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Abstract
Using

 

the

 

time

 

approximation

 

method

 

we

 

obtain

 

the

 

existence

 

of

 

a

 

weak

 

solution

 

for

 

the

 

dynamic

 

contact

 

problem

 

with

 damping

 

and

 

a

 

non-convex

 

stored

 

elastic

 

energy

 

function.

 

On

 

the

 

contact

 

boundary

 

we

 

assume

 

the

 

normal

 

compliance

 law

 

and

 

the

 

generalization

 

of

 

the

 

Coulomb

 

friction

 

law

 

which

 

allows

 

for

 

non-monotone

 

dependence

 

of

 

the

 

friction

 

force

 on

 

the

 

tangential

 

velocity.

 

The

 

existence

 

result is accompanied by two numerical examples, one of them showing lack
of uniqueness for the numerical solution.
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1. Introduction
The mathematical analysis of dynamic frictional contact problems within the framework of hyperelasticity today
still remains a subject of research which is incomplete and difficult to apprehend. Indeed, this challenging field to
work on involves several difficulties such as the non-convexity of the stored energy of the material and the non-
monotonicity of the frictional contact laws. Therefore, the establishment of the existence of variational weak
solutions represents a non-trivial and very interesting issue for such nonlinear elastodynamic problems. In the
context of convex energy materials, there exist numerous references dealing with the variational solvability of
dynamic contact problems. Without being exhaustive, we can cite the works [1–17] as well as all the references
they include.

In this work, we study the system of partial differential equations which models the evolution of the dis-
placement of a body made from hyperviscoelastic material in frictional contact with a foundation. Our results
are twofold: we obtain the result on the existence of a weak solution and we present the examples of the numer-
ical simulations. The existence result does not need either the assumption that the elastic stored energy function
is convex, or that its derivative is Lipschitz. The argument is based on the time approximation method and the
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so-called propagation of regularity argument established in [18] and later developed in [19]. The novelty of the
model with respect to [18, 19] is that we assume contact boundary conditions: the normal compliance condition
and the multi-valued friction condition. This last condition is described by a multi-valued and non-monotone
relation between the friction force density and normal velocity (see [17, 20]), which leads to the partial differ-
ential inclusion rather than the equation. Still, it is possible to use the arguments of [18, 19] to get the solution
existence. Theoretical results are complemented by numerical examples, one of them demonstrating that, at
least on a numerical level, we observe a lack of solution uniqueness for the analyzed problem.

The structure of the article is as follows: the problem is formulated in Section 2, where the assumptions are
also presented and discussed, and the main result (Theorem 2.3) is stated. Sections 3 and 4 are devoted to the
proof of Theorem 2.3. Finally, in Section 5 two numerical examples are presented and discussed.

2. Problem statement, assumptions, and main result
Formulation of the problem. Let � ⊂ R

d, where d ∈ {2, 3}, be a reference domain occupied by a nonlinearly
viscoelastic body and let (0, T) be the time interval of interest. The boundary of � is sufficiently smooth (Lip-
schitz) and divided into three relatively open and mutually disjoint parts ∂� = ŴD ∪ ŴC ∪ ŴN . Each of these
parts is measurable with respect to (d − 1)-dimensional Hausdorff measure Hd−1, and can possibly be an empty
set. By M

d×d we denote the space of the matrices d × d. The symbol | · | denotes, depending on the context, the
norm in R

d or M
d×d. We are looking for the displacement function u : � × (0, T) → R

d and the stress tensor
σ : � × (0, T) → M

d×d such that

ρü = Div σ + f 0 in � × (0, T), (1)

σ = G(∇u) + A(∇u̇) in � × (0, T), (2)

u(0) = u0 in �, (3)

u̇(0) = v(0) = u1 in �, (4)

u = 0 on ŴD × (0, T), (5)

σν = f 1 on ŴN × (0, T), (6)

− σν = pν(uν) on ŴC × (0, T), (7)

− στ ∈ |σν |∂j(u̇τ ) on ŴC × (0, T). (8)

In the above formulation Div σ = σ ij,j and ∇u = ui,j, where we use the summation convention over the repeated
indexes and the index after a comma denotes the derivative taken with respect to the corresponding variable. The
vector ν is the unit outer normal vector on ∂� and τ is its associated tangent vector. We use the decompositions
of displacements and stresses (and in general, all vector functions) on the boundary into their normal and tangent
components

uν = u · ν, uτ = u − uνν, σν = σν · ν, and σ τ = σν − σνν.

The function f 0 : � × (0, T) → R
d is the density of mass forces, and f 1 : ŴN × (0, T) → R

d is the density of
boundary tractions. The number ρ > 0 denotes the mass density of the material and is assumed to be a constant
in the rest of the paper, for the sake of simplicity. The function G : M

d×d → M
d×d is the elasticity operator,

which can be nonlinear, and A : M
d×d → M

d×d is the linear viscosity operator. The normal compliance
function pν : R → R is assumed to attain only non-negative values and hence (8) can be equivalently rewritten
as

−στ ∈ pν(uν)∂j(u̇τ ) on ŴC × (0, T).

The friction multifunction ∂j : R
d → 2R

d
is the Clarke subdifferential of a certain locally Lipschitz potential

j : R
d → R. Multifunctions of this type are commonly used to describe friction (see [17, 21]). As j is defined

on the finite-dimensional space R
d, its Clarke subdifferential is given by

∂j(s) = conv
{

lim
n→∞

∇j(sn) : sn 6∈ S ∪ N , sn → s, sequence {∇j(sn)} is convergent
}

,

where S is the Lebesgue null set of non-differentiability points of j and N is any Lebesgue null set. For the
general definition of the Clarke subdifferential, when the domain of j can be an infinite-dimensional Banach
space, as well as for its properties, the reader is referred to [22, 23].
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Assumptions on the problem data. We take p ≥ 2. By p′ we denote its conjugate exponent, such that 1/p +
1/p′ = 1. We also define the exponent q such that

q ∈







(1, ∞) if d = 2,
(1, ∞) if d = 3 and p ≥ 3,
(1, 2p/(3 − p)) if d = 3 and p ∈ [2, 3).

We will denote the exponent conjugate of q by q′.

Lemma 2.1. The choice of p and q guarantees that the trace operator γ : W 1,p(�)d → Lq(∂�)d is compact
and the trace operator γδ : W 1−δ,p(�)d → Lq(∂�)d is continuous for a small constant δ > 0.

Proof. By [24, Theorem 1.4.3.2, p. 26] the embedding W 1,p(�)d ⊂ W 1−δ,p(�)d is compact for a small constant
δ > 0. Let us first consider the situation p < d. This holds only if d = 3 and p ∈ [2, 3). If q ∈ (1, 2p/(3 − p)),
we can find small ǫ, δ > 0 such that q = 2p/(3 − p + p(δ + ǫ)). Using the Sobolev embedding theorem
we obtain W 1−δ,p(�)d ⊂ W s,q(�)d, where s = ǫ + 1/q (see [24, Theorem 1.4.4.1, p. 27]). Now the trace
theorem for fractional Sobolev spaces (see [24, Theorem 1.5.1.2, p. 37]) implies the continuity of the trace
operator γs : W s,q(�)d → Lq(∂�)d. We can compose the two embeddings (one of them being compact) and
the trace operator to obtain the assertion for the case p < d. If p = d, then [24, Theorem 1.4.4.1, p. 27]
implies the continuity of embedding W 1−δ,p(�)d ⊂ W s,q(�)d for q = (d − 1)/(δ + ǫ) and s = ǫ + 1/q, and
[24, Theorem 1.5.1.2, p. 37] implies the continuity of the trace operator γs : W s,q(�)d → Lq(∂�)d. Finally, if
p > d, [24, Theorem 1.4.4.1, p. 27] implies that we can always choose small δ > 0 such that the embedding
W 1−δ,p(�)d ⊂ C(�)d is continuous, and, clearly, the trace γC : C(�)d → Lq(∂�)d is continuous for any
q ∈ (1, ∞). Hence, the assertion for the case p > d also holds.

We make the following assumptions.

(H1) There exists 8 ∈ C1(Md×d) such that G(M) = ∂8(M)
∂M

for every matrix M ∈ M
d×d.

(H2) It holds that |G(M)| ≤ CG(1 + |M|p−1) for every M ∈ M
d×d with a constant CG ≥ 0. Moreover, α|M |p −

β ≤ 8(M) ≤ C8(|M |p + 1) for every M ∈ M
d×d with constants α, β, C8 ≥ 0.

(H3) (G(M) − G(M)) : (M − M) ≥ −K|M − M |2 for every M , M ∈ M
d×d with a constant K ≥ 0.

(H4) A : M
d×d → M

d×d is linear and bounded with A(M) : M ≥ λ|M|2 for every M ∈ M
d×d with a constant

λ > 0.
(H5) It holds that pν ∈ C(R; [0, ∞)) and pν is monotone increasing with pν(s) = 0 for every s ≤ 0. We assume

that |pν(s)| ≤ Cp(1 + |s|q−1) for every s > 0 with a constant Cp ≥ 0.
(H6) The function j : R

d → R is locally Lipschitz. Moreover, maxζ∈∂j(s) |ζ | ≤ Cj for every s ∈ R
d with a

constant Cj > 0 and ζ · s ≥ 0 for every s ∈ R
d and ζ ∈ ∂j(s).

(H7) f 0 ∈ L2(0, T ; Lp1(�)) and f 1 ∈ L2(0, T ; Lp2(ŴN )), where

p1

{

∈ (1, ∞) if d = 2,
= 6

5 if d = 3,
and p2

{

∈ (1, ∞) if d = 2,
= 4

3 if d = 3.

Assumptions (H1) to (H3) on the relation between the elastic stress and displacement gradient are the same
as in Friesecke and Dolzmann’s paper [18]. Assumption (H1) means that the relation between the elastic part
of the stress tensor and the displacement gradient is given through the derivative of the stored energy function
8. This function is not required to be convex, indeed, in such a case G would be monotone, and, clearly, (H3)
is more general. In fact one can easily prove that (H3) is equivalent to the statement that M → G(M) + KM is
monotone, which in turn is equivalent to the fact that the functional M → 8(M) + K

2 |M|2 is convex, that is, 8

is a quadratic perturbation of a convex functional. If 8 ∈ C2(Md×d) the assumption (H3) is more general than
the Andrews–Ball condition [25],

(G(M) − G(M)) : (M − M) ≥ 0 for all |M|, |M | ≥ R and some R > 0;

see [18, Lemma 1.1]. Also note that we do not require a global Lipschitz condition on G, for example, the law
given by 8(M) = |M |p does not lead to globally Lipschitz G, and (H1) to (H3) still hold.
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The coercivity in (H4) can be replaced with the more general assumption

∫

�

A(∇u) : ∇u dx ≥ λ‖∇u‖2
L2(�)d×d − κ‖u‖2

L2(�)d for every u ∈ H1(�)d,

which by the second Korn inequality (see e.g. [26]) would allow us to consider the situation where A is a
function of the symmetric part of ∇u, that is, A(∇u) = A

(
1
2 (∇u + ∇u⊺)

)

. The argument in the proof of
existence in Sections 3 and 4 is already quite technical and involved, so to make the exposition simpler we deal
with A(M) : M ≥ λ|M |2. The interested reader is asked to modify the estimates below to account for this more
general situation.

Note that since the elasticity term G is not assumed to be monotone we need coercivity of A to obtain the
solvability of the discretized problem (see Lemma 3.1), a priori estimates for the solutions of the discretized
problem (see Theorem 3.2), and propagation of the regularity property needed to pass to the limit in the term
with G (see Lemma 4.6). We leave open the question of whether the existence result presented here holds if
A is non-coercive (for example A = 0), but the method presented here does not work if we want to keep
non-monotone G without coercivity of A.

We consider the normal compliance condition (7) which allows for the infinite penetration of the foundation.
We leave open the question of whether the proposed method can be generalized to the case of non-penetration
condition

σν + pν(uν) ≤ 0, uν ≤ g, (σν + pν(uν))(uν − g) = 0 on ŴC × (0, T).

We expect that, using the formulation based on variational inequalities, the presented existence result should
also hold for the non-penetration case, in the framework of the article by Barboteu et al. [1].

Typically, linear growth is needed in the boundary conditions on the contact boundary; see [17]. We make
use of Lemma 2.1, whence due to the Sobolev embedding on the boundary we can consider the growth condition
with power q − 1. The condition ζ · s ≥ 0 in (H6) means that the friction force is directed opposite to velocity,
which is natural. The constant Cj represents the maximum static friction coefficient. The bound by Cj in the
friction term signifies that the kinetic friction cannot exceed the maximum static friction. The multifunction ∂j
can be non-monotone and does not have to satisfy the one-sided Lipschitz relation like in (H3). This lack of
monotonicity signifies that kinetic friction is less than static friction and rapid drops of friction with the increase
of velocity are allowed.

Also note that, in contrast to results such as [27, 28] we make no assumptions on the smallness of the con-
stants present in the model. The reason is that we prove only existence and not uniqueness of the solution.
Arguments based on the Banach fixed point theorem used in [27, 28] typically need the strengthened assump-
tions involving smallness of the constants present in the model, and they give stronger results, namely solution
uniqueness. In the case of our model, due to the type of nonlinearity G we do not expect solution uniqueness
even if we assume smallness of constants present in the boundary terms. Moreover, we have numerical evidence
that the solution is expected to be non-unique; see Section 5.

