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Abstract—Robust wide baseline pose estimation is an essential
step in the deployment of smart camera networks. In this work,
we highlight some current limitations of conventional strategies
for relative pose estimation in difficult urban scenes. Then we
propose a solution which relies on an adaptive search of cor-
responding interest points in synchronized video streams which
allows us to converge robustly towards a high-quality solution.
The experiments are performed using a manually annotated
ground truth of a large scale scene exhibiting significant depth
and perspective variation, uniform areas, repetitive patterns and
homogeneous dynamic elements. The results show a fast and ro-
bust convergence of the solution, and a significant improvement,
compared to single image based alternatives, of the RMSE of
ground truth matches, and of the maximum absolute error.

I. INTRODUCTION

The calibration of a camera network with minimal re-
quirements of human intervention (use of calibration objects,
guidance of the pose estimation process) has long repre-
sented a major field of research in computer vision, with
reviews of novel contributions appearing regularly. Recently,
the increased focus on safety and surveillance applications
has underlined the importance of smart camera networks (the
reader may refer to [1] for a concise but complete taxonomy
of the major challenges raised by smart cameras). The self
calibration part is critical for monitoring projects, for multiple
reasons. In order to be able to project image elements from
one camera to another in the case of cameras with overlapping
fields of view, a relative pose estimation is mandatory and may
either help locate an existing element of interest in a different
view, or if the calibration is accurate enough, may help identify
elements of interest from raw data (i.e. disambiguate using the
second view a person who is strongly occluded in the initial
view).

Irrespective of the number of cameras deployed, the pose
estimation between a pair of cameras is the foundation of any
camera network calibration. Existing relative pose estimation
algorithms are, for the vast majority, based on matching
interest points among the two views and then applying a robust
optimization algorithm in order to determine the unknown
pose parametrization [2]–[4]. These approaches are used suc-
cessfully in various domains ranging from aerial imaging to
Structure from Motion (SfM) for virtual reality. However, for
large scale camera networks in urban environments, some
specific scene characteristics complicate or dismiss altogether
the use of existing approaches. Due to physical positioning
constraints, wide baselines with significant perspective change
may be imposed. Even when ignoring positioning constraints,

it is beneficial to cope robustly with significant pose variations
in order to minimize the number of cameras required for
covering a specific area. Another problem is raised by the
actual image content; for outdoor surveillance, the scenes are
often homogeneous (open spaces) for the most part, or featur-
ing repetitive patterns (human shapes, building facades), and
this hampers the use of fully automatic calibration algorithms.
Finally, calibration solutions which require significant human
intervention, by using calibration objects for example, are time
and resource consuming, and in certain situations they are
impracticable due to the size of the scene or due to access
constraints.

II. RELATED WORK

Since the pose estimation requires a set of correct matches,
the rejection of outliers is a prerequisite step which is usually
performed using a RANSAC-based approach [4], [5]. A large
number of matches with a significant ratio of inliers is a
positive indicator for, but does not implicitly guarantee, a high-
quality pose estimation, as the distribution of matches over the
image space is also involved. Wide baseline setups in urban
areas exhibit at the same time a low number of matches, a low
ratio of inliers as well as a skewed distribution due to large
uniform zones (ground, roofs, facades etc). As a result, an
uneven distribution leads to a pose estimation which is correct
only in covered areas, although the solution is consistent with
the observations.

In order to address these problems, guided matching strate-
gies aim to expand the well-constrained area by encouraging
a progressive inclusion of new matches [6]; however, in
difficult scenes the potential elements to include are sparse
and distant, and guided matching may easily include outliers
and drive the pose estimation towards an inadequate solution.
More elaborate strategies may relax the quality of matches
in addition to guiding the search spatially [7], but this favors
the inclusion of incorrect correspondences. Also, additional
geometrical checks for guaranteeing a local consistency [7],
[8] are not effective in scenes which are non-planar and with
significant depth variation.

Since one of the fundamental challenges when facing wide
baseline calibration is the scarceness of matches, the exploita-
tion of the video stream seems a promising solution (the
temporal synchronization of the cameras being convenient, but
not a strict requirement). A naive approach, as pointed out
by [9], is to extend image-based registration to video-based
by temporal accumulation of matches, while other approaches



identify corresponding trajectories of salient objects [10] in
order to populate the match set. Despite the richness of video
information, the exploitation of video sequences does not
address implicitly all the problems previously raised. Although
the number of total matches does increase, in scenes with
homogeneous dynamic objects such as crowded areas the inlier
ratio may actually decrease. Another limitation of straightfor-
ward video accumulation is that new matches are clustered
around moving objects, and the pose estimation may get
constrained locally very strongly, which correspondingly may
remove sparse correct matches and deteriorate the solution.

