ey =0 forall V' e V" ae te(0,T)
and
u"(0) =ub, u(0) =i, (4.3)
where the corresponding friction densﬁ)b € L2(0,T;L?(Ic; RY)) satisfies
£"(t) € SB;(ul(t)) for ae te (0,T). (4.4)

In what follows, we provide a result on the error estimateveetn the solutions of Problew?, and its semi-discrete
approximation Problens?}.

THEOREM4.1 AssumeH (%), H(&), H(P), H(u), H(g), H(f) andHo. Letu andu” be solutions of Problems?,
andﬁ\'}, respectively. Then, we have

HU_Uh”%(o,T;H)"‘||U_Uh||?//+||U_Uh||%(o,T;V) (4.5)
< C(|luo — upll + [Jur — U1 + [l —V(0) ||

+||U—Vh||§/+HU—\'/hH%/*+HUT—VI;||L2(0,T;L2(FC;Rd)))
for all V! € L2(0, T;V") with v € 7.

Proof. LetV" € L?(0,T;VM). Fora.et € (0,T), we take the same elemerfi(t) € V" as a test function in (3.16) and
(4.2). Next, we subtract (4.2) from (3.16) and get

(p(u(t) — (1)) + A(U(t)) — AU"(t)) + B(u(t) — u(t)), V" (0))v= v (4.6)
+(Buy (t) — BUS (1)), V5 (1) 2(rem) + (Bluv (1)) € (1) — ﬁ(UC(t))fh(t)aV?(t))Lz(rc;Rd) =0.
We observe that (4.6) holds in particular f6r= u"(t). Hence, we obtain

(p(u(t) —U(t) + AU(t)) — A1) +B(u(t) — (1)), V(1) )v-v (4.7)
+(Bluy (1)) = BUD (), V) (1)) L2 ) + (Bl ()& (1) — B(US ()& (1), () L2 o) —I_
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Using (4.7), it is easy to get

{p(u(t) - t'(t)) +AU()) — A () +B(u(t) —u'()), u(t) — W (t)v-xv (4.8)

Therefore, after an elementary manipulation, we derive
(p(u(t) - t()) +AU(t) — t'() + B(u(t) — u"(t)), b(t) = L))+ (4.9)
+(BUD ()& (1) — B (1)) E" (1), Br (t) — U2()) L2 e
= (p(u(t) — (1) + A(U(t) — (1)) + B(u(t) — u"(1)), U(t) =V (O)v-ev
+(Bluv () = BUB (D)), (5 (1) — (1)) + (
+(B(uw (£) & (1) — B ()& (), Ur (1) = VI(1)) 21w
+(BUD ()& (1) — BUD (1) " (1), e (t) = VE()) 2 oy

H(BUD ()& () — B(uv (t)) & (1), Ur (t) — UF(t)) 2(re e

Uy (t) — ()))L2(rc R)

In what follows we integrate (4.9) ovéd,t] wheret € [0, T|. We can easily show that

/Ot<p(U(S)—U“(S)),U(S>—U“(S)>v <v ds= B &H ()~ u"(s)|F ds (4.10)
= Ll -t 13 - s - B2,
Applying (3.13)(c), we get
/t<AU(> A(s), U(s) — U"(S))v+ v ds (4.11)

> [/ s - P ds—c [ s - i) R ds

It follows from (3.14)(a) that
[ 819~ B(S), (9 ~ f(Sv-.vds
=3 [ 5 (Bu® - BU®). U~ (v ds
= 5{BU) - BU(0) ut) ~ (V)= — 5 (BU(0) ~ BL(0),(0) ~ (-