Weak formulation and the main theorem. Proceeding in a standard way we get the following weak form of
the above problem, where ξ : � → R

d is a test function which satisfies the same Dirichlet boundary conditions
as the sought solution u:

∫

�

ρü · ξ dx +
∫

�

A(∇u̇) : ∇ξ dx +
∫

�

G(∇u) : ∇ξ dx +
∫

ŴC

pν(uν)ξν dS +
∫

ŴC

pν(uν)η · ξ τ dS

=
∫

ŴN

f 1 · ξ dS +
∫

�

f 0 · ξ dx, (9)

with η(x, t) ∈ ∂j(u̇τ (x, t)), and the initial conditions u(0) = u0, u̇(0) = u1. To give more meaning to the
weak form we need several Sobolev-type spaces. We denote H = L2(�)d and define V = {v ∈ W 1,p(�)d :
v = 0 on ŴD}, and we use the standard notation for the Sobolev–Bochner spaces. Duality pairing between V ′

and V is denoted by 〈·, ·〉 and the norm of V is denoted by ‖ · ‖. For spaces other than V the corresponding
norms are denoted by appropriate subscripts. We also define W = {v ∈ H1(�)d : v = 0 on ŴD}. Clearly
V ⊂ W ⊂ H ⊂ W ′ ⊂ V ′ with all embeddings being continuous. We are now in a position to introduce the
definition of the weak solution for the considered problem.
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Definition 2.2. The function u ∈ L∞(0, T ; V ) with u̇ ∈ L∞(0, T ; H)∩L2(0, T ; W ) and ü ∈ L2(0, T ; V ′) is a weak
solution for problem (1)–(8) if there exists η ∈ L∞(0, T ; L∞(�)d) with η(x, t) ∈ ∂j(u̇τ (x, t)) a.e. in ŴC × (0, T)
such that for any ξ ∈ L2(0, T ; V ) it holds that

∫ T

0
〈ρü(t), ξ (t)〉 dt +

∫ T

0

∫

�

A(∇u̇(t)) : ∇ξ (t) dx dt +
∫ T

0

∫

�

G(∇u(t)) : ∇ξ (t) dx dt

+
∫ T

0

∫

ŴC

pν(uν(t))ξν(t) dS dt +
∫ T

0

∫

ŴC

pν(uν(t))η(t) · ξ τ (t) dS dt

=
∫ T

0

∫

ŴN

f 1(t) · ξ (t) dS dt +
∫ T

0

∫

�

f 0(t) · ξ (t) dx dt, (10)

and
u(0) = u0, u̇(0) = u1. (11)

We formulate the main theoretical result of our article.

Theorem 2.3. If assumptions (H1) to (H7) hold and u0 ∈ V, u1 ∈ H then the problem (1)–(8) has a weak
solution.

The proof of the theorem relies on the time approximation method and is given in Sections 3 and 4. Throughout
Sections 3 and 4 we always assume that u0 ∈ V , u1 ∈ H and that the assumptions (H1) to (H7) hold. By C we
will denote a generic positive constant which may change from line to line.

3. Time-discretized problem: Existence and a priori estimates
The regularity of f 0 and f 1 given in (H7) implies that there exists f ∈ L2(0, T ; W ′) such that

∫ T

0
〈f (t), ξ (t)〉W ′×W dt =

∫ T

0

∫

ŴN

f 1(t) · ξ (t) dS dt +
∫ T

0

∫

�

f 0(t) · ξ (t) dx dt

for every ξ ∈ L2(0, T ; W ).
Let us introduce some material below concerning the time discretization. We consider a uniform discretiza-

tion of the time interval of interest (0, T) characterized by the discrete time instants tj = jhN for j ∈ {0, . . . , N}
where hN = T/N is the time step and N the number of time steps. For simplicity we will write h in place of hN

and h → 0 in place of N → ∞. In order to establish the time approximation of the problem governed by the
equation (10) and the initial conditions (11), we consider the discrete displacement u

j

h and the discrete velocity
v

j

h which are the approximations of the displacement u(t) and the velocity u̇(t) respectively at the time t = tj for
j ∈ {0, . . . , N}. Then, the discretizations of the velocity u̇(t) and the acceleration ü(t) are given by an implicit
backward Euler scheme as follows:

u̇(tj) ≈ v
j

h = u
j

h − u
j−1
h

h
and ü(tj) ≈ v

j

h − v
j−1
h

h
= u

j

h − 2u
j−1
h + u

j−2
h

h2
for j ∈ {1, . . . , N}. (12)

Moreover, we approximate u1 ∈ H by a sequence u1h ∈ V such that u1h → u1 strongly in H as h → 0. We
can always choose the sequence u1h such that for a constant C > 0 we have

‖∇u1h‖L2(�)d×d ≤ C√
h

. (13)

Indeed, if ‖∇u1h‖L2(�)d×d does not go to infinity as h → 0, the assertion is clear, and if it goes to infinity, we can
always define a new sequence

û1h = u1ĥ where ĥ = min

{

h̄ : ‖∇u1h̄‖L2(�)d×d ≤ C√
h

}

.
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The bound will be used in Lemma 4.1 to obtain the estimate on the piecewise linear interpolant of the velocity
from the bound on the piecewise constant one. We also define u0

h = u0, v0
h = u1h and u−1

h = u0 −hu1h. Denoting
the interval I

j

h = (tj−1, tj] we can define the zeroth-order quasi-interpolant of f as

f h(t) = f
j

h for t ∈ I
j

h with f
j

h = 1

h

∫

I
j
h

f (t) dt for j ∈ {1, . . . , N}.

Using [29, Lemma 3.3] it follows that

‖f h‖L2(0,T ;W ′) ≤ ‖f ‖L2(0,T ;W ′) and lim
h→0

‖f h − f ‖L2(0,T ;W ′) = 0. (14)

Therefore, we are in position to formulate the time-discretized problem as follows.

Problem (Ph). Find {uj

h}j=1,...,N ⊂ V and {ηj

h}j=1,...,N ⊂ L∞(ŴC)d such that for j ∈ {1, . . . , N} we have

∫

�

ρ
u

j

h − 2u
j−1
h + u

j−2
h

h2
· ξ dx +

∫

�

A

(

∇u
j

h − ∇u
j−1
h

h

)

: ∇ξ dx +
∫

�

G(∇u
j

h) : ∇ξ dx

+
∫

ŴC

pν(uj

hν)ξν dS +
∫

ŴC

pν(uj

hν)ηj

h · ξ τ dS = 〈f j

h, ξ〉W ′×W for every ξ ∈ V , (15)

with

η
j

h ∈ S∞
∂j

(

u
j

hτ − u
j−1
hτ

h

)

, (16)

that is, η
j

h is the L∞ selection of ∂j at (uj

hτ − u
j−1
hτ )/h meaning that η

j

h(x) ∈ ∂j
(

(uj

hτ (x) − u
j−1
hτ (x))/h

)

for a.e.

x ∈ ŴC and η
j

h ∈ L∞(ŴC)d.

Lemma 3.1. Let h0 = 2λ/K. Time-discretized problem (Ph) has a solution for h ∈ (0, h0].

Proof. We proceed by induction. As u−1
h and u0

h are known, it suffices to prove that if u
j−1
h ∈ V and u

j−2
h ∈ V

are given, there exist u
j

h ∈ V and η
j

h ∈ L∞(ŴC)d satisfying (15) and (16). We rewrite (15) as

ρ

h2

∫

�

u
j

h · ξ dx + 1

h

∫

�

A(∇u
j

h) : ∇ξ dx +
∫

�

G(∇u
j

h) : ∇ξ dx

+
∫

ŴC

pν(uj

hν)ξν dS +
∫

ŴC

pν(uj

hν)ηj

h · ξ τ dS

= ρ

h2

∫

�

(2u
j−1
h − u

j−2
h ) · ξ dx + 1

h

∫

�

A(∇u
j−1
h ) : ∇ξ dx + 〈f j

h, ξ 〉W ′×W for every ξ ∈ V . (17)

First, we prove that the right-hand side of the above equation defines a linear and continuous functional of the
variable ξ ∈ V . The assertion follows from the obvious estimate which uses (H4):

∣
∣
∣
∣

ρ

h2

∫

�

(2u
j−1
h − u

j−2
h ) · ξ dx + 1

h

∫

�

A(∇u
j−1
h ) : ∇ξ dx + 〈f j

h, ξ 〉W ′×W

∣
∣
∣
∣

≤ ρ

h2

∫

�

(2|uj−1
h | + |uj−2

h |)|ξ | dx + 1

h

∫

�

|A(∇u
j−1
h )||∇ξ | dx + ‖f

j

h‖W ′‖ξ‖W

≤ C

h2
(‖u

j−1
h ‖H + ‖u

j−2
h ‖H )‖ξ‖H + C

h
‖∇u

j−1
h ‖L2(�)d×d‖∇ξ‖L2(�)d×d + C‖f

j

h‖W ′‖ξ‖ ≤ C‖ξ‖.
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To deal with the left-hand side of (17) we introduce the three operators H1, H2 : V → V ′ and H3 : V → 2V ′
as

follows:

〈H1w, ξ〉 = 1

h

∫

�

A(∇w) : ∇ξ dx +
∫

�

G(∇w) : ∇ξ dx,

〈H2w, ξ〉 = ρ

h2

∫

�

w · ξ dx,

ζ ∈ H3(w) ⇔ 〈ζ , ξ〉 =
∫

ŴC

pν(wν)ξν dS +
∫

ŴC

pν(wν)η · ξ τ dS with η ∈ S∞
∂j

(

wτ − u
j−1
hτ

h

)

.

We will prove that the multi-valued operator H1 + H2 + H3 : V → 2V ′
is surjective. To this end we will use

Theorem A.6 in Appendix 1. We will first show that H1, H2, and H3 are well-defined, pseudomonotone and
bounded.

H1 is well defined and bounded. By (H2) and (H4) for any w, ξ ∈ V

|〈H1w, ξ 〉| ≤ 1

h

∫

�

|A(∇w)||∇ξ | dx +
∫

�

|G(∇w)||∇ξ | dx

≤ C

h

∫

�

|∇w||∇ξ | dx + C

∫

�

(1 + |∇w|p−1)|∇ξ | dx ≤ C

h
‖w‖‖ξ‖ + C‖ξ‖ + C‖w‖p−1‖ξ‖.

H1 is monotone. Taking w1, w2 ∈ V and using (H3) and (H4), we obtain

〈H1w1 − H1w2, w1 − w2〉

=
∫

�

(G(∇w1) − G(∇w2)) : (∇w1 − ∇w2) dx + 1

h

∫

�

A(∇w1 − ∇w2) : (∇w1 − ∇w2) dx

≥ −K‖∇w1 − ∇w2‖2
L2(�)d×d + λ

h
‖∇w1 − ∇w2‖2

L2(�)d×d ≥ 0,

provided h ≤ λ
K

.

H1 is continuous. Assume that un → u in V . We must prove that

sup
‖ξ‖=1

|〈H1un − H1u, ξ 〉| → 0 as n → ∞.

Take ξ ∈ V with ‖ξ‖ = 1 and estimate

|〈H1un − H1u, ξ 〉| ≤ ‖G(∇un) − G(∇u)‖Lp′ (�)d×d + C

h
‖∇un − ∇u‖L2(�)d×d .

Clearly the second term converges to zero. To see that the first term also converges to zero it is sufficient to use
the fact that, for a subsequence, ∇un(x) → ∇u(x) a.e. in � and |∇un(x)| ≤ h(x) with h ∈ Lp(�), the continuity
of G (see (H1)), the growth condition on G (see (H2)), and the Lebesgue dominated convergence theorem.

We can immediately see that H2 is monotone, linear, and bounded. Hence, pseudomonotonicity of H1 and H2
follows from Lemma A.5.

H3 is pseudomonotone. The proof is similar to the one in [30]. We will use Lemma A.3. We first obtain the
boundedness of H3. For w, ξ ∈ V and ζ ∈ H3(w) we get, using (H5) and (H6),

|〈ζ , ξ 〉| ≤
∫

ŴC

|pν(wν)||ξν | dS + Cj

∫

ŴC

|pν(wν)| |ξ τ | dS ≤ C

∫

ŴC

(1 + |wν |q−1)|ξ | dS

≤ C
(

‖ξ‖L1(ŴC)d + ‖ξ‖Lq(ŴC)d‖w‖q−1
Lq(ŴC)d

)

≤ C(1 + ‖w‖q−1)‖ξ‖.
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Hence ‖ζ‖V ′ ≤ C(1 + ‖w‖q−1) and the boundedness is proved. We show that H3 has non-empty and convex
values. For w ∈ V denote v = (wτ − u

j−1
hτ )/h. We have vτ ∈ Lq(ŴC)d and vν ∈ Lq(ŴC). Let {vn}∞n=1 be a

sequence of simple (i.e. piecewise constant and measurable) functions such that vn(x) → vτ (x) for a.e. x ∈ ŴC.
Let ηn : ŴC → R

d be such that ηn(x) ∈ ∂j(vn(x)) for a.e. x ∈ ŴC. As |ηn(x)| ≤ Cj almost everywhere, for a
subsequence still denoted by the same index we have

ηn → η weakly − ∗ in L∞(ŴC)d.

Since ∂j is known to be an upper-semicontinuous multifunction (see [23, Proposition 5.6.10]) by the conver-
gence theorem of Aubin and Cellina (see [31, Theorem 7.2.2]) it follows that η(x) ∈ ∂j(v(x)) for a.e. x ∈ ŴC.
Hence η ∈ S∞

∂j (v). Consider the mapping

V ∋ ξ →
(∫

ŴC

pν(wν)ξν dS +
∫

ŴC

pν(wν)η · ξ τ dS

)

∈ R.