Moreover, in [10], each candidate estimation is performed
on a set of matches extracted from a single trajectory (or
a pair of them). The authors request non-trivial trajectories
to be present, which are trajectories able to cover a large
enough part of the image space, and which do not belong
to a degenerate configuration (planar trajectory). However, in
large scale scenes a representative set of non-trivial trajectories
which span most of the image space is often not available;
each trajectory is likely to cover a small fraction of the total
area, and to be degenerate, when the dynamics of the scene
are mostly produced by people walking on the ground plane.

In [9] the authors estimate the geometric constraint by
accumulating matches from a fixed number of dynamic tex-
ture image pairs. A limitation of this approach (and of the
trajectory-based one), is that only dynamic parts of the scene
are considered. If a scene contains large static parts (e.g.
buildings, see Fig. 2) the estimation will not be globally
correct. Moreover, the method is unfeasible, in terms of
memory requirements, when applied to high resolution images.

The aim of our work is to propose a computationally
effective algorithm for robust pose estimation in difficult
scenes, which benefits from synchronized video streams. Our
contributions address the following points:
• for a large scale urban scene, we propose a methodology

for building an uniformly distributed ground truth set, along
with the estimation of a fundamental matrix defining a
general transformation between the views;

• based on the previous ground truth data, we highlight that
for this type of scene the pose estimation provided by the
current state of the art algorithms is highly unstable, with
errors which vary strongly across the image space;

• we show that naive temporal accumulation of matches de-
grades the match inlier ratio, and that convergence towards a
high-quality solution is not guaranteed or slow with existing
robust estimation techniques;

• we propose a robust temporal accumulation strategy with a
fast convergence towards a high-quality solution.

III. OVERVIEW AND GENERAL CONSIDERATIONS

We assume a pair of calibrated synchronized cameras,
with overlapping fields of view. The SIFT descriptor [11] is
employed in the feature extraction and matching stages.

In our approach we exploit the richness of information
provided by a video sequence, in contrast with using a single
image pair. In fact, we notice that in such wide baseline

scenarios with large scale interest regions, it is common that
at any given moment only some image locations provide cor-
respondences, increasing the risk of obtaining locally optimal
epipolar geometry estimations. As a result, the quality of an
estimation based on feature matching may differ a lot for
different time instants, making its use unreliable (Fig. 3).

On the contrary, our method starts from an image-to-image
initial estimation, and refines it by acquiring new information
in the successive frames. At each iteration, the epipolar
constraint estimated at the previous step is used to guide
the acquisition of new matches between the current frames,
through the use of an epipolar band. This new set of matches
is combined with the set of inliers identified at the previous
step, and a new robust estimation is performed on the new set.

A common practice for match selection is to extract glob-
ally distinctive SIFT matches, which pass the 2NN heuristic
proposed in [11], as well as a symmetry check which validates
pairs only with the best match candidate for both left and right
feature points. Given a feature point in the first frame, and a set
of candidate features in the second frame, the 2NN heuristic
is satisfied iff the SIFT distance ratio between the match with
the best score and the one with the second best score is lower
than a certain threshold. In other words, the test is passed only
if that match is by far the most distinctive among the others.

In contrast to this approach, in our match selection stage
we extract SIFT matches which are distinctive inside the band
region, by applying a modified version of the 2NN heuristic
which accounts only for candidate matches in the restricted
search space. This procedure is very effective in providing a
much larger number of good quality matches, which is critical
both because in a wide baseline scene globally distinctive
high quality matches are scarce, and because the algorithm
is capable to converge faster towards a robust solution.

Moreover, differently from a standard guided matching ap-
proach, we do not use only the uncertainty of the estimation of
the fundamental matrix to compute the band size, but we adjust
the band based on the inlier distribution in the image. This
approach has two advantages: it guarantees faster convergence
of the solution, encouraging the matching in parts deficient
in inliers, while discouraging strong inlier clustering in a
localized area of the image, which could bias the estimation.

The illustration of all the proposed steps is supported by a
ground truth that we have manually created from the testing
scenes. The ground truth consists in manual matches uniformly
extracted from all the common field of view, in order to test
the quality of the solution across all the analysis area.

Our method allows to automatically recover the relative pose
between two cameras in an iterative way. It has shown, in the
proposed experiments, to reach a quasi-monotonic decreasing
of the geometric error with respect to the number of iterations,
while strongly improving the robustness of the estimation,
even with different choices of the robust estimator employed.