1
> —5Lslluo— Wl (4.12)
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From (3.9)H(p)(c), (3.18), (4.4) and (3.15)(b), we have
t
| (B (s)E(s) - B >>«f“<s>,ur<s>—u?<s>>Lz<rC;Rd>ds
)\Cs/ llur(s) ey dS
> A6 (8/0 [|u(s)ds— u"(s)||& ds+C(e) /; [u(s) — U"(9)||3 ds) : (4.13)
In what follows, we apply the integration by parts formulalarse (2.2) and (2.3). Hence, we obtain
[ 009~ (9,68 V) swdls= (ut) ~1(0).0) V() (@.14)
~(U(0) ~ (0),40) V(O — [ (U(5) ~ (), (5) - V(v vdls

< att) = GO 0) = V(0) o+ = U o2 V()
t
+ [ 169~ 0(8).(8) = V($))v-sv s

1. : . 1 1
< 100 — PO + 160 VO I+ 5llus — dIE + 51— V(O
. . . .
+e [ luls) ~ () ds+ 50—

with € > 0. Applying Lipschitz continuity of operatois andB (see (3.13)(a) and (3.14)(b), respectively), and using
(2.2) and (2.3), we get

/0t<A'u<s>—Au“<s> 19 Vv vds< [ L) -t v s —V(S)vds
<e [[lus - ol ast S o v (4.15)
and
[ Bu(s) - B3, 45) V(v vs< [ Lalu(s) - WS v is) —V(S)vds
2
3 [ 19~ dst VB (@.16)
Using (3.8), andH (p)(b), we have
(B0 (3)) — BlUb(9).(5) (92 e 5 (4.17)
< /()tC%fpl\ u(s) W' (9) v ")~ () vdls
< /H W ElRdste [ i -G
and
t
~ ~h .
| (Buv () = B (9),6u(9) ~ V()2 s @11
t ~
< [ laluts) - WS vllixs) — v(s) v
4~ 2
<92 [ u ~ oSl ds+ Ja- VB
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On the other hand, using again (3.8p)(2)-(c), (3.15)(@), (2.2) and (2.3), we get
[ (Bl ()89~ BUb(9)E (9 (9 VRIS rsan 5 @19)
< [ @eallus - WG v la9 -V s

A2 1,.
< T2 [ u(s) — (9 s+ 5=V

[ (B8 (S B £"(9). (5 V() 05
< 2650 [ 19~ V(9 2 e 15 2500V T i —Vloraz e (4.20)
and
[ (B85~ B0 (9)E(9), r(9) — 520 05 @.21)
< [ Blocaluts) (Sl s - (3 fuds
< B2 e - uisase [ s - ih(s3 ds

We integrate (4.9) and combine (4.10)—(4.21) to obtain

t
B~ Ol + (2~ A& +3+p)e) [ s - th(9)ds (4.2
1 :
< SLelluo =t + & us — I + pllu) —(O) 17 + S lu —
P —wonhi2 o Py o2 %% N2
B VOl + £ 1013 + (L + 1) Ju- Vg

1 412, \~22 1 1 t h 2
+(Gra(0707d) (342 ) [ o -isles
t
+205C4ﬁ||ur—V?||L2(0,T;L2(rc;Rd))+(Cz+)\€3C(S))/O u(s) - t(9)|Ads

Next, we recall that .
Ju(s) —u($)1§ < 2Juo— I +2T [ uz) — @)z

Integrating this ove[0,t], we get

t t 'S
/ u(s) — u(s)2dt < 2T|\uo—u8|\\2,+2T/ (/ |U(z)—'uh(z)||\2,dz> ds (4.23)
Jo o \Jo
Let us introduce the following function
. hen 2 T he 12
y(t) = [[u(t) —u (t)HH+/0 [G(s) —u(s)[[vds (4.24)
and the notation
a =|[uo— ugl[G + [|ur — W1 + [ — V" (0) I + e () — V()1 (4.25)
+Hu_vhH$/+”u_\.,hHg/*'i'”UT_VI;HLZ(O,T;LZ(I'C;RU))' —I—

We fix € = $c2(AG3+ 3+ p) L. Thenc, — (A + 3+ p)e > 0 and, combining (4.22) with (4.23), we get

y(t) < Ca +c/o't y(9)ds (4.26)
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From Lemma 2.1, we deduce

y(t) < CaeT. (4.27)
Sincet € [0, T] is arbitrary, it follows that
lu— & o1y + 10— U5 <Ca. (4.28)
Hence
lu— "2 g7, < 2o — W3 +2T|lu— i3 < Ca. (4.29)

We recall that the embeddiqy € 7 | ve »*} C C(0,T;H) is continuous, i.e.