It is straightforward to check that it is linear and continuous and hence H3(w) is non-empty. The fact that H3(w) is
convex follows immediately from the fact that ∂j(s) is always a convex set. We will show that if wn → w weakly
in V and ζ n → ζ weakly in V ′ are the sequences such that ζ n ∈ H3(wn) then ζ ∈ H3(w) and 〈ζ n, wn〉 → 〈ζ , w〉.
It will follow that H3 is generalized pseudomonotone and that H3(w) is a closed set (since, in particular, we can
take wn := w and ζ n → ζ strongly in V ′). For any ξ ∈ V

〈ζ n, ξ 〉 =
∫

ŴC

pν(wnν)ξν dS +
∫

ŴC

pν(wnν)ηn · ξ τ dS with ηn ∈ S∞
∂j

(

wnτ − u
j−1
hτ

h

)

.

Compactness of the trace γ : V → Lq(ŴC)d implies that

wnν → wν strongly in Lq(ŴC),

wnτ → wτ strongly in Lq(ŴC)d.

Hence, for a subsequence, wnν(x) → wν(x) and wnτ (x) → wτ (x) for a.e. x ∈ ŴC with |wnν(x)| ≤ h(x) and
|wnτ (x)| ≤ h(x) with h(x) ∈ Lq(ŴC). We can estimate

|pν(wnν(x))ξν(x)| ≤ C(1 + |wnν(x)|q−1)|ξν(x)| ≤ C(|ξν(x)| + |ξν(x)|q + |h(x)|q),

|pν(wnν(x))wnν(x)| ≤ C(1 + |wnν(x)|q−1)|wnν(x)| ≤ C(|h(x)| + |h(x)|q).

By the Lebesgue dominated convergence theorem,

lim
n→∞

∫

ŴC

pν(wnν)ξν dS =
∫

ŴC

pν(wν)ξν dS,

lim
n→∞

∫

ŴC

pν(wnν)wnν dS =
∫

ŴC

pν(wν)wν dS.

Now, ∫

ŴC

pν(wnν)ηn · ξ τ dS =
∫

ŴC

(pν(wnν) − pν(wν))ηn · ξ τ dS +
∫

ŴC

pν(wν)ηn · ξ τ dS.

We use the Lebesgue dominated convergence theorem to deduce that

lim
n→∞

∫

ŴC

(pν(wnν) − pν(wν))ηn · ξ τ dS = 0 and lim
n→∞

∫

ŴC

(pν(wnν) − pν(wν))ηn · wnτ dS = 0.

In a manner similar to the proof that H3(w) is non-empty, we have, for a subsequence,

ηn → η weakly − ∗ in L∞(ŴC)d,
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with η ∈ S∞
∂j ((wτ − u

j−1
hτ )/h). Since pν(wν)ξ τ ∈ L1(ŴC)d and pν(wν)wnτ → pν(wν)wτ strongly in L1(ŴC)d, it

follows that, for a subsequence,

∫

ŴC

pν(wν)ηn · ξ τ dS →
∫

ŴC

pν(wν)η · ξ τ dS,

∫

ŴC

pν(wν)ηn · wnτ dS →
∫

ŴC

pν(wν)η · wτ dS.

Hence

〈ζ , ξ 〉 = lim
n→∞

〈ζ n, ξ 〉 = lim
n→∞

(∫

ŴC

pν(wnν)ξν dS +
∫

ŴC

pν(wnν)ηn · ξ τ dS

)

=
∫

ŴC

pν(wν)ξν dS +
∫

ŴC

pν(wν)η · ξ τ dS,

where the convergence must hold for the whole sequence. It follows that ζ ∈ H3(w). Moreover,

lim
n→∞

〈ζ n, wn〉 = lim
n→∞

(∫

ŴC

pν(wnν)wnν dS +
∫

ŴC

pν(wnν)ηn · wnτ dS

)

=
∫

ŴC

pν(wν)wν dS +
∫

ŴC

pν(wν)η · wτ dS = 〈ζ , w〉,

and, again, the convergence holds for the whole sequence. The proof of generalized pseudomonotonicity and of
pseudomonotonicity of H3 is complete.

To use Theorem A.6 we must estimate from below the quantity 〈ζ − L, w − u
j−1
h 〉 for ζ ∈ (H1 + H2 + H3)(w)

and L ∈ V ′. We have

〈ζ − L, w − u
j−1
h 〉 = ρ

h2

∫

�

w · (w − u
j−1
h ) dx + 1

h

∫

�

A(∇w) : (∇w − ∇u
j−1
h ) dx

+
∫

�

G(∇w) : (∇w − ∇u
j−1
h ) dx +

∫

ŴC

pν(wν)(wν − u
j−1
hν ) dS

+
∫

ŴC

pν(wν)η · (wτ − u
j−1
hτ ) dS − 〈L, w − u

j−1
h 〉,

with η ∈ S∞
∂j ((wτ − u

j−1
hτ )/h). We estimate from below five integrals in the above formula. We have

ρ

h2

∫

�

w · (w − u
j−1
h ) dx ≥ ρ

h2

(

‖w‖2
H − ‖w‖H‖u

j−1
h ‖H

)

≥ ρ

2h2

(

‖w‖2
H − ‖u

j−1
h ‖2

H

)

.

Moreover, by the coercivity and boundedness of A (see (H4)),

1

h

∫

�

A(∇w) : (∇w − ∇u
j−1
h ) dx = 1

h

∫

�

(

A(∇w) − A(∇u
j−1
h ) + A(∇u

j−1
h )

)

: (∇w − ∇u
j−1
h ) dx

≥ λ

h
‖∇w − ∇u

j−1
h ‖2

L2(�)d×d + 1

h

∫

�

A(∇u
j−1
h ) : (∇w − ∇u

j−1
h ) dx

≥ λ

h
‖∇w − ∇u

j−1
h ‖2

L2(�)d×d − ǫ

h
‖∇w‖2

L2(�)d×d − C(ǫ)

h
‖∇u

j−1
h ‖2

L2(�)d×d ,
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where ǫ > 0 is arbitrary and C(ǫ) depends on ǫ and ‖A‖L(Md×d ;Md×d). Now note that by (H3)

(G(M1) + KM1 − G(M2) − KM2) : (M1 − M2) ≥ 0 for M1, M2 ∈ M
d×d.

Since

G(M) + KM = ∂

∂M

(

8(M) + K

2
|M |2

)

,

it follows that the function

M → 8(M) + K

2
|M|2

is convex, and

8(M1) + K

2
|M1|2 − 8(M2) − K

2
|M2|2 ≤ (G(M1) + KM1) : (M1 − M2),

and we deduce that

8(M1) − 8(M2) − K

2
|M1 − M2|2 ≤ G(M1) : (M1 − M2) for M1, M2 ∈ M

d×d. (18)

It follows that
∫

�

G(∇w) : (∇w − ∇u
j−1
h ) dx ≥

∫

�

8(∇w) dx −
∫

�

8(∇u
j−1
h ) dx − K

2
‖∇w − ∇u

j−1
h ‖2

L2(�)d×d .

We can use (H2) to note that
∫

�

8(∇w) dx −
∫

�

8(∇u
j−1
h ) dx ≥ α‖∇w‖p

Lp(�)d×d − C8‖∇u
j−1
h ‖p

Lp(�)d×d − (β + C8)|�|.

By (H5) and (H6) we have
∫

ŴC

pν(wν)η · (wτ − u
j−1
hτ ) dS ≥ 0.

Assumption (H5) implies that, defining P(s) =
∫ s

0 pν(r) dr, it holds that

pν(s)(s − t) ≥ P(s) − P(t) ≥ −P(t) = −
∫ t

0
p(r) dr ≥ −

∣
∣
∣
∣

∫ t

0
Cp(1 + |r|q−1) dr

∣
∣
∣
∣
= −Cp|t| − Cp

|t|q
q

,

for s, t ∈ R, and hence
∫

ŴC

pν(wν)(wν − u
j−1
hν ) dS ≥ −C

(

1 + ‖u
j−1
hν ‖q

Lq(ŴC)

)

≥ −C
(

1 + ‖u
j−1
h ‖q

)

.

We summarize all estimates

〈ζ − L, w − u
j−1
h 〉 ≥ ρ

2h2

(

‖w‖2
H − ‖u

j−1
h ‖2

H

)

− ǫ

h
‖∇w‖2

L2(�)d×d − C(ǫ)

h
‖∇u

j−1
h ‖2

L2(�)d×d

+ α‖∇w‖p

Lp(�)d×d − C8‖∇u
j−1
h ‖p

Lp(�)d×d − (β + C8)|�| +
(

λ

h
− K

2

)

‖∇w − ∇u
j−1
h ‖2

L2(�)d×d

− C
(

1 + ‖u
j−1
h ‖q

)

− ‖L‖V ′‖w‖ + 〈L, u
j−1
h 〉.

As h0 = 2λ/K, treating all terms dependent on u
j−1
h as constants, which may depend on h, we obtain

〈ζ − L, w − u
j−1
h 〉

≥ α‖∇w‖p

Lp(�)d×d + ρ

2h2
‖w‖2

H − ǫ

h
‖∇w‖2

L2(�)d×d − C(ǫ)

h
‖∇u

j−1
h ‖2

L2(�)d×d − C‖w‖ − C.
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Since

‖∇w‖2
L2(�)d×d ≤ 1 + ‖∇w‖p

L2(�)d×d ≤ 1 + C‖∇w‖p

Lp(�)d×d ,

we can choose ǫ small enough that the term ǫ/h‖∇w‖2
L2(�)d×d is absorbed in α‖∇w‖p

Lp(�)d×d , whence

〈ζ − L, w − u
j−1
h 〉 ≥ α

2
‖∇w‖p

Lp(�)d×d + ρ

2h2
‖w‖2

H − C‖w‖ − C. (19)

We will use the following Gagliardo–Nirenberg interpolation inequality valid for w ∈ V :

‖w‖Lp(�)d ≤ C1‖∇w‖α
Lp(�)d×d‖w‖1−α

H + C2‖w‖H with α = d(p − 2)

d(p − 2) + 2p
.

Observe that the quantity |||w||| = ‖w‖H + ‖∇w‖Lp(�)d×d is the norm on V equivalent to ‖w‖. Indeed,

|||w||| = ‖w‖H + ‖∇w‖Lp(�)d×d ≤ C‖w‖Lp(�)d + ‖∇w‖Lp(�)d×d ≤ C‖w‖,

and

‖w‖ = ‖w‖Lp(�)d + ‖∇w‖Lp(�)d×d

≤ C1‖∇w‖α
Lp(�)d×d‖w‖1−α

H + C2‖w‖H + ‖∇w‖Lp(�)d×d

≤ C1|||w|||α|||w|||1−α + C2|||w||| + |||w||| ≤ C|||w|||.

Using the estimates ‖w‖H ≤ ρ/(4h2)‖w‖2
H + C and ‖∇w‖Lp(�)d×d ≤ α/4‖∇w‖p

Lp(�)d×d + C, the bound (19)
yields

〈ζ − L, w − u
j−1
h 〉 ≥ α

2
‖∇w‖p

Lp(�)d×d + ρ

2h2
‖w‖2

H − C(‖∇w‖Lp(�)d×d + ‖w‖H ) − C

≥ α

4
‖∇w‖p

Lp(�)d×d + ρ

4h2
‖w‖2

H − C.

If we choose R0 large enough that

ρ

4h2

(
R0

2

)2

> C and
α

4

(
R0

2

)p

> C,

then
|||w||| ≥ R0 ⇒ 〈ζ − L, w − u

j−1
h 〉 > 0.

If necessary, we increase R0 such that R0 ≥
∣
∣
∣

∣
∣
∣

∣
∣
∣u

j−1
h

∣
∣
∣

∣
∣
∣

∣
∣
∣, and the surjectivity holds by Theorem A.6.

We pass to the a priori estimates which hold for the solutions of the time-discretized problems.

Theorem 3.2. Let 0 < h0 < λ/(2K). For all h ∈ (0, h0] and for all j ∈ {1, . . . , N} the following estimates hold:

‖v
j

h‖H ≤ C, ‖∇u
j

h‖Lp(�)d×d ≤ C,
N
∑

j=1

‖v
j

h − v
j−1
h ‖2

H ≤ C, h

N
∑

j=1

‖∇v
j

h‖2
L2(�)d×d ≤ C,

‖u
j

h‖H ≤ C.

11



Proof. For simplicity we will drop the index h in the estimates. Taking the test function ξ = uj − uj−1 in (15),
we obtain, for j ∈ {1, . . . , N},

0 =
∫

�

ρ
uj − 2uj−1 + uj−2

h2
· (uj − uj−1) dx

︸ ︷︷ ︸

I1

+
∫

�

A

(∇uj − ∇uj−1

h

)

: (∇uj − ∇uj−1) dx

︸ ︷︷ ︸

I2

+
∫

�

G(∇uj) : (∇uj − ∇uj−1) dx

︸ ︷︷ ︸

I3

+
∫

ŴC

pν(uj
ν)(uj

ν − uj−1
ν ) dS

︸ ︷︷ ︸

I4

+
∫

ŴC

pν(uj
ν)ηj · (uj

τ − uj−1
τ ) dS

︸ ︷︷ ︸

I5

−〈f j, uj − uj−1〉W ′×W
︸ ︷︷ ︸

I6

.