IV. EXPLOITING TEMPORAL INFORMATION FROM
SYNCHRONIZED CAMERAS

A. Temporal sampling

An important parameter of our process is the stream sam-
pling period 4t. Since we want to exploit the dynamic
behavior of the objects in the scene,4t should be large enough
in order to allow dynamic objects moving significantly, and to
avoid new information being mostly redundant. This constraint
is in opposition with a tracking-based approach which needs
small inter-frame difference in order to work properly. On
the contrary, setting a too high 4t would cause a slower
convergence in time.

B. Matching strategy

Given the two frames at the current iteration, we make use
of SIFT to extract an initial set of candidate feature matches
Minit. Each element of the Minit set consists of an array m
of the best k candidate matches involving a specific point p
in the first frame. The array is ordered in ascending order on
the basis of the SIFT distance score.

We do not apply the 2NN heuristic directly on the array m.
For example, consider the presence of repetitive structures,
e.g. the ones in building facades. A point in the first image
could match strongly with multiple points in the second one.
Of course such matches would not pass the 2NN heuristic
because SIFT distances will be very similar. However, if we
first restrict the search space using an epipolar band, provided
by the approximate fundamental matrix F computed at the
previous iteration, we could find that there is only one possible
match which is coherent with the geometry. In such case, that
match should be considered a valid candidate because it is
distinctive within the area of interest.

For this reason we invert the order of filtering stages which
is typical of guided matching approaches: instead of getting
global distinctive matches and then checking them against the
epipolar bands, we first perform the band filtering and then
we isolate the distinctive matches. Given m = [p′1, p

′
2, ..., p

′
k],

we can compute the epipolar bands in both views for each
pair (p, p′i), as a function of the uncertainty of the estimation
and of the point location. The normalized epipolar line in the
second image can be defined as l̂ = Fp/ ‖ Fp ‖. The epipolar
band is an envelope around the epipolar line which depends
on the epiline covariance [12][13]:

Σl = JFΣFJ
T
F + σ2JpJ

T
p . (1)

We assume that the point p is independent from F , since it
has not been used in the estimation procedure. The first term
encodes the uncertainty of the nine F parameters, while the
second one encodes the uncertainty of the position of point p
in the image. The standard deviation σ represents the isotropic
uncertainty in both image directions.

The conic which gives the mathematical representation of
the epipolar band can be retrieved as [2]:

C = l̂l̂T − k2Σl, (2)

where k2 is chosen by solving F−12 (k2) = α, with α the
confidence level parameter, commonly set to 95%, and F2 the
cumulative χ2

2 distribution.
If p or p′i are not contained in one of the corresponding

epipolar bands, then p′i is removed from m. We call the new
vector mBand = [p̃′1, p̃

′
2, ..., p̃

′
k′ ], where k′ ≤ k. In order to

retain only high quality matches, the following constraint must
hold:

p̃′1 = p′1, (3)

which means that if the match with best score is not contained
in the epipolar band, we discard the entire current set of
candidate matches, and continue. This constraint avoids the
inclusion in the final set of matches with a poor absolute score.

We are now able to perform the 2NN heuristic on mBand:

d(p, p̃′1)

d(p, p̃′2)
< τ, (4)

where d is the SIFT distance measure, and τ is a threshold
usually set in the range 0.6-0.8.

Together with the test in (4), we perform also a symmetry
check in order to improve considerably the quality of the
matching process. It consists into applying the same procedure
in the opposite sense, from the second to the first frame. If p̃′1
is the best match for p, and p is the best match for p̃′1, the
symmetry check is respected. If both tests are passed, then the
match (p, p̃′1) is added to the set Snew, which contains all the
matches discovered at the current iteration.

C. Choice of the parameter σ

We exploit the parameter σ in (1) in order to be able to
deal with large errors in the epipolar constraint. If the epipolar
line is correct, the σ value represents the error in the matching
process which leads to a small deviation from the epipolar line.
On the other hand, when the epipolar line is shifted because of
an estimation error in some part of the image, σ can represent
the error due to the bad localization of the line.

The idea is that in areas of the image which lack inliers,
there is a high risk that the current estimation is biased with
respect to the optimal one. Our approach is the following: in
well-constrained areas of the image, we set a low σL value
representing errors in the matching procedure; we impose a
much higher σH value in regions which are not well covered
by inliers. When σ is small, the first term of (1) is predominant,
and the shape of the epipolar band will likely follow a
hyperbola; when σ is high, the second term of (1) dominates
the first, and the epipolar band will be likely enclosed by
two straight lines. Possible outliers included in the process
are taken into account by using a robust estimation technique
at every iteration.

