
HAL Id: hal-01691757
https://hal.science/hal-01691757

Submitted on 24 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active learning for high-density crowd count regression
Jennifer Vandoni, Emanuel Aldea, Sylvie Le Hégarat-Mascle

To cite this version:
Jennifer Vandoni, Emanuel Aldea, Sylvie Le Hégarat-Mascle. Active learning for high-density crowd
count regression. 2017 14th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Aug 2017, Lecce, Italy. �10.1109/AVSS.2017.8078508�. �hal-01691757�

https://hal.science/hal-01691757
https://hal.archives-ouvertes.fr


Active Learning for High-Density Crowd Count Regression

Jennifer Vandoni, Emanuel Aldea and Sylvie Le Hégarat-Mascle
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Abstract

Efficient crowd counting is an essential task in crowd
monitoring, and significant advances have been made in
this field recently by counting-by-regression techniques. We
propose in this work a learning-to-count strategy with a
generic detection algorithm which benefits from a counting
regressor in order to identify crowded subregions with in-
adequate head detection performance, and to improve their
representativeness in the training set. A straightforward
but crucial step is proposed in order to take into account
perspective correction within the proposed framework. An
evaluation on Makkah images with medium to very high
densities demonstrates the effectiveness of our algorithm
and its capability to reach a count error of less than 5%
in this difficult setting.

1. Introduction
Pedestrian scene analysis in videos has become a very

active topic of research in the last decade due to a number
of concurring factors: advances in the underlying detection
algorithms, the availability of more computational power
and a higher demand to automate as much as possible tasks
in public security and situational awareness. Among vari-
ous subtopics, counting and especially crowd counting has
received growing attention recently.

Counting by detection (CD) is a straightforward way of
approaching counting, by delegating the task to a detec-
tion algorithm [11, 10]; in this case the binary output of
the detection is integrated directly in order to provide the
count. The main inconvenience of this approach is that re-
lying on the detector to provide crisp detections requires to
perform thresholding and non-maximal suppression, which
are not adapted in the case of close or partially occluded
objects. Counting by regression (CR) approaches aim to
map image characteristics to the number of objects being
present [15, 8, 5]. In occluded scenes, CR methods have
been shown to be better suited, but their main limitation is
that they do not infer the actual object locations (although

their output may be used as a prior for guiding detection and
tracking [20]).

A field which illustrates the interest of counting (even
though object localization is not addressed, i.e. using CR)
is the physical modeling of high-density crowds. Individual
tracking provides the maximum of information about the
spatio-temporal crowd system state, but a number of macro-
scopic models [3] require only a local density estimation,
which is in all respects within the reach of CR.

Motivated by this application, we propose in this paper
a generic learning strategy supporting CR in high-density
crowd images, which addresses in original ways the main
difficulties specific to this context: the limited size of ob-
jects, the frequency and the high degree of occlusions, the
specificity of the data (high class imbalance, user annota-
tions being performed in batch) and the sensitivity to the
variation in size of the objects due to the geometry of the
scene. The present work falls into a category of learn-
to-count algorithms [15, 12, 5, 23], which refine counting
iteratively using some feedback based on the current per-
formance and possibly on user additional input. In order
to tackle practical scenarios related to high-density crowd
analysis, we contribute in the following aspects: a) for
learning, we propose a criterion for selecting the most infor-
mative training samples from a pool of strongly unbalanced
dot annotated data, b) we propose a mechanism to integrate
a counting objective in retraining efficiently a high-density
head detector, and c) we propose a solution to integrate a
correction for perspective distortion into the regression.

2. Related work
Let us introduce the state-of-art for the two aspects that

are involved in our work (counting by regression and ac-
tive learning), stressing the limitations of the presented ap-
proaches for our case study, namely high-density scenes.
CR in high-density images Count estimation methods, and
specifically CR, have developed significantly in the last
decade, and a number of surveys are available [21, 16].
Initial work relying on CR and on variations based on re-
gion clustering [6], motion patterns [19] etc. was not aimed



at tackling high-density crowds. Count estimation in small
crowds is performed in [18] relying on accurate camera cal-
ibration and area of projection. However, this strategy is
ideally suited for crowds that may be divided into groups of
relatively homogeneous densities. In [17] self-organizing
neural maps are used to infer the crowd density from im-
age texture, but the task is aimed at identifying the correct
density range rather than accurate counting, particularly in
a high-density crowd.