We deal with all terms separately.

I1 =
∫

�

ρ(vj − vj−1) · vj dx = ρ

2
‖vj‖2

H − ρ

2
‖vj−1‖2

H + ρ

2
‖vj − vj−1‖2

H .

The term I2 is estimated straightforwardly from (H4):

I2 ≥ λ

h
‖∇uj − ∇uj−1‖2

L2(�)d×d .

We estimate I3 using (18)

I3 ≥
∫

�

8(∇uj) dx −
∫

�

8(∇u
j−1
h ) dx − K

2
‖∇uj − ∇u

j−1
h ‖2

L2(�)d×d .

To estimate I5 observe that P(s) =
∫ s

0 pν(r) dr is a convex function with P′(s) = pν(s) and it holds that

pν(s)(s − t) ≥ P(s) − P(t) for s, t ∈ R,

and hence

I4 ≥
∫

ŴC

P(uj
ν) dS −

∫

ŴC

P(uj−1
ν ) dS.

From (H5) and (H6) it follows that
I5 ≥ 0.

We estimate I6:

I6 ≤ ‖f j‖W ′‖uj − uj−1‖W ≤ ǫ

h

(

‖uj − uj−1‖2
H + ‖∇uj − ∇uj−1‖2

L2(�)d×d

)

+ C(ǫ)h‖f j‖2
W ′ .

Combining all the above estimates we obtain

ρ

2
‖vj‖2

L2(�)d − ρ

2
‖vj−1‖2

L2(�)d + ρ

2
‖vj − vj−1‖2

L2(�)d

+
∫

�

8(∇uj) dx −
∫

�

8(∇u
j−1
h ) dx +

(
λ

h
− K

2
− ǫ

h

)

‖∇uj − ∇u
j−1
h ‖2

L2(�)d×d

+
∫

ŴC

P(uj
ν) dS −

∫

ŴC

P(uj−1
ν ) dS ≤ ǫ

h
‖uj − uj−1‖2

L2(�)d + C(ǫ)h‖f j‖2
W ′ .
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We choose ǫ = λ/2. Using the fact that h0 < λ/(2K) it follows that

ρ

2
‖vj‖2

H − ρ

2
‖vj−1‖2

H + ρ

2
‖vj − vj−1‖2

H +
∫

�

8(∇uj) dx −
∫

�

8(∇u
j−1
h ) dx

+ λ

4
h‖∇vj‖2

L2(�)d×d +
∫

ŴC

P(uj
ν) dS −

∫

ŴC

P(uj−1
ν ) dS ≤ λ

2
h‖vj‖2

H + Ch‖f j‖2
W ′ .

Adding the above inequalities for j = 1 to l, where l ∈ {1, . . . , N}, yields

ρ

2
‖vl‖2

H + ρ

2

l
∑

j=1

‖vj − vj−1‖2
H +

∫

�

8(∇ul) dx + λ

4
h

l
∑

j=1

‖∇vj‖2
L2(�)d×d +

∫

ŴC

P(ul
ν) dS

≤ ρ

2
‖u1h‖2

H +
∫

�

8(∇u0) dx +
∫

ŴC

P(u0ν) dS + λ

2
h

l
∑

j=1

‖vj‖2
H + Ch

l
∑

j=1

‖f j‖2
W ′ .

Noting that by (H5) values of P are non-negative, that the norm ‖u1h‖H is bounded due to the strong convergence
u1h → u1 in H , and that, by (14),

h

l
∑

j=1

‖f j‖2
W ′ ≤ h

N
∑

j=1

‖f j‖2
W ′ = ‖f h‖2

L2(0,T ;W ′) ≤ ‖f ‖2
L2(0,T ;W ′),

using (H2), we get the estimate

ρ‖vl‖2
H + ρ

l
∑

j=1

‖vj − vj−1‖2
H + 2α‖∇ul‖p

Lp(�)d×d + λ

2
h

l
∑

j=1

‖∇vj‖2
L2(�)d×d ≤ C + λh

l
∑

j=1

‖vj‖2
H .

We are in a position to use the discrete Gronwall lemma (see [32, Theorem 1.46, p. 26] or [33, Theorem 6.1, p.
339]), which immediately yields the first four estimates of the theorem. To obtain the estimate for ‖uj‖H note
that

l
∑

j=1

vj = ul − u0

h
.

Hence ‖ul‖H ≤ h
∑l

j=1 ‖vj‖H + ‖u0‖H ≤ hlC + ‖u0‖H ≤ CT + ‖u0‖H , and the proof is complete.

Remark 3.3. The constant h0 in Lemma 3.1 is equal to 2λ/K while in Theorem 3.2 it is less than λ/(2K). It
follows that we can take h0 from Theorem 3.2 and Lemma 3.1 still holds.

4. Convergence of the discretization scheme
We define the piecewise constant and piecewise linear interpolants built on the solutions of the time-discrete
problem both for the displacement u, the velocity v, and for the selection of the multi-valued term η:

uh(t) = uj + (uj − uj−1)
t − tj

h
for t ∈ [tj−1, tj], uh(t) =

{

uj for t ∈ (tj−1, tj],
u0 for t = 0,

vh(t) = vj + (vj − vj−1)
t − tj

h
for t ∈ [tj−1, tj], vh(t) =

{

vj for t ∈ (tj−1, tj],
v0 for t = 0,

ηh(t) = ηj for t ∈ (tj−1, tj].

Clearly u̇h(t) = vh(t) for a.e. t ∈ (0, T). From Theorem 3.2 we immediately obtain the following estimates.
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Lemma 4.1. There exist h0 > 0 and C > 0 such that for all h ∈ (0, h0] we have the bounds

‖uh‖L∞(0,T ;V ) ≤ C, ‖uh‖L∞(0,T ;V ) ≤ C, (20)

‖vh‖L∞(0,T ;H) ≤ C, ‖vh‖L∞(0,T ;H) ≤ C, (21)

‖∇vh‖L2(0,T ;L2(�)d×d) ≤ C, ‖∇vh‖L2(0,T ;L2(�)d×d) ≤ C. (22)

Proof. In Theorem 3.2 we have obtained the bound

‖u
j

h‖H + ‖∇u
j

h‖Lp(�)d×d ≤ C for j ∈ {1, . . . , N}.

As u0
h = u0 ∈ V the bounds (20) follow from the equivalence of norms |||·||| and ‖ · ‖ on V obtained in the

proof of Lemma 3.1. Bounds (21) are immediate noting that ‖v0
h‖H is bounded as v0

h = u1h converges strongly
in H to u1. The bound on ‖∇vh‖L2(0,T ;L2(�)d×d) is immediate. To get the bound of ‖∇vh‖L2(0,T ;L2(�)d×d) note that
for t ∈ (tj−1, tj) we have

‖∇vh(t)‖L2(�)d×d ≤ ‖∇v
j

h‖L2(�)d×d

t − tj−1

h
+ ‖∇v

j−1
h ‖L2(�)d×d

tj − t

h

≤ ‖∇v
j

h‖L2(�)d×d + ‖∇v
j−1
h ‖L2(�)d×d ,

and hence

‖∇vh‖2
L2(0,T ;L2(�)d×d) ≤

N
∑

j=1

∫

I
j
h

2‖∇v
j

h‖2
L2(�)d×d + 2‖∇v

j−1
h ‖2

L2(�)d×d dt

≤ 4h

N
∑

j=1

‖∇v
j

h‖2
L2(�)d×d + 2h‖∇v0

h‖2
L2(�)d×d .

The assertion follows from Theorem 3.2 and (13) as v0
h = u1h.

Directly from the estimates in Lemma 4.1 we get the following result.

Lemma 4.2. For a subsequence of h → 0 we have

uh → u weakly-* in L∞(0, T ; V ), (23)

uh → u weakly-* in L∞(0, T ; V ), weakly-* in W 1,∞(0, T ; H), weakly in H1(0, T ; W ), (24)

vh → v weakly-* in L∞(0, T ; H), weakly in L2(0, T ; W ), (25)

vh → v weakly-* in L∞(0, T ; H), weakly in L2(0, T ; W ). (26)

Define the piecewise constant interpolant for the acceleration by

wh(t) = w
j

h for t ∈ (tj−1, tj] and j ∈ {1, . . . , N} where w
j

h = v
j

h − v
j−1
h

h
.

Clearly

w
j

h = u
j

h − 2u
j−1
h + u

j−2
h

h2
for j ∈ {1, . . . , N},

and
v̇h(t) = wh(t) for a.e. t ∈ (0, T). (27)

In the following lemma we derive some further estimates.
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Lemma 4.3. There exist h0 > 0 and C > 0 such that for all h ∈ (0, h0] we have the bounds

‖G(∇uh)‖L∞(0,T ;Lp′ (�)d×d) ≤ C, (28)

‖wh‖L2(0,T ;V ′) ≤ C. (29)

Moreover, for a subsequence of h → 0 we have the convergences

G(∇uh) → G weakly-∗ in L∞(0, T ; Lp′
(�)d×d), (30)

wh → w weakly in L2(0, T ; V ′), (31)

vh → v weakly in H1(0, T ; V ′). (32)

Proof. Assumption (H2) implies that

|G(∇u
j

h(x))|p′ ≤ C(1 + |∇u
j

h(x)|p),

and hence
‖G(∇u

j

h)‖p′

Lp′ (�)d×d
≤ C

(

1 + ‖∇u
j

h‖
p

Lp(�)d×d

)

,

which immediately gives (28) and (30) by Theorem 3.2. We derive the estimate for wh. Let ξ ∈ V . By (15)

ρ〈wj

h, ξ 〉 = ρ(wj

h, ξ ) = −
∫

�

A(∇v
j

h) : ∇ξ dx

︸ ︷︷ ︸

I1

−
∫

�

G(∇u
j

h) : ∇ξ dx

︸ ︷︷ ︸

I2

−
∫

ŴC

pν(uj

hν)ξν dS

︸ ︷︷ ︸

I3

−
∫

ŴC

pν(uj

hν)ηj

h · ξ τ dS

︸ ︷︷ ︸

I4

+〈f j

h, ξ 〉W ′×W
︸ ︷︷ ︸

I5

.

Using the bounds of Theorem 3.2 and estimates (H2), (H4), (H5), and (H6), we estimate all terms:

|I1| ≤ C

∫

�

|∇v
j

h||∇ξ | dx ≤ C‖∇v
j

h‖L2(�)d×d‖∇ξ‖L2(�)d×d ≤ C‖∇v
j

h‖L2(�)d×d‖ξ‖,

|I2| ≤ C

∫

�

(1 + |∇u
j

h|p−1)|∇ξ | dx ≤ C‖∇ξ‖Lp(�)d×d (1 + ‖∇u
j

h‖
p−1
Lp(�)d×d ) ≤ C‖ξ‖.

To estimate |I3| we will need the equivalence between norms |||·||| and ‖ · ‖ on V :

|I3| ≤
∫

ŴC

|pν(uj

hν)||ξν | dS ≤ Cp

∫

ŴC

(1 + |uj

hν |q−1)|ξν | dS ≤ C‖ξν‖Lq(ŴC)(1 + ‖u
j

hν‖
q−1
Lq(ŴC))

≤ C‖ξ‖Lq(ŴC)d (1 + ‖u
j

h‖
q−1
Lq(ŴC)d ) ≤ C‖ξ‖(1 + ‖u

j

h‖q−1) ≤ C‖ξ‖.

The estimate of |I4| is similar to that of |I3|:

|I3| ≤
∫

ŴC

|pν(uj

hν)||ηj

h||ξ τ | dS ≤ C

∫

ŴC

(1 + |uj

hν |q−1)|ξ τ | dS ≤ C‖ξ τ‖Lq(ŴC)d (1 + ‖u
j

hν‖
q−1
Lq(ŴC))

≤ C‖ξ‖Lq(ŴC)d (1 + ‖u
j

h‖
q−1
Lq(ŴC)d ) ≤ C‖ξ‖(1 + ‖u

j

h‖q−1) ≤ C‖ξ‖.

Finally,
|I5| ≤ ‖f

j

h‖W ′‖ξ‖W ≤ C‖f
j

h‖W ′‖ξ‖.

It follows that
‖w

j

h‖V ′ ≤ C(1 + ‖∇v
j

h‖L2(�)d×d + ‖f
j

h‖W ′) for t ∈ (tj−1, tj),

15



and

‖wh‖2
L2(0,T ;V ′) = h

N
∑

j=1

‖w
j

h‖2
V ′ ≤ C



1 + h

N
∑

j=1

‖∇v
j

h‖2
L2(�)d×d + h

n
∑

j=1

‖f
j

h‖2
W ′



 .

Using (14) and Theorem 3.2 we obtain the assertions (29) and (31). The convergence (32) follows from (31) as
well as (26) and (27).

We get the following result.

Lemma 4.4. It holds that

u = u, v = v, v = u̇, w = v̇ = ü,

and we have the regularity

u ∈ L∞(0, T ; V ), u̇ ∈ L∞(0, T ; H) ∩ L2(0, T ; W ), ü ∈ L2(0, T ; V ′).

Proof. We need to demonstrate that u = u and that v = v. To this end we calculate

‖uh(t) − uh(t)‖H = t − tj

h
‖u

j

h − u
j−1
h ‖H for t ∈ (tj−1, tj).