We define the critical notion of well-constrained areas by
using a fundamental concept introduced in the field of data
clustering with noisy data [14]. In [14], a point q is consid-
ered a core point if, given two parameters ε and MinPts,
| Nε(q) |≥ MinPts, where Nε(q) is the set of points at a
distance lower than ε from q. The authors of [14] provide also



the definition of a directly density-reachable point p, given ε
and MinPts:

1) p ∈ Nε(q)
2) q is a core point

A density reachable-point is a neighbor of some core point q.
Condition 1: Given the inlier set S, a new point p belongs to
a clustered region if one of the two conditions holds:

1) p is a core point of the set S ∪ p
2) p is directly density-reachable by any point q, q ∈ S
Condition 1 provides a simplified check to state whether a

point is contained or not inside a region of the image in which
the current estimation is well-constrained due to a strong inlier
presence. Finally we are ready to choose the parameter σ as:

σ =

{
σL p satisfies Condition 1

σH otherwise
(5)

D. Fundamental matrix re-estimation

Once the matching stage has been completed, the set Snew
containing the new matches may be added to the inlier set S
obtained from the previous estimation. All these matches can
be used as input of a robust estimation algorithm, in order to
obtain F for the current iteration.

Our approach is independent from the specific algorithm
employed at this stage, and we will demonstrate in section V
its use with both the popular RANSAC [15] and with ORSA
[3] frameworks. The resulting F is then refined using the
Levenberg-Marquardt algorithm, and the 9 × 9 parameter
covariance matrix is evaluated as in [12]. Fig. 1 provides an
outline of the proposed algorithm.

V. RESULTS

A. Experimental setup and ground truth construction

We test our method on sequences recorded at Regent’s
Park Mosque, London. The camera network consists of three
cameras installed on the roof (see Fig. 2). The analysis
region is a square surrounded by buildings which present
repetitive structures. We record video streams of the square,
capturing the dynamic behavior of people who are free to
move in the area. The grayscale video is recorded at 8 fps,
with a 1624 × 1234 resolution. In order to demonstrate the
independence of the method from the dynamic context, we
calibrate different pairs at different times.

In order to perform a rigorous evaluation of the performance
we have built a ground truth which allows us to understand
the quality of the solution across the whole scene. By defining
an uniform grid (buckets), we extract matches manually and
uniformly inside the overlapping field of view. The extraction
procedure is followed by the estimation of a fundamental
matrix, which is used to refine the position of the matches.
The process is repeated iteratively in order to obtain a set of
matches with half-pixel precision. Such ground truth extraction
is essential to evaluate errors in the estimation even in regions
where an automated process would not consider interest points.

The measurements metrics we employ are the RMSE and
the Max symmetric geometric error [2] on the ground truth.

Input: Stream0, Stream1, k,4t,maxt, ε,MinPts, σH , σL
Output: F
Minit ← SIFTMatches(Stream0[0], Stream1[0], k)
M ← filterMatches(Minit) {2NN, symmetry}
F, inlierSet, Cov ← estimateAndRefineF (M)
S ← inlierSet
t←4t
while t ≤ maxt do
C ← detectCorePoints(S, ε,MinPts)
Minit ← SIFTMatches(Stream0[t], Stream1[t], k)
Snew ← ∅
for all m in Minit do
{m array of candidate correspondences of length k}
if isInCluster(m,C, ε,MinPts) then
σ ← σL

else
σ ← σH

end if
mBand← epipolarBandFiltering(m,F,Cov, σ)
if mBand passes 2NNheuristic and
SymmetryCheck then
Snew ← Snew ∪mBand[0] {add best score match}

end if
end for
S ← S ∪ Snew
F, inlierSet, Cov ← estimateAndRefineF (S)
S ← inlierSet
t← t+4t

end while

Fig. 1. Outline of the proposed approach.

The use of the Max Error is the strictest possible metric,
and is essential for revealing localized errors, which would
be mitigated by RMSE. Due to the stochastic nature of the
process, results are evaluated over 300 executions of each test.

B. Experimental results

Regarding the parameters, the most significant inputs are
∆t, for which we set a value of 24 frames, σL = 1, which is
a common choice in guided matching covariance propagation
[6], and finally we set σH = 5. The k parameter has shown
to have little influence on the final results if chosen in a range
of 2-5 (results with k = 3 are presented). We choose, as
robust fundamental matrix estimator, the ORSA[3] a-contrario
framework, which has proven to guarantee great robustness
without the need of setting a threshold. In order to demonstrate
the independence of our method from the estimator, we also
present an estimation result using the RANSAC [15] method
implemented in the USAC [16] framework.