Under a regularized risk framework, the objective of
CR is to recover a linear transform defined by a parameter
w which maps an estimated density F to a user-specified
ground truth G. This may be formulated as:

ŵ = argmin
w

(
w2 + λ

N∑
i=1

D(G(·), F (·|w))
)
, (1)

where D is a distance measure and λ a scalar weighting
parameter.

In [15], the authors address a major limitation of image-
level regressors based on Eq. (1) when using as distance
measure an absolute or squared difference between the sums
over the entire images. Such simple approach requires a
large variety of image samples during training. Therefore,
the authors of [15] propose a new distance called MESA,
which takes into account the mapping penalty for all the
possible B within the corresponding 2D box space B of
mapping and ground truth areas:

DMESA(G,F ) = max
B∈B

∣∣∣∣ ∑
p∈B

G(p)−
∑
p∈B

F (p)

∣∣∣∣. (2)

The significant strengths of this distance are an improved
robustness to additive local noise, as well as the ability to
exploit not only the ground truth count but also its spatial
layout. Further work adapted the initial idea in order to alle-
viate the computational cost required to solve the optimiza-
tion program of [15], by relying on regression trees [12].
Although the MESA distance has been used extensively for
CR, a number of limitations have been underlined, such as
a bias towards tuning the hyperparameter w with respect to
a specific density level [13]. Also, for complex scenes a lin-
ear regression model may be too simple to map the input
data to the count function.
Learning to count Active or interactive learning have been
used in relation with CR as follows. In [2], the user is re-
quested, and assisted with two density visualization tech-
niques, to identify bad estimations. However, for high-
density images the visualization assistance is not adapted,
and also due to the extreme head proximity in crowd im-
ages, the only acceptable way of annotation is by perform-
ing it progressively on entire views. In [7], the authors ad-
dress the problem of identifying informative samples for an-
notation in unlabeled images, whereas we have labeled data

with only a subset used for the learning step and our main
problem is to increase the size of the learning dataset in a
tractable manner by selecting new data that will improve the
further estimations. Closer to our proposed approach, the
authors of [9] adapt regression in order to back-propagate
the importance of samples as weights in the regression al-
gorithm. The underlying assumption is that smaller errors
point to samples which capture consistently the model and
which should be weighted higher. However, in this study,
our problem is to define an efficient selection of the yet un-
used labeled samples in order to increase the CR perfor-
mance.
Cross-scene counting Recent works based on deep convo-
lutional architectures [25, 24] have reached impressive re-
sults in cross-scene counting and detection tasks. Beside
the computational cost, the performance and the improved
robustness to scene variations come at the price of requiring
significantly more annotated data (two orders of magnitude
more compared to our method). Active learning and the use
of prior geometric information about the scene allow us to
compensate for a smaller, easier to set up training set, and
provide a lightweight solution for learning to count in a spe-
cific setting.

Our basic assumption is that in some contexts where
MESA distance based CR is known to perform more de-
ficiently, this behavior is not due to the regression step, but
rather to the lack of some appropriated data to consider in
the regression. Thus, we propose to mediate through a feed-
back loop the performance estimated during the regression
step. This feedback aims to improve the quality of the input
in areas where the image characteristics are unreliable.

With respect to existing image-level regressors, we con-
sider that the MESA approach is better suited for high-
density annotated images for the following two reasons.
Firstly, as a L∞ distance between combinatorial sub-area
vectors of the ground truth and of the score map provided
by the detector, the MESA distance is ideally suited for a
feedback strategy which is aimed at identifying subareas
where the input map should be improved. Secondly, many
applications such as physical modeling of crowds rely on
local density estimations, and through the set of boxes B,
the MESA distance considers all image scales in order to
achieve better robustness of density estimation across the
whole scale space.

3. Details of our method
In light of the limitations mentioned above, we propose

to apply the MESA distance to the probabilistic output of
a general detection algorithm, and use the subregion (box)
with the most violated constraint provided by the regression
in order to select new informative training examples for the
detector. In this way, the potential nonlinearity between the
feature space and the mapping is dealt with by the learn-



ing step, and the regression is used secondarily to pinpoint
badly mapped image parts which can provide new valuable
training samples. In this sense, the algorithm may be seen
as an objective-driven active learning with the aim of count
regression. Indeed, the objective itself (count regression in
our case) is directly involved into the choice of the new
training samples that will improve the estimations. This
strategy addresses at the same time a fundamental problem
faced by discriminative learning on high-density crowd im-
ages, where pixel-based training sample sets are large, but
ambiguous and highly unbalanced. Human annotations are
performed by clicking on the object center, but as the object
size reaches only a few pixels and as the occlusions may
cover more than half of the object, the pixel assignments
become highly subjective and unreliable.