Hence

‖uh − uh‖2
L2(0,T ;H) = h

3

N
∑

j=1

‖u
j

h − u
j−1
h ‖2

H = h3

3

N
∑

j=1

‖v
j

h‖2
H ≤ Ch2,

where we used the estimate of Theorem 3.2. So

uh − uh → 0 strongly in L2(0, T ; H),

but (23) and (24) imply that
uh − uh → u − u weakly in L2(0, T ; H),

whence u = u. Similarly, by the estimate of Theorem 3.2,

‖vh − vh‖2
L2(0,T ;H) = h

3

N
∑

j=1

‖v
j

h − v
j−1
h ‖2

H ≤ Ch,

whence
vh − vh → 0 strongly in L2(0, T ; H),

and by (25) and (26)
vh − vh → v − v weakly in L2(0, T ; H),

whence the assertion that v = v follows easily.

We can pass to the limit with h → 0 in (15) which gives us the following result.

Theorem 4.5. We have u(0) = u0 and u̇(0) = u1. Moreover, for any ξ ∈ L2(0, T ; V ),

∫ T

0
〈ρü(t), ξ (t)〉 dt +

∫ T

0

∫

�

A(∇u̇(t)) : ∇ξ (t) dx dt +
∫ T

0

∫

�

G(t) : ∇ξ (t) dx dt (33)

+
∫ T

0

∫

ŴC

pν(uν(t))ξν(t) dS dt +
∫ T

0

∫

ŴC

pν(uν(t))η(t) · ξ τ (t) dS dt =
∫ T

0
〈f(t), ξ (t)〉W ′×W dt,

where η ∈ L∞(0, T ; L∞(�)d) is such that η(x, t) ∈ ∂j(u̇τ (x, t)) a.e. in ŴC × (0, T).
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Proof. Note that for t ∈ (0, T) and ζ ∈ V

〈ζ , u̇(t) − vh(t)〉 = 〈ζ , u̇(0) − vh(0)〉 +
∫ t

0
〈ζ , ü(s) − wh(s)〉 ds.

Integrating the last inequality with respect to t we get

∫ T

0
〈ζ , u̇(t) − vh(t)〉 dt = T〈ζ , u̇(0) − vh(0)〉 +

∫ T

0
〈ζ , ü(t) − wh(t)(T − t)〉 dt,

whence, from Lemma 4.4,

T〈ζ , u̇(0) − u1h〉 =
∫ T

0
〈ζ , v(t) − vh(t)〉 dt −

∫ T

0
〈ζ (T − t), w(t) − wh(t)〉 dt.

Passing with h to zero it follows that u1h → u̇(0) weakly in V ′, but since we know that u1h → u1 strongly in H
it follows that u̇(0) = u1. Moreover from (24) it follows that uh(0) → u(0) and, as uh(0) = u0, it follows that
u(0) = u0. Taking ξ ∈ L2(0, T ; V ) we rewrite (15) as the following equation valid for a.e. t ∈ (0, T):

∫

�

ρwh(t) · ξ (t) dx +
∫

�

A(∇vh(t)) : ∇ξ (t) dx +
∫

�

G(∇uh(t)) : ∇ξ (t) dx

+
∫

ŴC

pν(uhν(t))ξν(t) dS +
∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS = 〈f h(t), ξ (t)〉W ′×W , (34)

with
ηh(t) = η

j

h ∈ S∞
∂j (vj

hτ ) for t ∈ (tj−1, tj].

After integration from 0 to T in time we get

∫ T

0

∫

�

ρwh(t) · ξ (t) dx dt +
∫ T

0

∫

�

A(∇vh(t)) : ∇ξ (t) dx dt +
∫ T

0

∫

�

G(∇uh(t)) : ∇ξ (t) dx dt

+
∫ T

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt +
∫ T

0

∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS dt =
∫ T

0
〈f h(t), ξ (t)〉W ′×W dt. (35)

We must pass to the limit with h to zero in the six terms in the above equation. First of all (31) together with
Lemma 4.4 implies that

∫ T

0

∫

�

ρwh(t) · ξ (t) dx dt →
∫ T

0
〈ρü(t), ξ (t)〉 dt.

Next, as the Nemytskii mapping A : L2(0, T : L2(�)d×d) → L2(0, T : L2(�)d×d) is linear and continuous, and
hence also weakly sequentially continuous, the convergence (26) implies that

∫ T

0

∫

�

A(∇vh(t)) : ∇ξ (t) dx dt →
∫ T

0

∫

�

A(∇u̇(t)) : ∇ξ (t) dx dt.

Next, the convergence (30) implies that

∫ T

0

∫

�

G(∇uh(t)) : ∇ξ (t) dx dt →
∫ T

0

∫

�

G(t) : ∇ξ (t) dx dt.

Furthermore (14) implies that

∫ T

0
〈f h(t), ξ (t)〉W ′×W dt →

∫ T

0
〈f (t), ξ (t)〉W ′×W dt.
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To complete the proof of the theorem we must pass to the limit in the two boundary integrals. To this end we
first derive the bound on uh in BV 2(0, T ; H), and on vh in BV 2(0, T ; V ′); see Definition A.7.

There exist the natural numbers 0 = m0 < m1 < . . . < mM = N such that

‖uh‖2
BV2(0,T ;H) =

M
∑

k=1

‖u
mk

h − u
mk−1
h ‖2

H .

Next,

‖u
mk

h − u
mk−1
h ‖2

H =

∥
∥
∥
∥
∥
∥

mk∑

j=mk−1+1

(uj

h − u
j−1
h )

∥
∥
∥
∥
∥
∥

2

H

≤





mk∑

j=mk−1+1

∥
∥
∥u

j

h − u
j−1
h

∥
∥
∥

H





2

,

≤ (mk − mk−1)
mk∑

j=mk−1+1

∥
∥
∥u

j

h − u
j−1
h

∥
∥
∥

2

H
≤ (mk − mk−1)

N
∑

j=1

∥
∥
∥u

j

h − u
j−1
h

∥
∥
∥

2

H
.

Hence, using Theorem 3.2,

‖uh‖2
BV2(0,T ;H) ≤ N

N
∑

j=1

∥
∥
∥u

j

h − u
j−1
h

∥
∥
∥

2

H
= Th

N
∑

j=1

∥
∥
∥v

j

h

∥
∥
∥

2

H
≤ CT2. (36)

In a similar way we obtain, using (29),

‖vh‖2
BV2(0,T ;V ′) ≤ N

N
∑

j=1

∥
∥
∥v

j

h − v
j−1
h

∥
∥
∥

2

V ′
= Th

N
∑

j=1

∥
∥
∥w

j

h

∥
∥
∥

2

V ′
≤ CT . (37)

Lemma 4.1 implies that uh is bounded in Lq(0, T ; V ). Since it is also bounded in BV 2(0, T ; H) by (36), Theorem
A.8 implies that uh is relatively compact in Lq(0, T ; W 1−δ,p(�)d) for any small δ > 0. Since the trace operator
is linear and continuous from W 1−δ,p(�)d to Lq(ŴC)d it follows that

uh → u strongly in Lq(0, T ; Lq(ŴC)d). (38)

Now, by Lemma 4.1, vh is bounded in L2(0, T ; W ). Hence, the compactness of embedding W ⊂ H1−δ(�)d, the
continuity of the trace operator from H1−δ(�)d to L2(ŴC)d, and Theorem A.8 imply that

vh → u̇ strongly in L2(0, T ; L2(ŴC)d). (39)

For a subsequence, denoted by the same index,

uh(x, t) → u(x, t) for a.e. (x, t) ∈ ŴC × (0, T) and |uh(x, t)| ≤ h1(x, t), (40)

where h1 ∈ Lq(ŴC × (0, T)). Assume for a moment that ξ ∈ Lmax{2,q}(0, T ; V ) (if q > 2 we will later use the
density argument to show that in fact one can take ξ ∈ L2(0, T ; V )). Then ξν ∈ Lq(ŴC × (0, T)). Continuity of
pν implies that

pν(uhν)ξν → pν(uν)ξν for a.e. (x, t) ∈ ŴC × (0, T).

Moreover
|pν(uhν)ξν | ≤ C(1 + |uhν |q−1)|ξν | ≤ c(|ξν | + |ξν |q + |h1|q),

and the right-hand side is a function in L1(ŴC × (0, T)). We can use the Lebesgue dominated convergence
theorem to deduce that

∫ T

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt →
∫ T

0

∫

ŴC

pν(uν(t))ξν(t) dS dt. (41)
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Observe that

‖pν(uhν)‖2
L2(0,T ;Lq′ (ŴC))

=
∫ T

0
‖pν(uhν(t))‖2

Lq′ (ŴC)
dt ≤

∫ T

0

(∫

ŴC

|pν(uhν(t))|q′
dS

) 2
q′

dt

≤
∫ T

0

(∫

ŴC

C(1 + |uhν(t)|q−1)q′
dS

) 2
q′

dt ≤ C

(

1 +
∫ T

0

(∫

ŴC

|uhν(t)|q dS

) 2
q′

dt

)

≤ C

(

1 +
∫ T

0
‖uhν(t)‖2(q−1)

Lq(ŴC) dt

)

≤ C

(

1 +
∫ T

0
‖uh(t)‖2(q−1) dt

)

≤ C(1 + T‖uh‖2(q−1)
L∞(0,T ;V )) ≤ C.

If q > 2 then we can approximate ξ ∈ L2(0, T ; V ) by a strongly convergent sequence {ξ n} ⊂ Lq(0, T ; V ). We
obtain

∫ T

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt =
∫ T

0

∫

ŴC

pν(uhν(t))ξnν(t) dS dt +
∫ T

0

∫

ŴC

pν(uhν(t))(ξν(t) − ξnν(t))dS dt.

For the first integral on the right-hand side we have

lim
h→0

∫ T

0

∫

ŴC

pν(uhν(t))ξnν(t) dS dt =
∫ T

0

∫

ŴC

pν(uν(t))ξnν(t) dS dt,

and the second integral is bounded in the following way:
∣
∣
∣
∣

∫ T

0

∫

ŴC

pν(uhν(t))(ξν(t) − ξnν(t)) dS dt

∣
∣
∣
∣
≤ ‖pν(uhν)‖L2(0,T ;Lq′ (ŴC))‖ξν − ξnν‖L2(0,T ;Lq(ŴC))

≤ C‖ξ − ξ n‖L2(0,T ;V ).

In a similar way
∣
∣
∣
∣

∫ T

0

∫

ŴC

pν(uν(t))(ξν(t) − ξnν(t)) dS dt

∣
∣
∣
∣
≤ C‖ξ − ξ n‖L2(0,T ;V ).

Hence
∣
∣
∣
∣

∫ T

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt −
∫ T

0

∫

ŴC

pν(uν(t))ξν(t) dS dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

∫

ŴC

pν(uhν(t))ξnν(t) dS dt −
∫ T

0

∫

ŴC

pν(uν(t))ξnν(t) dS dt

∣
∣
∣
∣
+ C‖ξ − ξ n‖L2(0,T ;V ),

meaning that

lim sup
h→0

∣
∣
∣
∣

∫ T

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt −
∫ T

0

∫

ŴC

pν(uν(t))ξν(t) dS dt

∣
∣
∣
∣
≤ C‖ξ − ξ n‖L2(0,T ;V ),

for any n ∈ N, and we obtain (41) for ξ ∈ L2(0, T ; V ). To pass to the limit in the term with the multi-valued
expression note that as ηh is bounded in L∞(0, T ; L∞(ŴC))d, for a subsequence we have

ηh → η weakly-∗ in L∞(0, T ; L∞(ŴC)d). (42)

We can write
∫ T

0

∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS dt

=
∫ T

0

∫

ŴC

(pν(uhν(t)) − pν(uν(t)))ηh(t) · ξ τ (t) dS dt +
∫ T

0

∫

ŴC

pν(uν(t))ηh(t) · ξ τ (t) dS dt.
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It is straightforward to verify that pν(uν)ξ τ ∈ L1(ŴC × (0, T)), and hence

lim
h→0

∫ T

0

∫

ŴC

pν(uν(t))ηh(t) · ξ τ (t) dS dt =
∫ T

0

∫

ŴC

pν(uν(t))η(t) · ξ τ (t) dS dt.

To pass to the limit in the first integral note that

∣
∣
∣
∣

∫ T

0

∫

ŴC

(pν(uhν(t)) − pν(uν(t)))ηh(t) · ξ τ (t) dS dt

∣
∣
∣
∣
≤ C

∫ T

0

∫

ŴC

|pν(uhν(t)) − pν(uν(t))||ξ τ (t)| dS dt.

The proof that the last integral converges to zero as h → 0 exactly follows the lines of the proof of (41). We
have proved that

lim
h→0

∫ T

0

∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS dt =
∫ T

0

∫

ŴC

pν(uν(t))η(t) · ξ τ (t) dS dt.

We need to prove that η(x, t) ∈ ∂j(u̇τ (x, t)) a.e. in ŴC × (0, T). Note that ηh(x, t) ∈ ∂j(vτ (x, t)) a.e. in ŴC × (0, T).
Indeed, the inclusion η

j

h(x) ∈ ∂j(vj

hτ (x)) may not hold on a null set in ŴC, so, for t ∈ (tj−1, tj) the inclusion
ηh(x, t) ∈ ∂j(vhτ (x, t)) does not hold on a null set in ŴC × (tj−1, tj). Hence, the inclusion ηh(x, t) ∈ ∂j(vhτ (x, t))
may not hold on a null set in ŴC × (0, T). The convergence (42) together with (39), by the convergence theorem
of Aubin and Cellina (see [31, Theorem 7.2.2]) immediately implies the required assertion.