[max lu(t) =11 = 10— Vllcommy < CUU=VF + [a=[15). (4.30)
Combining (4.25), (4.27) and (4.30), we get the thesis. [0 Theorem 4.1 is valid for any finite dimensional

subspac®" of V. In applicationsY" is usually taken to be a finite element space. As a particuamele, assume
Q is a polygonal/polyhedral domain afd7"} is a regular family of finite element triangulations@finto triangles

(d = 2) or tetrahedrongd(= 3). For an elemen € .7", denote byP;(T) the space of polynomials of a total degree
less than or equal to onein Then we can use the linear element space of continuousyigeeaffine functions

V= (Ve [C(@)?| V|t e [P(T)]¢ forall T € 7"}, (4.31)

Then, by considering the previous finite element spdtand some additional regularity conditions, we obtain the
following corollary which provides the optimal order erestimates.

COROLLARY 4.1 Keep the assumptions stated in Theorem 4.1. Asd@nea polygonal/polyhedral domain, and
{Vhl is the family of linear element spaces defined by (4.31),esponding to a regular family of finite element
triangulations ofQ into triangles or tetrahedrons. Latandu® be solutions of ProblemB, and R, respectively.
Assumeug € H2(Q;RY), u; € H1(Q;RY), and takeuf}, ul € V" to be projections ofip andu; defined by (4.1). Under
the following regularity condition

Ue L0, T;H?(Q;RY)), te L0, T;HA(Q;RY)), Ur € L*(0, T;HA(I;RY)),
we have the optimal order error estimate

lu—tlcrv) + 0= W1 + [u— U <Ch. (4.32)

Proof. Note that under the stated regularity assumptions, fortazel0, T], u(t), ii(t) are continuous o®, andu (t)

is continuous orfc. LetV'(t) = MM"u(t) € V" be the finite element interpolant aft), for a.e.t € [0,T]. Note that
Vi(t) = (MTMu(t)); is the continuous piecewise linear interpolantugft) on I'c. Moreover, V() is the continuous
piecewise linear interpolant oft). Then, by the standard finite element interpolation erromeges ((K. Atkinson &
W. Han, 2009; S.C. Brenner & L.R. Scott, 2008; P.G. Ciarléf8)), we have the following approximation properties

Ja(t) =Vl < chut)llyz o).
Ja(t) — )l < chlu®) e gzzs).

16 (t) = VRO |2 ime) < Pl [z o

and
luo — Wllv < chljuolz(gyma).
[lup — U?HH < Ch”ulHHl(Q;Rd)'
Hence, it follows that
[a= V"l < chl|ull 20 712 e —I—

[[a— "]y < chi[tll 20 7:H2(0:R0)):
10r = VRlli 20712 ima) < CPlUrllu20mim2(reime))-

Then the error bound (4.32) is a consequence of (4.5). O
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5. Fully discrete error estimates

We introduce a fully discrete approximation of Proble#y in order to bound the error of the fully discrete solutions.
To this end, we consider again a finite dimensional subspaaé spaceV/, whereh > 0 denote the spatial discretiza-
tion parameter. Moreover, on the time interf@IT |, we consider a positive integrand we define the time step size
k=T/N and the time nodal points =nk, 0< n<N.

For any time dependent functidgnwe use notatiomy, = h(t,) for n= 1,...,N and for any sequence,}N_, we
denotedxn = (Xn —Xn—1)/kforn=1,....N.