We consider a generic binary classifier which provides
for each tested instance (pixel) p a score s(p) representing
the probability of p belonging to the positive class P (y =
1|p). Our aim is to recover the scalar factor w which maps
a density F (p) = ws(p) based on Eqs. (1) and (2).

Computing the MESA distance may be cast efficiently as
a max 2D subarray problem, while determining w requires
solving a convex QP with a combinatorial number of linear
constraints in a tractable manner [15]. Concurrently with
solving for the optimal w, we identify the most violated box
B̃ corresponding to the maximal mapping error. This allows
us to select inside B̃, using a criterion specific to the learn-
ing algorithm being used, the most informative samples that
would improve at the next learning iteration the score in the
critical area B̃. For illustrating our method, we rely on an
SVM classifier, and the following paragraphs will detail the
preparation of the training set and the selection strategy we
propose.
Building a training set As in [15], we perform a dotted

Figure 1: Patch with ground-truth dotted annotation

annotation in the head centers for the training images (Fig.
1). Then, we define the positive sample areas Pall a one
pixel dilation of the annotations, in order to enlarge slightly
the human clicks while avoiding to label as positive sam-
ples pixels which are on the border of a head and which can
be misleading for the classifier. For the same reason, we
define an exclusion zone up to 6px around the positive sam-
ples, and all the pixels present outside the exclusion zone
are assigned to the negative label set Nall. In this way, we

encourage a detector with a peaked response, while at the
same time selecting negative samples which do not confuse
the classifier.
Active learning We adopt an uncertainty sampling ap-
proach, which iteratively requests the labels for the in-
stances whose classes are the most uncertain, i.e. in the
context of SVM, the instances which are the closest to the
separation hyperplane [22]. Sample clustering may help in
mapping the feature space more efficiently, at some compu-
tational cost. Since our potential training set is quite large,
we adapt [4] which considers the diversity between sam-
ples. In particular, the authors propose a selection strategy
which aims to reach a trade-off between (i) the minimum
distance from the hyperplane and (ii) the maximum angle
between the hyperplanes defined by each sample. Denoting
I∗ the pool of indexes of available samples with a distance
from the hyperplane less than one, the training batch S is
built by incrementally adding a new example xt such that:

t = argmin
i∈I∗\S

(
β‖f(xi)‖+ (1− β)max

j∈S
k∗(xi, xj)

)
(3)

where ‖f(xi)‖ is the distance of the sample xi to the sepa-
ration hyperplane, and where, given the two sample hyper-
planes hi and hj and the kernel function k, we have:

k∗(xi, xj) =| cos(∠(hi, hj)) |=
| k(xi, xj) |√

k(xi, xi)k(xj , xj)
(4)

The β parameter can be tuned to control the trade-off be-
tween the classical strategy which takes into account only
the distance from the hyperplane and the new approach that
combines it with the diversity measure.

Since it is prohibitively costly to compute angles among
all the available instances in Pall and Nall, we propose a
greedy preliminary selection of a potential sample set. De-
noting by H the learning batch size, we select the KH ex-
amples closest to the hyperplane by using a priority queue
over the potential training set with a negligible computa-
tional overhead. Then we apply the exhaustive diversity
search in terms of cosine similarity among these KH sam-
ples, by caching only a K2H2 element Gramm matrix. For
our needs, we found that K = 10 is adequate, but higher
values will promote more diversity with an increased com-
putational cost.
Perspective correction Correcting for perspective distor-
tion has been addressed in counting tasks [14], although it
is not systematically implemented [2] since some additional
information is needed about the camera intrinsic parame-
ters and about the camera-to-ground relative pose. How-
ever, a detector which has been trained with examples of
varying size provides similar pixel-level scores for identical
objects which have different sizes in pixels due to the per-
spective change. This would affect significantly the MESA



Input: Train set Itr, Pos. set Pall, Neg. set Nall

Regression and validation sets Ir, Iv
Init training set size M, batch size H

Output: detectorL,mapping w, count error εcount
P,N← RandomSelect(Pall,Nall,M)
repeat
L ← train(P,N)
B̃ ←MESA(Gtruth(Itr),L(Itr))
P̂, N̂← DiversitySamp(B̃,L(Itr),Pall,Nall, H)