It only remains to verify that G(t) = G(∇u(t)) for a.e. t ∈ (0, T). For this step we first need to obtain the
auxiliary lemma on the so-called propagation of regularity. The proof of this lemma mostly follows the lines of
the proof of [18, Proposition 3.1].

Lemma 4.6. Both sequences ∇uh and ∇uh converge to ∇u strongly in L2(0, T ; L2(�)d×d). More precisely,

lim
h→0

∫ T

0
‖∇u(t) − ∇uh(t)‖2

L2(�)d×d dt = 0, (43)

lim
h→0

∫ T

0
‖∇u(t) − ∇uh(t)‖2

L2(�)d×d dt = 0. (44)

Proof. We know that both sequences {vh} and {vh} are bounded in L2(0, T ; W ); see Lemma 4.1. Moreover, {vh} is
bounded in BV 2(0, T ; V ′) (see estimate (37)), and {v̇h} is bounded in L2(0, T ; V ′) (see Lemma 4.3), remembering
that v̇h = wh. By the Aubin–Lions compactness lemma the sequence {vh} is relatively compact in L2(0, T ; H)
and by Theorem A.8 so is the sequence {vh}. Convergences (25) and (26) together with Lemma 4.4 imply that,
for a subsequence still indexed by h,

vh → v = u̇ strongly in L2(0, T ; H), (45)

vh → v = u̇ strongly in L2(0, T ; H). (46)

In a similar way estimates (20), (21), and (36) imply that

uh → u strongly in L2(0, T ; H),

uh → u strongly in L2(0, T ; H).

Since uh → u strongly in H1(0, T ; H) we deduce that

uh → u strongly in C([0, T]; H). (47)

First we show that it is sufficient to demonstrate (44), and the convergence (43) follows. Indeed,

‖∇uh(t) − ∇u(t)‖L2(�)d×d ≤ ‖∇uh(t) − ∇u(t)‖L2(�)d×d + t − tj

h
‖∇u

j

h − ∇u
j−1
h ‖L2(�)d×d ,
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for t ∈ (tj−1, tj). Hence
∫

I
j
h

‖∇uh(t) − ∇u(t)‖2
L2(�)d×d dt ≤ 2

∫

I
j
h

‖∇uh(t) − ∇u(t)‖2
L2(�)d×d dt + 2h

3
‖∇u

j

h − ∇u
j−1
h ‖2

L2(�)d×d .

It follows that

‖∇uh − ∇u‖2
L2(0,T ;L2(�)d×d) ≤ 2‖∇uh − ∇u‖2

L2(0,T ;L2(�)d×d) + 2h

3

N
∑

j=1

‖∇u
j

h − ∇u
j−1
h ‖2

L2(�)d×d

≤ 2‖∇uh − ∇u‖2
L2(0,T ;L2(�)d×d) + 2h3

3

N
∑

j=1

‖∇v
j

h‖2
L2(�)d×d

≤ 2‖∇uh − ∇u‖2
L2(0,T ;L2(�)d×d) + Ch2,

where, in the last estimate, we have used Theorem 3.2. We pass to the proof of (44). Take ξ ∈ L2(0, T + h; V )
and extend vh to (−h, T) by taking v(t) = v0

h = u1h on the interval (−h, 0). Clearly

u
j

h − 2u
j−1
h + u

j−2
h

h2
= v

j

h − v
j−1
h

h
= vh(t) − vh(t − h)

h
for t ∈ (tj−1, tj), j ∈ {1, . . . , N}.

Hence, we can rewrite (15) in the following way, where s ∈ (0, T):
∫ s

0

∫

�

ρ
vh(t) − vh(t − h)

h
· ξ (t) dx dt +

∫ s

0

∫

�

A(∇vh(t)) : ∇ξ (t) dx dt

+
∫ s

0

∫

�

G(∇uh(t)) : ∇ξ (t) dx dt +
∫ s

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt

+
∫ s

0

∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS dt =
∫ s

0
〈f h(t), ξ (t)〉W ′×W dt.

We rearrange the first term
∫ s

0

∫

�

ρ
vh(t) − vh(t − h)

h
· ξ (t) dx dt

=
∫ s

0

∫

�

ρvh(t) · ξ (t)

h
dx dt −

∫ s−h

−h

∫

�

ρvh(t) · ξ (t + h)

h
dx dt

=
∫ s

0

∫

�

ρvh(t) · ξ (t) − ξ (t + h)

h
dx dt −

∫ 0

−h

∫

�

ρvh
0 · ξ (t + h)

h
dx dt

+
∫ s

s−h

∫

�

ρvh(t) · ξ (t + h)

h
dx dt.

We have the following weak form of the discretized problem valid for any ξ ∈ L2(0, s + h; V ):
∫ s

0

∫

�

ρvh(t) · ξ (t) − ξ (t + h)

h
dx dt −

∫ 0

−h

∫

�

ρvh
0 · ξ (t + h)

h
dx dt +

∫ s

s−h

∫

�

ρvh(t) · ξ (t + h)

h
dx dt (48)

+
∫ s

0

∫

�

A(∇vh(t)) : ∇ξ (t) dx dt +
∫ s

0

∫

�

G(∇uh(t)) : ∇ξ (t) dx dt

+
∫ s

0

∫

ŴC

pν(uhν(t))ξν(t) dS dt +
∫ s

0

∫

ŴC

pν(uhν(t))ηh(t) · ξ τ (t) dS dt =
∫ s

0
〈f h(t), ξ (t)〉W ′×W dt.

We take ξ = uh −u in (48) (we extend f , u, uh, and u to (0, 2T); in fact we can continue the recursive solving of
the discretized scheme to the interval (0, 2T) and all estimates and convergence we have obtained on the interval
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(0, T) will remain valid for (0, 2T)) and subtract from the resultant equation (33) tested with χ(0,s)(uh − u) (χ(0,s)
is the characteristic function of (0, s)). The term with ü is integrated by parts as follows:

∫ s

0
〈ρü(t), uh(t) − u(t)〉 dt

= −
∫ s

0

∫

�

ρu̇(t) · (u̇h(t) − u̇(t)) dx dt +
∫

�

ρu̇(s) · (uh(s) − u(s)) dx −
∫

�

ρu̇(0) · (uh(0) − u(0)) dx

= −
∫ s

0

∫

�

ρu̇(t) · (u̇h(t) − u̇(t)) dx dt +
∫

�

ρu̇(s) · (uh(s) − u(s)) dx.

We obtain
∫ s

0

∫

�

ρvh(t)
uh(t) − u(t) − (uh(t + h) − u(t + h))

h
+ ρu̇(t) · (u̇h(t) − u̇(t)) dx dt

︸ ︷︷ ︸

T1

−
∫ 0

−h

∫

�

ρvh
0

uh(t + h) − u(t + h)

h
dx dt

︸ ︷︷ ︸

T2

+
∫ s

s−h

∫

�

ρvh(t)
uh(t + h) − u(t + h)

h
− ρu̇(s) · uh(s) − u(s)

h
dx dt

︸ ︷︷ ︸

T3

+
∫ s

0

∫

�

A(∇vh(t)) : (∇uh(t) − ∇u(t)) − A(∇u̇(t)) : (∇uh(t) − ∇u(t)) dx dt

︸ ︷︷ ︸

T4

+
∫ s

0

∫

�

G(∇uh(t)) : (∇uh(t) − ∇u(t)) − G(t) : (∇uh(t) − ∇u(t)) dx dt

︸ ︷︷ ︸

T5

+
∫ s

0

∫

ŴC

pν(uhν(t))(uhν(t) − uν(t)) − pν(uν(t))(uhν(t) − uν(t)) dS dt

︸ ︷︷ ︸

T6

+
∫ s

0

∫

ŴC

pν(uhν(t))ηh(t) · (uhτ (t) − uτ (t)) − pν(uν(t))η(t) · (uhτ (t) − uτ (t)) dS dt

︸ ︷︷ ︸

T7

=
∫ s

0
〈f h(t), uh(t) − u(t)〉W ′×W − 〈f (t), uh(t) − u(t)〉W ′×W dt

︸ ︷︷ ︸

T8

.

We estimate terms T1, . . . , T8. We will use the notation η(h) for terms tending to zero as h → 0 uniformly with
respect to s ∈ (0, T). Terms T1, . . . , T5 are estimated exactly as in [18, Proposition 3.1]. The estimate for |T1| is
as follows:

|T1| ≤ ρ‖vh‖L2(0,T ;H)

(

‖vh − u̇‖L2(h,T+h;H) +
∥
∥
∥
∥

u̇ − u − u(· − h)

h

∥
∥
∥
∥

L2(h,T+h;H)

)

+ ρ‖u̇‖L2(0,T ;H)‖vh − u̇‖L2(0,T ;H) = η(h).

To estimate |T2| and |T3| we need

‖uh − uh‖L∞(0,T ;H) = sup
j∈{1,...,N}

‖uh
j − uh−1

j ‖H = h sup
j∈{1,...,N}

‖vh
j ‖H = η(h). (49)
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Using the above bound and (47),

|T2| ≤ ρ‖vh
0‖H‖uh − u‖L∞(0,h;H) = η(h) + ρ‖vh

0‖H‖uh − u‖L∞(0,T ;H) = η(h).

We pass to the estimate of |T3|, where we use (47) and (49) in the space L∞(0, 2T ; H) and the bound (21):

|T3| ≤ ρ‖vh‖L∞(−h,T ;H)‖uh − u‖L∞(0,T+h;H) + ρ‖u̇‖L∞(0,T ;H)‖uh − u‖L∞(0,T ;H)

≤ ρ‖vh‖L∞(−h,T ;H)‖uh − uh‖L∞(0,2T ;H)

+ ρ
(

‖u̇‖L∞(0,T ;H) + ‖vh‖L∞(−h,T ;H)

)

‖uh − u‖L∞(0,2T ;H) = η(h).

We pass to estimates of T4, T5, and T6:

T4 =
∫ s

0

∫

�

A(∇vh(t)) : (∇uh(t) − ∇u(t)) − A(∇u̇(t)) : (∇uh(t) − ∇u(t)) dx dt

=
∫ s

0

∫

�

A(∇vh(t) − ∇u̇(t)) : (∇uh(t) − ∇u(t)) + A(∇vh(t)) : (∇uh(t) − ∇uh(t)) dx dt

= 1

2

∫

�

A(∇uh(s) − ∇u(s)) : (∇uh(s) − ∇u(s)) dx +
N
∑

j=1

∫

(0,s)∩I
j
h

(tj − t)
∫

�

A(∇v
j

h) : ∇v
j

h dx dt

≥ λ

2
‖∇uh(s) − ∇u(s)‖2

L2(�)d×d .

T5 =
∫ s

0

∫

�

(G(∇uh(t)) − G(∇u(t))) : (∇uh(t) − ∇u(t)) + G(∇u(t))) : (∇uh(t) − ∇u(t))

− G(t) : (∇uh(t) − ∇u(t)) dx dt

≥ −K

∫ s

0

∫

�

|∇uh(t) − ∇u(t)|2 dx dt − η(h) ≥ −2K

∫ s

0
‖∇uh(t) − ∇u(t)‖2

L2(�)d×d dt − η(h).

|T6| ≤
∫ T

0

∫

ŴC

|pν(uhν(t))||uhν(t) − uν(t)| + |pν(uν(t))||uhν(t) − uν(t)| dS dt

≤ C

∫ T

0

∫

ŴC

(

1 + |uhν(t)|q−1
)

|uhν(t) − uν(t)| +
(

1 + |uν(t)|q−1
)

|uhν(t) − uν(t)| dS dt

≤ C

∫ T

0

(

1 + ‖uhν(t)‖q−1
Lq(ŴC)

)

‖uhν(t) − uν(t)‖Lq(ŴC) +
(

1 + ‖uν(t)‖q−1
Lq(ŴC)

)

‖uhν(t) − uν(t)‖Lq(ŴC) dt.

The bound (20) implies that uhν is bounded in L∞(0, T ; Lq(ŴC)). Moreover, as u ∈ L∞(0, T ; V ) we have uν ∈
L∞(0, T ; Lq(ŴC)). Hence

|T6| ≤ C

∫ T

0
‖uhν(t) − uν(t)‖Lq(ŴC) + ‖uhν(t) − uν(t)‖Lq(ŴC) dt.

Convergences (24) and (25) imply, by the Aubin–Lions lemma, that

uh → u strongly in Lq(0, T ; W 1−δ,p(�)d).

Hence, similarly to in (38), we have

uh → u strongly in Lq(0, T ; Lq(ŴC)d).

This fact together with (38) implies that
|T6| ≤ η(h).
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The estimate on |T7| is derived in the same way as the estimate for |T6|, so we do not present its detailed
derivation. We only note that we use the fact that |η(x, t)| ≤ Cj and |ηh(x, t)| ≤ Cj for a.e. (x, t) ∈ � × (0, T):

|T7| ≤ η(h).

The term T8 can be rewritten as follows:

T8 =
∫ s

0
〈f h(t) − f (t), uh(t) − u(t)〉W ′×W + 〈f (t), uh(t) − uh(t)〉W ′×W dt,

whence we have the following estimate which uses (14) and the bounds of Lemma 4.1:

|T8| ≤ C‖f h − f ‖L2(0,T ;W ′)(‖uh‖L2(0,T ;V ) + ‖u‖L2(0,T ;V )) +
∫ T

0
‖f (t)‖W ′‖uh(t) − uh(t)‖W dt

≤ η(h) +
N
∑

j=1

∫

I
j
h

‖f (t)‖W ′
tj − t

h
‖u

j

h − u
j−1
h ‖W dt ≤ η(h) + h

∫ T

0
‖f (t)‖W ′‖vh(t)‖W dt

≤ η(h) + h‖f ‖L2(0,T ;W ′)‖vh‖L2(0,T ;W ) = η(h).