Fig. 3 shows the errors in the estimations that are obtained
by using a single pair of images extracted from the streams of
cameras 1 and 2, and applying the ORSA estimator. The qual-
ity of the estimation is highly dependent on the specific pair
considered and on the position of dynamic objects in the scene,
which can leave large areas without any interest point. In any



(a) (b) (c)

Fig. 2. Sample frames acquired from the three cameras. (a) Camera 1, (b) Camera 2, (c) Camera 3. Two large featureless regions can be seen on the
bottom-right and top-left of the square.
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Fig. 3. RMSE and Max geometric error by applying ORSA on each frame
pair independently. Large variations in the result demonstrate the unreliability
of estimation with still images in such setup. Streams from cameras 1 and 2
are used.

case, the best estimation achievable has a maximum error of
almost 4 pixels, leaving room for a consistent improvement.
The method in [7] fails to converge towards an acceptable
solution (RMSE=245) as it does not cope with wide baselines
and strong depth variation.

Then we show our estimation results for cameras 1-2,
presenting them against the results obtained by performing
robust estimation on a set of matches accumulated naively
from frame pairs (we call it All-matches). Fig. 4 shows the
RMSE and Max geometric errors at the different iterations of
the algorithm. Our method is able to reduce the RMSE from
1.75 to 0.75, and to consistently decrease the Max error from
6.5 to 2.2 pixels. We highlight the robustness of our strategy,
with the error following a monotonic decreasing trend after a
few iterations. This does not happen in the All-matches case,
which presents large oscillations in time, which implies that
getting more points from the video stream will not certainly
improve the batch estimation result, introducing thus a frame
window size choice problem.

The explanation for this behavior comes from the analysis
of the inlier ratios estimated at each iteration (Fig. 5), which
we are able to present due to the manual ground truth. The All-
matches curve relates to the inlier percentage curve (checked
against the ground truth F) that is obtained by accumulating
matches, which drops independently from the time interval
chosen. Thus the benefit of adding new points is negated by a
lowering ratio of good matches, which implies the existence of
a trade-off. On the other hand, our approach is based on a strict
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Fig. 4. RMSE and Max geometric error by applying the All-matches strategy
and our method on 1-2 camera pair, with ORSA. Our selection is more
reliable, and we are able to improve the initial estimation significantly and
robustly.
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Fig. 5. The inliers ratio at each iteration for the All-matches and our approach.

rejection procedure, so the inlier ratio follows the opposite
trend, since the constraining of the solution will improve the
probability of including only inliers as new matches.

In Fig. 6 we show the RMSE for the same camera pair, but
using the RANSAC framework to estimate the fundamental
matrix. The behavior of our algorithm remains the same,
irrespective of the estimator, and of the initial values of
the RMSE. In the RANSAC case the drawbacks of the a
straightforward match accumulations are even more evident.

Fig. 7 demonstrates the benefits of adapting the σ parameter
of the covariance of the epipolar band to the actual spatial
distribution of inlier matches in the image. It follows that by
setting a σ = 1, as in [6], we can not add new information
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Fig. 6. RMSE by applying the All-matches strategy and our method on 1-2
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fixed σ value, and by using the adaptive σ introduced in Section IV-C.

which is able to correct gross local errors in the estimation,
leading to a much slower convergence which is never able to
reach, in terms of error, the results obtained by our strategy.

Finally, we show the estimation results for the camera pair
2-3 , using a video stream captured at a completely different
time instant, in order to deal with different dynamics of the
scene. Fig. 8 shows again consistent results both in terms of
RMSE and of Max error. We are able to decrease the RMSE
from 1.9 to 0.5, while reducing the Max error on the whole
image space from 11 to 1.5 pixels, with a substantial decrease
of initial errors in just 4 iterations.1

VI. CONCLUSIONS

This paper proposed a new approach for solving difficult
relative pose estimation problems based on a guided selection
of new matches from video. We select new matches in order
to constrain the estimation robustly, by adapting the search
process with respect to the local inlier distribution. This results
in an fast convergence towards a high-quality solution, which
is being highlighted by the manual ground-truth we produced
for a difficult scene. In our experiments, we show that this
video accumulation strategy clearly outperforms current pose
estimation solutions. Directions for future research include

1Implementation at https://github.com/MOHICANS-project/fundvid
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Fig. 8. RMSE and Max geometric error obtained by applying our method
for the 2-3 camera pair, with the ORSA estimator.

acquiring and distributing for the academic community a
multiple camera dataset in an urban environment, applying our
pose estimation within a security application and improving
the accuracy of tasks such as detection, counting or tracking.
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