The fully discrete approximation of Problemy is the following.
Problem 220 Find a displacement fielu}N_, < V" such that
(PBWH -+ AR -+ BUY — o Vvesew + (BIURS) . VD) 2w (5.1)

+(p(ulk) Ek,V?)Lz(rC;Rd) =0 forallv"eVv" n=1. N,

and
ug* = ug, (5.2)
where the sequendai¥}N | < V"is defined by
g = uf, (5.3)
and
wik=aulk foralln=1,...,N, (5.4)

and the corresponding friction dens'r{yfhk N, C L?(Ic;RY) satisfies
he B (wh) ae onfc, n=1,..N. (5.5)

Note that (5.4) is equivalent to
ulk = ubk 4+ Z kw* forall n=1,...,N. (5.6)

In what follows, we present the theorem concerning erramede between the solution of Probled, and the
solution of its fully discrete approximation, Proble@@k.

THEOREM5.1 AssumeH (%), H(&), H(f), H(u), H(g), H(f) andHo. Letu andu™ be solutions of Problems?,
and@vhk, respectively. Moreover, suppose that the solutidras the following regularity

ueC2(0,T;H)NCY0,T;V), U, €C(O,T;L2(Ic;R)), U € C(0,T;L2(Ic;RY)). (5.7)
Then
hk| 2 kjj2 M kj12
max [[Un — U ||v+ max ||W —w; IIHJrJZlkHW,-—W'j1 [ (5.8)

N
< c[jzlkuv'v,- = w7 + 1wy I + Wy — Vel 2 )

h2 k|2 2 2
+luo — UBIIZ + IIwp — wWh¥1Z —|—1r;nax [Wo — VA1 + llwy, — Vi [[
<n<N
) Nfll 5
Bz o7+ 3 = = (Wi =)
=1

for all {0}, c V™.
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Proof. We takev = V" in (3.16) and we combine it with (5.1) in order to get

(P (W — SWR) + AWy — WHY) + B(Un — UR), Vv v (5.9)

+(B(ny) = B VD)2 ey + (BlUny )& — BB &R VD) 2y = O
Note that (5.9) holds, in particular, fof = wiX. Hence, we have

(P (W — SWE) + AWy — WR) + Bty — L), Vv v (5.10)

+(B(Uny) = BN V0 21y + (Bl ) & — BB &0 VD)2
= (W — OWRK) + AWy — WH) + B(Uy — Uy ), Wiy v

hk

+(B(Uny ) — PR ) W) 2 ey + (BUny) € — PIUDS) E R WEK) 2 .

After a reformulation of (5.10) under the fortnw, —wiK) = (.,w,, — "), we have

(P (W, — SWH) + AW — WR) +B(Uy — U ), Wy — Wh v v (5.11)
+(BlUny) — BIURY) Wy — WhS) () + (B(Uny) € — BOURY) & War — WHE) 2rcme)
= (P (W — SWR) -+ AWy — WH) + B(Uy — Uy ), W — Vv
+(BlUny) — BIURE) Wy —VH) 27y + (BlUny ) & — BUR) &R’ Wor —V)12(re m0)-
Therefore, after an elementary manipulation, we infer
((OWy — SWH), W — WR )k + (AW —WHY), Wy — W)y sy (5.12)
+(B(URS) € — BIUR)ER" Wor — W) 2 reime) =
(W — W) W — W)t -+ (P8 — SWE), W, — V)i
(P (W — BWy ), Wy — V) + (AW, —WH ), Wy = V) v
+(B(Un — UR), (WH = W) + (W — V) v v

+(B(Uny) — ﬁ(unv) (anlj an)+(an_VC))L2(FC;R)

e

+(

ot

(unv)fn (unv)‘fnvwnr Vh)LZ(I'C;Rd)
(ﬁ(unv)f (unv)‘fnkawnr Vh)LZ(I'C;Rd)
(ﬁ(unv)fn — P(Uny) & ns Wi — Whnlr()LZ(I'C;Rd)'