Summarizing all the bounds we obtain the estimate

λ

2
‖∇uh(s) − ∇u(s)‖2

L2(�)d×d ≤ 2K

∫ s

0
‖∇uh(t) − ∇u(t)‖2

L2(�)d×d dt + η(h)

valid for all s ∈ (0, T), whence the assertion of the lemma follows easily by the Gronwall inequality.

Remark 4.7. The above lemma can be generalized to the situation where the initial displacement u0 is approx-
imated by a sequence u0h ∈ V . Then, in accordance with [18], we would need u0h → u0 weakly in V and
u0h → u0 strongly in W .

In the last step of the proof we show that G = G(∇u).

Theorem 4.8. We have G(t) = G(∇u(t)) for a.e. t ∈ (0, T), and hence the function u is the weak solution given
by Definition 2.2.

Proof. Lemma 4.6 implies that, for a subsequence

∇uh(x, t) → ∇u(x, t) for a.e. (x, t) ∈ � × (0, T),

and by the continuity of G,

G(∇uh(x, t)) → G(∇u(x, t)) for a.e. (x, t) ∈ � × (0, T).

Fix ǫ > 0. By the Egorov theorem there exists the set Aǫ ⊂ � × (0, T) with µd+1((� × (0, T)) \ Aǫ) < ǫ such
that

lim
h→0

sup
(x,t)∈Aǫ

|G(∇uh(x, t)) − G(∇u(x, t))| = 0. (50)

Convergence (30) implies that
G(∇uh) → G weakly in Lq′

(Aǫ)d×d. (51)

Take η ∈ Lq(Aǫ)d×d:
∫

Aǫ

(

G(x, t) − G(∇u(x, t))
)

: η dx dt

=
∫

Aǫ

(

G(x, t) − G(∇uh(x, t))
)

: η dx dt +
∫

Aǫ

(G(∇uh(x, t)) − G(∇u(x, t))) : η dx dt.

Both integrals converge to zero as h → 0, the first one from (51), and the second one by (50). Since ǫ > 0 was
arbitrary, the assertion follows readily.
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5. Numerical simulations
The aim of this section is to provide some numerical simulations in order to characterize the mechani-
cal behaviour of the dynamic hyperviscoelastic contact problem with normal compliance conditions and
non-monotone friction analyzed in the previous sections.

First we formulate the fully discrete version of the problem. By k we will denote a constant signifying the
space discretization parameter. We choose the sequence of finite-dimensional spaces approximating the space

V from inside, that is,
⋃∞

k=1 Vk

V
= V . We also need the discrete spaces Ykν and Ykτ of functions defined on the

contact boundary and the projection operators 5kν : Vk → Ykν and 5kτ : Vk → Ykτ . The spaces Ykν and Ykτ

contain the functions which are piecewise constant on the appropriately discretized contact boundary, and the
use of the Haslinger projections 5kν and 5kτ allows us to discretize the boundary contact condition in a way
which is convenient from the point of view of numerical computations, because it allows us to choose only one
selection of the multifunction on the whole element of the contact boundary; see [34] for details. Then, with the
previous notation, the fully discrete problem is formulated as follows.
Problem (Phk). Find {uj

hk}j=1,...,N ⊂ Vk and {ηj

hk}j=1,...,N ⊂ Ykτ such that for j ∈ {1, . . . , N} we have

∫

�

ρ
u

j

hk − 2u
j−1
hk + u

j−2
hk

h2
· ξ dx +

∫

�

A

(

∇u
j

hk − ∇u
j−1
hk

h

)

: ∇ξ dx +
∫

�

G(∇u
j

hk) : ∇ξ dx

+
∫

ŴC

pν(5kνu
j

hk)5kνξ dS +
∫

ŴC

pν(5kνu
j

hk)ηj

hk · 5kτ ξ dS = 〈f j

h, ξ 〉W ′×W for every ξ ∈ Vk ,

with

η
j

hk(x) ∈ ∂j

(

5kτ

(

u
j

hk − u
j−1
hk

h

)

(x)

)

.

In the examples presented below Vk are piecewise linear finite element spaces and Ykν and Ykτ are spaces of
piecewise constant functions on the contact boundary. The above formulation presents only one possibility of
the time stepping scheme. In numerical simulations we use another scheme, given in [35].

Based on a particular example of non-convex hyperviscoelastic energy density 8(F) presented in Section
5.1, we carry out numerical simulations of two academic but non-trivial hyperelastodynamic contact problems
with friction: the impact of a ring against a foundation (Section 5.3) and the buckling of a slender stem that
comes into contact with an upper and a lower obstacle (Section 5.4). Section 5.3 is devoted to giving a quanti-
tative and qualitative validation of the specific hyperviscoelastic model compared to a well-known Ogden-type
hyperelastic model. Finally, in Section 5.4, the chosen example enables us to highlight the question of possible
non-uniqueness of the numerical solution of Problem (Phk). Note that Section 5.2 gives a brief overview of the
main traits of the numerical methods used to solve Problem (Phk).

5.1. Specific constitutive laws: Hyperviscoelastic energy density and frictional contact conditions
Here, we present the specific constitutive laws used to model the dynamic hyperviscoelastic contact problem
with normal compliance conditions and non-monotone friction PV introduced in Section 2.

Specific non-convex hyperviscoelastic energy density 8(F). The stress–strain behaviour of hyperelastic mate-
rials is highly nonlinear and a simple modulus of elasticity is no longer sufficient. The constitutive behaviour of
hyperelastic material is characterized by the stress tensor σ which derives from an internal hyperelastic energy
density 8(F), that is, σ = ∂F8(F). Here F is the deformation gradient defined by F = I + ∇u and ∂F repre-
sents the differential with respect to the variable F; see [36] for details. Due to the frame material requirement,
the internal hyperelastic energy density 8(F) is expressed in terms of the three strain invariants I1 = tr(C),
I2 = tr(cof(C)) and I3 = det(C) of the right Cauchy–Green strain tensor C = FTF.

The hyperviscoelastic energy density considered in this work is based on the Yeoh model that is used for
foam-like or rubber-like materials [37, 38]. In 1993, Yeoh [39] proposed a phenomenological model in the form
of a third-order polynomial based only on the first invariant I1. It can be used for the characterization of carbon
black filled rubber and can capture upturn of stress–strain curves. In this work, we consider a variant of Yeoh’s
model with nearly incompressible behaviour by considering a penalization term depending on the third invariant
I3 [37, 40]. This model has good fit over a large strain range and can simulate various modes of deformation with
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limited data. This model does not include any dependency on I2. The sensitivity of the strain energy function
to variation in I2 is generally much smaller than its sensitivity to variation in I1. It appears that eliminating the
terms containing I2 from the strain energy function improves the ability of the models to predict the behaviour
of complex deformation states when limited test data is available. This variant of Yeoh’s model is also called the
reduced polynomial model for nearly incompressible rubber and it can take the following form:

8(F) =
N
∑

i=1

Ci

( ||F||2
(det(F))2/3

− 3

)i

+ D(det(F) − 1)2, (52)

where Ci are positive constants and D is a positive penalization coefficient. The given value N (equal to 1, 2
or 3) is related to the number of terms in the strain energy function that we want to consider. Values of N > 2
are rarely used due to the difficulty of fitting such a large number of material properties to experimental data.
Note that we have ||F|| =

√
I1 and det(F) =

√
I3. This density enables us to satisfy both the mathematical

hypothesis and the mechanical requirements (material frame indifference, infinite amount of energy necessary
to expand a body infinitely, and near-incompressibility). More precisely, for the case of incompressible strains
(I3 = 1), it can be shown that the Andrews–Ball-type condition (monotonicity condition of the stress tensor
for large strains; see [18, 19, 41]) is verified. In the case of nearly incompressible strains, the monotonicity
condition at infinity can be proved for N = 1 and for the assumption where det(F) is very near 1. Furthermore,
the hyperelastic model is extended to viscosity with the addition of a damping term as proposed in [18]:

8ω(Ḟ) = ω

4

(

tr(Ḟ2) + tr((ḞT)2)
)

, (53)

where ω is the damping coefficient.

Therefore, we consider a stress tensor σ characterized by a viscoelastic Kevin–Voigt law which permits us
to fulfil the fundamental requirement of infinitesimal frame indifference,

σ (F, Ḟ) = ∂8(F)

∂F
+ ∂8ω(Ḟ)

∂Ḟ
. (54)

Thereby, the stress tensor takes the following form:

σ (F, Ḟ) =
N
∑

i=1

i
Ci

(det(F))2/3

( ||F||2
(det(F))2/3

− 3

)i−1

F (55)

− 2

3

N
∑

i=1

i Ci

||F||2
(det(F))5/3

( ||F||2
(det(F))2/3

− 3

)i−1

cof(F)

+ 2D(det(F) − 1)cof(F) + ω

2

(

Ḟ + ḞT
)

.

As mentioned above, by considering a high deformation range of nearly incompressible nature, it can be seen
that the behaviour of stress tensor σ is of monotonic type when the strains are large.

Normal compliance conditions and non-monotone friction law. The normal compliance conditions (7) are
characterized by a compliance function pν which leads to the following behaviour: when there is separation
(uν < 0), the normal contact reaction of the body on the foundation vanishes (σν = 0) and when there is
penetration (0 ≤ uν), the normal contact reaction is uniquely determined. For the numerical simulations, we
consider a compliance function pν that takes the form

pν(r) = cν(r+)2 (56)

where (r+) = max{0, r} is a non-negative prescribed function which vanishes for negative arguments and cν is
a positive constant related to the stiffness of the foundation. To summarize, the normal contact reaction −σν is
expressed as

−σν = cν((uν)+)2. (57)
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The friction is modelled by a non-monotone law (8) in which the friction bound is characterized by a sub-
differential of a non-convex superpotential j which depends on the tangential velocity u̇τ . In the following, for
the numerical simulations, we consider a function j : R

d → R defined by

j(s) =
∫ |s|

0
µ(t) dt, (58)

where µ corresponds to the friction coefficient µ which depends on the variable s. Then, for this particular
choice the condition (8) leads to the following subdifferential inclusion:

−σ τ ∈ σνµ(|u̇τ |)∂|u̇τ | on ŴC. (59)

In this case, the friction bound σνµ(|u̇τ |) depends both on the depth of the penetration uν and on the tangential
velocity |u̇τ |:

|σ τ | ≤ σνµ(|u̇τ |) if u̇τ = 0,
−σ τ = σνµ(|u̇τ |) u̇τ

|u̇τ | if u̇τ 6= 0, on ŴC. (60)

The strict inequality in (60) holds in the stick zone and the equality holds in the slip zone. This physical model
of slip-dependent friction was introduced in [42] for the geophysical context of earthquake modelling and it was
also studied in [9, 20, 43]. For the simulations, the following friction coefficient µ : R

d → R is considered:

µ(|u̇τ |) = (a − b) · e−α|u̇τ | + b, (61)

with a, b, α > 0, a ≥ b.

5.2. Numerical treatment
Since the numerical methods for solving hyperelastic problems with non-monotone contact and friction condi-
tions have been presented in detail in [1, 35, 44] and in order to keep the paper of reasonable length, a succinct
presentation of the main traits of the numerical treatment of Problem (Phk) is given below.

In order to solve a nonlinear elastodynamic problem, we have to use time integration schemes with long-
term time integration accuracy and stability. Indeed, when nonlinear dynamic problems are considered, the
standard implicit schemes (θ -method, Newmark schemes, midpoint or Hilber-Hughes-Taylor methods) lose
their unconditional stability. Therefore, we have to use implicit schemes with energy conservation properties
(or energy consistent properties in the case of viscosity or friction phenomena) such as those described in [45–
49]. Then, in this work we consider an energy-consistent scheme to solve the problem (Phk) based on recent
energy-controlling time integration methods for nonlinear elastodynamics that are described in detail in [35].
This numerical scheme is based on a specific form of the discretization of the normal compliance condition and
the procedure of equivalent mass matrix [50] in order to conserve energy during the impact.

Furthermore, since non-convex potentials are considered to model both the hyperelastic law and the fric-
tion law, classical convex programming methods cannot be used to solve problem (Phk). A numerical technique
described in [1, 44] to solve this kind of non-convex problem is to use a “convexification” iterative procedure
which leads to a sequence of convex programming problems. Then, the resulting non-smooth convex iterative
problems are solved by classical numerical methods that can be found in [48, 51]. For instance, we use a combi-
nation of the penalized method and the augmented Lagrangian method to treat the frictional contact conditions.
The resulting nonlinear system is solved by a semi-smooth Newton method. Details on the discretization step
and computational contact mechanics, including algorithms similar to that used here, can be found in [25, 48,
50–52].

5.3. Impact of a ring on a foundation
The interest of this example is to provide validation for the hyperviscoelastic frictional contact model considered
in Section 5.1 compared to results obtained by using the well-known Ogden hyperelastic model. This non-trivial
example, introduced by Laursen in [48], concerns an academic frictional impact problem that is the impact with
friction of a hyperviscoelastic ring against a foundation.
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Figure 1. Sequence of the deformed hyperviscoelastic ring before, during and after impact.

Figure 2. Trajectories of the ring centre for the two hyperelastic models during the time process (t ∈ [0, T] with T = 5 s).