P← P ∪ P̂,N← N ∪ N̂
w ←MESA(Gtruth(Ireg),L(Ireg))
εcount ← error(Gtruth(Iv), wL(Iv))

until STOP

Figure 2: Outline of the proposed approach.

hyperparameter w which could only settle for an inade-
quate compromise among the various sizes. Similarly to
[12], we compute a perspective map M based on an ac-
curate camera-to-ground pose estimation [1]. Then we are
able to compensate the distortion by multiplying the detec-
tor score with the corresponding factor provided by the dis-
tortion map: ŝ(p) =M(p)s(p).

Finally, Fig. 2 synthesizes the steps of our algorithm,
while Fig. 3 provides a visual representation of the algo-
rithm workflow where the count feedback is underlined in
the training step.

Figure 3: A visual representation of the algorithm workflow.

4. Experimental results
We validate the proposed active learning strategy using

a linear SVM on a HOG descriptor with 1620 features. The
HOG window size is set to 24px, which allows us to gather
relevant information from the actual head but also from its
close surroundings.

positive samples negative samples excluded samples
4055 px 662285 px 94076 px
0.53% 87.09 % 12.38 %

Table 1: Distribution of pixel samples in annotated images

Our dataset consists in images of high density crowds
with an average of 800 heads. For a typical image, Table
1 shows the percentage of positive and negative examples,
highlighting the data imbalance and the importance of find-
ing an effective strategy to select significant samples in or-
der to improve the score map for the counting objective.

We compared our new active learning approach with two
widely used methodologies: the classical strategy which
selects the closest examples to the separation hyperplane,
from now on called distance, and the diversity strategy pro-
posed by [4] explained above. In order to prove the effec-
tiveness of active learning, we compared it also with a ran-
dom strategy, which iteratively selects random, balanced ex-
amples from the pool.

Figure 4: Comparison between different active learning
strategies. The error drops immediately with the proposed
MESA+diversity approach, and it remains stable towards
the end.

As our training set is very unbalanced, metrics such as
AU-ROC are unreliable for quantifying the learning perfor-
mance. However, since counting is our main objective, we
can directly perform counting on a validation set and use the
final count error as a mean to assess the learning progress
at each iteration. Figure 4 plots the Mean Absolute Error
(MAE) for counting, with respect to the number of sam-
ples on the validation set Iv , with perspective correction
applied. The random strategy does not provide meaning-
ful improvements as the training set becomes larger. On
the contrary, the errors of all the active learning techniques



significantly drop from the beginning. In particular the dis-
tance approach improves slower, and presents some oscil-
lations even towards the final iterations, while errors for
the diversity strategy, and for the proposed approach called
MESA+diversity drop immediately and then remain stable
towards the end, highlighting the importance of the variety
between the selected samples. It is possible to notice that for
the first iterations the samples selected by the two methods
based on diversity are the same. This happens because the
box selected using the MESA distance as the most violated
one is very large. Moreover, both learning and regression
benefit from each other, and we highlight that MAE in the
context of the counting task is a better performance metric,
with respect to learning statistics which lose their applica-
bility in presence of high data imbalance.

Figure 5: Impact of perspective correction on count estima-
tion.

Figure 5 shows the importance of the perspective correc-
tion for the MESA regression, which compensates the head
size variation with respect to the camera. The perspective
correction step is crucial in order to obtain a low MAE and
a stable behavior.

5. Conclusion and perspectives
In this work, we have shown how to exploit a highly un-

balanced labeled set of head annotations in order to refine
a crowd counting algorithm. Our approach is applicable to
relatively small training sets made up of a few thousands
of compact head annotations. Prior information about the
geometry of the scene may be easily integrated as well into
the algorithm through a perspective correction map. Over-
all, the proposed strategy is fairly easy to deploy for a given
scene, and the results we get on images acquired at Makkah
at peak times are very encouraging, with a count error of
less than 5% on images which are difficult to annotate by

human subjects. The perspective of our work are related
to the use of more complex features and/or detection al-
gorithms, in order to benefit fully from the nonlinearity of
the detector score versus the mapping effectiveness of the
MESA regressor. We also intend to investigate possible so-
lutions for cross-scene counting based on our iterative learn-
ing strategy.
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