Applying the identity 2a—b,a)y = [|a—b||3 + [|a]|3 — ||b||Z with a=w, —wi* andb = w,_, —w/*,, we obtain

vy = WA, = w3 — W3 1B) < (B — S, Wy — ). (5.13)
From (3.13)(c), we get
Cal Wiy — WHY(IG — Cal| W — WR(1 < (AW, —Wh¥), Wy — Wh vy (5.14)
_I_ Using (3.9),H(p)(c) and (3.15)(b), we have _I_
(BUD )€ = BURS)E R Wne —WAK) 2(re ) > —ACal[Wor — WK P2 ) (5.15)

— A Ga(El Wy — WRAIG +C(E) Iy — Wh1 ).
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By the definitions of spacdsd andV, we easily havelv||y < ||v||v for all ve V. Hence, using (2.3) and (2.2), we can

estimate

(P (W — SWiy ), WK — Wi )it < Wy — S [ WH' — W v

k P

< W = Wal|§ + = [ — Swal[F, (5.16)

and
(P (W — SWy ), W — V) < Wy — SWa [ |[Wn — Vv
p2
—HWn—Vh||v+ HW SWn |- (5.17)

Applying Lipschitz continuity of operators andB (see (3.13)(a) and (3.14)(b), respectively), and applysigg (2.3)
and (2.2), we get

(AW, —WH), Wi — V) vy < L Wy — WH¥ v [, — Vv

L2
< &llwo = Wi 1§ + 5 Iwa = VI (5.18)

(B(Up, — Ul WK — Wi vy < Leg [l U — UK [ WEK — Wi v
£||th Wn||V+_||un_unk||V (5-19)

and

(B(Un — UR); W = Vv v < LUy = Uiy [wn — Vv
L2 hk
< 7||Un—un ||v+—HWn VIS (5.20)

Using (3.8),H(P)(b), (2.3) and (2.2), we have

(B(Uny) — BIUR), Whs — Wi )12 ) < S5Lp 1 Un — Ul [ wh — WRlv

~ 2 4
Lp°C
< &wn —whH§ + =52 lun — il (5.21)

and

(B(Uny) — BURY), Wiy _VC)LZ(I'C;R) < C%Ep||un — Upv [[wo —VPlv

2.4
'—p <o

< lun — up'|? + —||Wn VG (5.22)

On the other hand, from (3.8)(p)(b), (3.15)(a), (2.3) and (2.2), we obtain

(B(Uny) & — BURS)& s Wor — V)27 m) < CoLpCal|Un — U Iv [ Wo — V'l

4.2\~ 2
cAcl 1 |
<t ; < ||Un—U2k||\%+§|\Wn—w||\%a (5.2

N hk .
(B(ups) & — BURS)E R s War — Vi) 21 ety < 263Ca] Wi — VR | 2o (5.24)
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and

A (529
Thus, from (5.13)—(5.25), we get

2 =B — [ —Wh ) + (02— (A G+ 5) ) — Wi (5.26)

< (P(3Wy — SWHS), Wy — V) + (C2+ A GC(£)) [ wn — W1

(54 ) (B e ) lun— G +0% (5 + 4 ) Ivin - Swal

2

L o
+ <2+ 4—z) W — V"1 + 2C3Ca | Wnr — V?||L2(I'C;]Rd)'

We takee = 3¢o(AG3+5) "L Then
C—(AG+5)e>0. (5.27)

Now, we replacen by j and take/" = VT € VMin (5.26). We sum the above inequalities oydrom 1 ton, use
(5.27), and after a minor reformulation, we to obtain
n n
W — N2+ S Kliw; — W2 < C 5 K((Ow; — BwK),w; — V)i (5.28)
=1 =1
n
+C 3 e = & 7 = I+ oy = I + e = ez
J:

n
+C(e) Zklle — WM+ flwo — W'
=
In what follows, we deal with the first term of the right handesiof (5.28). We have

3 k(o= oy =) = 3 (g~ o)