For each hyperelastic model, we use the viscous damping term given in (53). Details on the physical setting
of the problem are given below:

� =
{

(x1, x2) ∈ R
2 : 81 ≤ (x1 − 100)2 + (x2 − 100)2 ≤ 100

}

,

ŴD = ∅, ŴN =
{

(x1, x2) ∈ R
2 : (x1 − 100)2 + (x2 − 100)2 = 81

}

,

ŴC =
{

(x1, x2) ∈ R
2 : (x1 − 100)2 + (x2 − 100)2 = 100

}

.

The domain � represents the cross-section of a three-dimensional deformable body under the plane stress
hypothesis. The ring is thrown with an initial velocity at a 45◦ angle toward a foundation as depicted in Figure
1. The foundation is given by

{

(x1, x2) ∈ R
2 : x2 ≤ 0

}

. For the discretization, we use 1664 elastic nodes and
128 Lagrange multiplier nodes. For the numerical experiments, the data are

ρ = 1000 kg/m3, T = 10 s, k = 1
300 ,

u0 = (0, 0) m, u1 = (10, −10) m/s, f 0 = (0, 0) N/m2, f 1 = (0, 0) N/m,

C1 = 0.5 MPa, C2 = 0.5 × 10−2 MPa, C3 = 0.5 × 10−4 MPa, D = 100 MPa, ω = 10−4,

cν = 1000, a = 1.5, b = 0.5, α = 100.

The numerical results presented in Figure 2 and in Table 1 provide a qualitative and quantitative comparison
between the Ogden-type model and the nearly incompressible Yeoh-type model. The compressible material
response, considered for the Ogden constitutive law (see [53]) is characterized by the following energy density:

8(F) = c1(I1 − 3) + c2(I2 − 3) + d(I3 − 1) − (c1 + 2c2 + d) ln I3,

with c1 = 0.5 MPa, c2 = 0.5 × 10−2 MPa and d = 0.35 MPa. In Figure 2 the trajectories of the ring centre
are plotted for the whole time process (t ∈ [0, T] with T = 5 s). We note that the trajectories are quite similar
before, during and after the impact of the ring on the foundation.
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Table 1. Relative errors between the numerical solutions obtained with the Ogden-type model and the nearly-incompressible Yeoh-
type model.

Time instants t = 0.1 s t = 2.3 s t = 0.4 s

(configurations) (before impact) (during impact) (after impact)

‖u
hk
Yeoh−u

hk
Ogden‖

‖u
hk
Ogden‖

1.1443% 1.0831% 1.3725%

In Table 1, the relative error estimates between the numerical solutions computed with the Ogden-type model
and those computed with the nearly incompressible Yeoh-type model are calculated at three time instants (t = 1
s, t = 2.3 s and t = 4 s) corresponding to three configurations of deformation of the ring (before, during and
after impact). Note that these results provide good numerical evidence for the small difference of the between
the numerical solutions obtained with the two hyperelastic models. Indeed, the relative error estimates are of the
order of 1%.

5.4. Buckling of a stem and contact with upper and lower obstacles
The interest of this second example is to highlight the non-uniqueness of the solution of the hyperviscoleastic
problem with contact and friction conditions, due to the sensitivity of the solution with respect to the geometric
setting. To this end, we consider numerical simulations based on the buckling of a slender hyperelastic stem
with upper and lower contact obstacles which put in evidence the fact that for a very small perturbation of the
mesh we may possibly obtain two different solutions for the same level of loading.

The physical setting used for this numerical example is depicted in Figure 3. The deformable body is a
rectangle, � = (0, 20) × (0, 1) ⊂ R

2, and its boundary Ŵ is split as follows:

ŴD = ({0} × [0, 1]) ∪ ({20} × [0, 1]),

ŴN = ∅,

ŴC = ([0, 20] × {0}) ∪ ([0, 20] × {1}).

As for the first numerical example, the domain � represents the cross-section of a three-dimensional deformable
beam subjected to the action of displacement compressions on the right part of ŴD in such a way that a plane
stress hypothesis is assumed. On the part {0}× [0, 1] of ŴD the body is clamped and, therefore, the displacement
field vanishes there. Imposed displacement compressions act on the part {20} × [0, 1] of the boundary ŴD and
the part ŴN is traction-free. No vertical body forces are assumed to act on the hyperviscoelastic beam. The
beam may come into frictional contact with two obstacles on the parts [0, 20] × {0} and [0, 20] × {1} of the
boundary ŴC. The lower and upper obstacles are given respectively by the sets

{

(x1, x2) ∈ R
2 : x2 ≤ −2

}

and
{

(x1, x2) ∈ R
2 : x2 ≥ 3

}

. For the discretization, we use 3096 elastic nodes and 256 Lagrange multiplier nodes.
For the numerical experiments, the data are

ρ = 1000 kg/m3, T = 0.8 s, k = 1
40 ,

f 0 = (0, 0) N/m2, uD = (−3, 0) m, on {20} × [0, 1],

C1 = 0.2 MPa, C2 = 0.5 × 10−3 MPa, C3 = 0.5 × 10−4 MPa, D = 100 MPa, ω = 10−4,

cν = 1000, a = 0.2, b = 0.1, α = 100.

In order to show the sensitivity of numerical solutions with respect to the geometric setup and the possi-
ble multiplicity of numerical solutions, we consider a procedure of random perturbations of the mesh. More
precisely, a very small relative perturbation (1.10−4) is introduced randomly on two points of the mesh: the
points (20, 0) and (20, 1) are considered arbitrary. Then we realized several series of numerical tests with these
meshes perturbed randomly. Consequently, we obtained two types of buckling configuration of the deformed
stem, represented in Figures 4 and 5.

These simulation results depicted in Figures 4 and 5 put in evidence the fact that we obtain two different
solutions for the same level of loading. This phenomenon highlights the non-uniqueness of the solution of the
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Figure 3. Two buckling configurations of the deformed hyperviscoelastic stem.

Figure 4. First buckling configuration of the deformed hyperviscoelastic stem.

Figure 5. Second buckling configuration of the deformed hyperviscoelastic stem.

hyperviscoelastic problem (Phk), due to the sensitivity with respect to the geometric setting of the numerical
example considered in this section.
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[7] Hlaváček, I, Haslinger, J, Necǎs, J, et al. Solution of variational inequalities in mechanics. New York, NY: Springer-Verlag, 1988.
[8] Ionescu, IR and Nguyen, QL. Dynamic contact problems with slip dependent friction in viscoelasticity. Int J Appl Math Comp

Sci 2002; 12: 71–80.
[9] Ionescu, IR, Nguyen, QL and Wolf, S. Slip-dependent friction in dynamic elasticity. Nonlin Anal 2003; 53: 375–390.
[10] Jaruseck, J. Dynamical contact problems for bodies with a singular memory. Boll Union Mat Ital 1995; 7: 581–592.

30



[11] Jarušek, J, and Sofonea, M. On the solvability of dynamic elastic-visco-plastic contact problems. Z Angew Mat Mech 2008; 88:
3–22.

[12] Kuttler, K, and Shillor, M. Dynamic contact with normal compliance, wear and discontinuous friction coefficient. SIAM J Math

Anal 2002; 34: 1–27.
[13] Kuttler, K, and Shillor, M. Dynamic contact with Signorini’s condition and slip rate dependent friction. Electron J Diff Eq 2004;

83: 1–21.
[14] Martins, JAC, and Oden, JT. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction

interface laws. Nonlin Anal TMA 1987; 11: 407–428.
[15] Migórski, S. Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and

friction. Appl Anal 2005; 84: 669–699.
[16] Moreau, JJ. On unilateral constraints, friction and plasticity. In: Capriz, G and Stampacchia, G (eds) New variational techniques

in mathematical physics (C.I.M.E. Summer Schools, vol. 63). New York, NY: Springer, 1973, 175–322.
[17] Migórski, S, Ochal, A, and Sofonea, M. Nonlinear inclusions and hemivariational inequalities: Models and analysis of contact

problems (Advances in Mechanics and Mathematics, vol. 26). New York, NY: Springer, 2013.
[18] Friesecke, G, and Dolzmann, G. Implicit time discretization and global existence for a quasilinear evolution equation with

nonconvex energy. SIAM J Math Anal 1997; 28: 363–380.
[19] Emmrich, E and Šiška, D. Evolution equations of second order with nonconvex potential and linear damping: Existence via

convergence of a full discretization. J Differ Eq 2013; 255: 3719–3746.
[20] Shillor, M, Sofonea, M, and Telega, JJ. Models and analysis of quasistatic contact. New York, NY: Springer, 2004.
[21] Naniewicz, Z, and Panagiotopoulos, PD. Mathematical theory of hemivariational inequalities and applications. New York, NY:

Marcel Dekker, Inc., 1995.
[22] Clarke, FH. Optimization and nonsmooth analysis. New York, NY: Wiley Interscience, 1983.
[23] Denkowski, Z, Migórski, S, and Papageorgiou, NS. An introduction to nonlinear analysis: Theory. Boston - Dordrecht - London

- New York: Kluwer Academic/Plenum Publishers, 2003.
[24] Grisvard, P. Elliptic problems in nonsmooth domains. Boston: Pitman Advanced Publishing, 1985.
[25] Ayyad, Y, and Barboteu, M. Formulation and analysis of two energy-consistent methods for nonlinear elastodynamic frictional

contact problems. J Comput Appl Math 2009; 228: 254–269.
[26] Nitsche, JA. On Korn’s second inequality. RAIRO Anal Num 1981; 15: 237–248.
[27] Migórski, S, Ochal, A, and Sofonea, M. History-dependent variational-hemivariational inequalities in contact mechanics. Nonlin

Anal Real 2015; 22: 604–618.
[28] Sofonea, M, and Migórski, S. A class of history-dependent variational-hemivariational inequalities. Nonlin Diff Eq Appl 2016;

23(3): 23–38.
[29] Carstensen, C and Gwinner, J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini

problems. Ann Mat Pur Appl (IV) 1999; 177: 363–394.
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Appendix 1
We recall some notions from the abstract theory of multi-valued operators in reflexive Banach spaces which are
used in the article.

Definition A.1. A multi-valued operator B : X → 2X ′
where X is a reflexive Banach space is called multi-

valued pseudomonotone if

(i) B(u) is closed, bounded, convex, and non-empty for all u ∈ X ;
(ii) B is upper semicontinuous from each finite-dimensional subspace of X to X ′ endowed with weak topology;
(iii) if {un} is a sequence in X and {u∗

n} is a sequence in X ′ such that un → u weakly in X , u∗
n ∈ B(un) and

lim supn→∞〈u∗
n, un − u〉 ≤ 0, then for each v ∈ X there exists u∗(v) ∈ B(u) such that lim infn→∞〈u∗

n, un −
v〉 ≥ 〈u∗(v), u − v〉.

Definition A.2. A multi-valued operator B : X → 2X ′
where X is a reflexive Banach space is called generalized

pseudomonotone if for any sequences {un} in X and {u∗
n} in X ′ such that un → u weakly in X , u∗

n → u∗ weakly
in X ′ and u∗

n ∈ B(un) if we have lim supn→∞〈u∗
n, un − u〉 ≤ 0, then u∗ ∈ B(u) and 〈u∗

n, un〉 → 〈u∗, u〉.

Lemma A.3. See Proposition 2.2 in [21]. If X is a reflexive Banach space and B : X → 2X ′
is a generalized

pseudomonotone and bounded operator such that for each u ∈ X the set B(u) is non-empty, convex, and closed,
then B is multi-valued pseudomonotone.

Lemma A.4. See Proposition 2.4 in [21]. A sum of two multi-valued pseudomonotone operators on a reflexive
Banach space X is multi-valued pseudomonotone.

We can associate with a single-valued operator B : V → V ′ a multi-valued operator such that its value at
each point is a singleton.

Lemma A.5. See Proposition 32.7 in [54] and Proposition 2.3 in [21]. If B : V → V ′ is monotone and
continuous then it is multi-valued pseudomonotone.

We recall a theorem on the surjectivity of pseudomonotone operators.

Theorem A.6. See Theorem 2.2 in [55]. Let B : X → 2X ′
be a multi-valued pseudomonotone bounded operator

and L ∈ X ′. Assume that there exists u0 ∈ X and R ≥ ‖u0‖X such that

〈η − L, u − u0〉 > 0
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for all u ∈ X with ‖u‖X = R and all η ∈ B(u). Then the inclusion

L ∈ B(u)

has a solution.

Definition A.7. Let I = [a, b] be the finite time interval and let u : I → X be the function from I to a Banach
space X . We define the q-variation seminorm as

‖u‖q

BVq(I;X ) = sup

{
k
∑

i=1

‖u(tk) − u(tk−1)‖q
X : k ∈ N, a = t0 < t1 < . . . < tk = b

}

.

By BV q(I ; X ) we denote the set of all functions u : I → X such that their q-variation seminorm is finite.

For Banach spaces X , Y such that X ⊂ Y with a continuous embedding, define

Mp,q(I ; X , Y ) = Lp(I ; X ) ∩ BV q(I ; Y ).

We have the following theorem; see [56, Theorem 1].

Theorem A.8. Let 1 ≤ p, q < ∞. Moreover, let X1 ⊂ X2 ⊂ X3 be Banach spaces such that X1 is reflexive,
the embedding X1 ⊂ X2 is compact, and the embedding X2 ⊂ X3 is continuous. If a set S ⊂ Mp,q(I ; X1, X3) is
bounded then it is relatively compact in Lp(I ; X2).
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