=
k " k
= (Wo—Wg, Wi — V) + Zl (Wj — W, (wj — ) — (Wj+1_"lj1+1))H
=
Wk W 1 wWikI2 1 D2 1 W2
+(Wn — Wn,Wn — Vy)H < EHWO_ () HH+§||W1_ 1HH+§HWn_ ANl
1 5 n-1 K
1B+ 19—y ] ()
=
1
< Q(HWo—V\;dkHﬁ + flwg = VAIIE + o — WH¥IE + [, — VAIR)
nflk Ku2 n711 5
+ le”Wj — g + 21E||Wj VI — (Wi =V )R (5.29)
= i= |
We recall the following classical inequality

j
luj =Ml < fluo—Ufliv + Y Klwp — Wil +1j, (5.30)
p=1
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wherel; is defined by the following relation

tj i
I = H/O w(s)ds— 3 kwplv <K|ullyzo1)-
p=1

Thus
Juj — 1% < 3(lluo— U3 + ( zknw W) R g )
<C(Jlvo— i + ] z 1wy = whG + K2 ulZz gy ) (5.31)
Therefore
zknu — g <CT(Jluo— W + z 5 z Iy~ WEE +KllulZz 7)) (532)

Now, we introduce the notation

n
en = [[w —wWRIE + 5 Kllwy — i, (5.33)
=1
and
n
on =3 K(INv; — w2+ [y =G+ Wi =Vl oreme) (5.34)
=1

+(uo — UBIIG + [Iwo — wBKI[& + [Iwy —VAIIE + llwy — VRIIZ
+k2||UHH2 0,TV) +Z\k”WJ (WJ+1 +1)Ha
Then, we can rewrite (5.28) as follows
n
en<an+CZ kej, n=1,...,N. (5.35)
=1
We are now in a position to apply Lemma 2.2 for (5.35) and abtai

n
ma ([ w, —wWiF + 3 Klw; — i) (5.36)
=1

1<n<N

P4

< c[j;kuv'v,- — w0+ lw; = V1B + Wi = Vil z(reize)

h2 k|2 2 2
+luo — UBIIZ + IIwp — Wh¥|1Z +1@na<),(\l|‘wn_\’l;l1||H + [lwy — VA[[

N-1
1
HEulFzory) + 3 gl == =l
=

Combining this with (5.31), we obtain the thesis. As for tleet®n 4, by considering additional regularity assum
we deduce the following optimal error estimate result.

COROLLARY 5.1 Keep the assumptions stated in Theorem 4.1. Asd@n®a polygonal/polyhedral domain, and
{V"} is the family of linear element spaces defined by (4 31) egponding to a regular family of finite element
triangulations of2 into triangles or tetrahedrons. Leand{ul* } , be solutions of Problent’, andP\?k, respectively.
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Assumeup € H2(Q;RY), uy € HY(Q;RY), and takef}, ul! € V" to be projections ofip anduy, defined by (4.1). Under
the following regularity condition

ue CYO,T;H?(Q;RY))NH3(0,T;H), Uy € C(O,T;H2(Ic;RY)),
we have the optimal order error estimate

hk k
_ _ < .
max [[un — U]y +1|;nna<xNHwn W4 <C(h+K) (5.37)

with C > 0 independent dfi andk.

Proof. Letv? € VM be the finite element interpolantof, t € [0, T] and 1< j < N. Then from ((W. Han & M. Sofonea,
2002)) we have

N
. 2 2
kz HWj - 6Wj ”H < Ck2||WHHZ(o,T;H)a
=1

> MW =) = W2 =V )IIE < ePullfeo -
Then, similarly to the proof of Corollary 4.1, we obtain (8)3rom the estimate (5.8). 0

6. Numerical validation of the fully discrete error estimate

The aim of this section is to provide a numerical evidencehefdonvergence of the discrete scheme established in
Section 5. The numerical solution is based on a iterativegaore which leads to a sequence of convex programming
problems already used in (M. Barbotetial, 2013, 2014; M. Barboteet al. , 2015; M. Barboteet al., 2015). For
each “convexification” iteration, the value of the frictionefficientp (||w;||ra) is fixed to a given value depending
on the tangential velocity solution; found in the previous iteration. Then, the resulting nonsth@onvex iterative
problems are solved by classical numerical methods. As secprence, the frictional contact conditions can be treated
by using a numerical approach based on the combination afiaiped method for the normal compliance terms with
the augmented Lagrangian method (cf (P. Alart & A. Curni@91; T. Laursen, 2002; P. Wriggers, 2002)) for the
friction conditions. To this end, we consider additionalificus nodes for the Lagrange multiplier in the initial rhes
The construction of these nodes depends on the frictionghcbelement used for the geometrical discretization of
the interface3. In the case presented below, the discretization is basédaite-to-rigid" contact element, which
is composed by one node 6§ and one Lagrange multiplier node. For more details on therelization step and
Computational Contact Mechanics, we refer to (P. Alart & Arder, 1991; H.B. Khenoust al,, 2006,?; T. Laursen,
2002; P. Wriggers, 2002).
Numerical example. We consider the physical setting depicted in Figure 1. Th@re- (0,L) x (0,L) c R? with
L>0and

'v=[0,L] x {L}, Ic =[0,L] x {O}.

The domainQ represents the cross section of a three-dimensional ljneiacoelastic body subjected to the action of
body forces during the dynamic process in such a way thatldmestress hypothesis is assumed. The body, located
at a height oh, can impact with friction an obstacle on the p&st=[0,L] x {0} of the boundary when it reaches the
ground. Note that we used the viscosity in (3.1) for math@ahteasons, so far, but from the practical point of view,
one may take the viscosity as small as one wishes. Here, isisagot our main interest, we choose to neglect it.
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Therefore, the material response is governed by an elastiarlconstitutive law defined by the elasticity tengor
given by

Ek

E
m(ﬁﬁ- 122)0p + ———Tap, 1<0a,B<2VTES?

(6T)ap = 1+K

Here,E andk are Young's modulus and Poisson’s ratio of the material@pddenotes the Kronecker delta.
The normal compliance functiomis defined by

p(r) =cyry.

For the coefficient of friction we choose a functiopn RY — R, of the form
() = (@a—b)-e @Il 1 p, (6.1)

with a,b,a > 0,a > b. Such a slip weakening phenomenon appears in the study phgsical problems, see (C.H.
Scholz, 1990) for details. Indeed, in this case the coeffiaé friction decreases with the slip from the valéo the
limit value b. And, for this reason, the corresponding friction law carcbaracterized as being nonmonotone. For the
computation we use the following data:

L=1m p=1kg/m’, T=2s

Up=(0,00m u;=(0,-04)m/s, g=501x103m, h=1m,
E=1Gpa k=03, fy=(0,—-0.2)GPa f,=(0,0)GPam,
cw=1GPa 1—5GPa a=1 b=02 a=200Q

r

Error estimate. In order to check the convergence of the discrete schemeoaiidstrate the optimal error estimate
obtained in Section 5, we report in Figure 3 numerical sofuérrors in the energy norm defined by

lulle = (BuuyZy
which is equivalent to the nortju||y. Since the true solutionis not available, we use instead, the numerical solution
corresponding to a fine discretization@fas the “reference” solutiomef in computing the solution errors. Here, the
numerical solution withh = 1/256 is taken to be the “reference” solutiogs. This fine discretization corresponds to
a problem with 132612 degrees of freedom, 131329 elemendtsvas computed in 120573 CPU time (expressed in
seconds) on a IBM computer equipped with Intel Dual core @ssors (Model 5148, 2.33 GHz). We observe in Figure
3 that the curve of the numerical error estimate is asyngalyi linear, which is consistent with the theoretically
predicted optimal linear convergence of the numericaltgmitestablished in Section 5.
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