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Abstract

Starting from the Schwinger–Dyson equation and the renormalization group equation for

the massless Wess–Zumino model, we compute the dominant nonperturbative contributions to

the anomalous dimension of the theory, which are related by alien calculus to singularities of

the Borel transform on integer points. The sum of these dominant contributions has an analytic

expression. When applied to the two-point function, this analysis gives a tame evolution in

the deep euclidean domain at this approximation level, making doubtful the arguments on the

triviality of the quantum field theory with positive β-function. On the other side, we have a

singularity of the propagator for timelike momenta of the order of the renormalization group

invariant scale of the theory, which has a nonperturbative relationship with the renormalization

point of the theory. All these results do not seem to have an interpretation in terms of

semiclassical analysis of a Feynman path integral.

Mathematics Subjects Classification: 81Q40, 81T16, 40G10.
Keywords: Renormalization, Schwinger–Dyson equation, Borel transform, Alien calculus,

Accelero–summation.

Introduction

Quantum field theory required the finest element of mathematical physics for its development,
pushing at time the development of new aspects of mathematics. The analyticity requirements
have been instrumental in the theory of the holomorphic functions of many variables and their
analyticity domains, with such high points as the edge of the wedge theorem of Bogolubov or the
Bros–Iagolnitzer transform used for the definition of the analytic wave front. Type III factors are
everywhere and the instrument of their classification stems from the KMS condition, introduced
for the study of finite temperature theory, which was found to coincide with the Tomonoga con-
dition. Perturbative expansions and their renormalization require subtle combinatorics and the
introduction of Hopf algebras allows one to clarify and make more explicit the classical proofs of
renormalizability. Using the formalism of groupoids may be useful to reduce the burden of control-
ling the effect of the symmetry factors. Evaluating Feynman integrals requires numbers which can
be periods, with the action of a motivic Galois group and links with many conjectures in algebraic
geometry. Constructive theory has been able to show that some of these theories can be given a
precise mathematical sense, but has failed to address the most relevant ones for our understanding
of the physical world, the four dimensional gauge theories.

In fact, due to the specificity of renormalization, the perturbative series is the richest source of
information on quantum field theory. Other approaches deal necessarily with a regularized version
of the theory which lacks many of the structural properties of the final theory. A precise definition
will therefore seek to define the relevant Green functions from their perturbative series, but the
procedure cannot be straightforward, since it has been long recognized that quantum field theories
(QFT for short) cannot depend holomorphically on the coupling parameter in a full neighborhood
of the origin and therefore the perturbative series is at most asymptotic. A number of works have
tended to show that the growth of the terms of the formal perturbative series is slow enough to
allow the definition of a Borel transform around the origin. This is however only the first step in the
definition of a sum for the perturbative series. One must also be able to analytically continue this
Borel transform up to infinity and furthermore verify that near infinity, this analytically continued
Borel transform does not grow faster than any exponential function.
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Defining an analytic continuation seems a formidable task, but in the cases where the functions
obey equations, analog equations for their Borel transform can be deduced and, with the help of
alien calculus, used to constrain the possible singularities of the Borel transform. Singularities may
appear on the positive real axis, preventing a straightforward application of the Laplace transform.
One could resort to lateral summation, using a shifted integration axis, but this means that the
reality properties of the solution are lost. This can be an advantage in some situations, where
the imaginary part of a perturbed energy signals the possible decay of a metastable state to the
continuum, but unitarity could be at risk. However a suitable average of the analytic continuations
circumventing the singularities on the real axis can be used to define a sum which both is real and
respects the equations.

In this work, we will therefore argue that quantum field theory cannot dispense with the whole
body of work on summation methods which has been thoroughly expanded by Jean Ecalle [1, 2, 3].
As in previous works [4], we will base our considerations on computations in a specific model, but
we think that they reveal phenomena at work in most exactly renormalizable field theories.

Although the insight about these summation methods comes from the study of Borel transforms
which form an algebra under convolutive products, much can be done while remaining in the
domain of more or less formal series. In particular, formal transseries solutions allow to recognize
the possible forms of alien derivatives. It is then possible to express the solution in terms of
transmonomials, special functions with simple alien derivatives, so that we never have to explicitly
refer to the Borel transforms in computations. The Borel-transformed functions are however what
justify the different computations.

This article is divided as follows: first we give a short introduction to some concepts of resur-
gence theory that are of importance for our work. Then some previous results of [5, 6, 4] that are
to be developed further are recalled. We then compute the leading terms for every exponentially
small terms in the anomalous dimension in the subsequent section. They are shown to sum up
to a known analytic function of the nonperturbatively small quantity e−r. Alien calculus is then
used to deduce from the computed terms the singularities of the Borel transform, while the first
singularity of the Borel transform is used to constrain a free parameter in the previous paragraphs.
Finally, we apply the same process to the two-point function of the theory and see that the non-
perturbative terms can get multiplied by powers of the momentum. The resulting function has a
singularity for a timelike momentum, which fixes a nonperturbative mass scale, while the euclidean
side is completely tame. The way such a result could appear in the process of Borel summation
gives further indications on the analyticity domain of the theory.

1 Elements of resurgence theory

1.1 Borel transform and Borel resummation

A very nice introduction to the subject of Borel transform and resurgence theory is [7]. Here we
will follow the presentation of [8], with some additional material needed for our subject.

A simple definition of the Borel transform is to say that it is a morphism between two rings of
formal series, defined as being linear and its value on monomials:

B : aC[[a]] −→ C[[ξ]] (1)

f̃(a) = a

+∞
∑

n=0

cna
n −→ f̂(ξ) =

+∞
∑

n=0

cn
n!

ξn.

This definition is extended to noninteger powers by

B
(

aα+1
)

(ξ) :=
ξα

Γ(α+ 1)
.

In the case where α is an integer, we find back the above definition.
Then the point-like product of formal series becomes the convolution product of formal series, or

of functions when the Borel transform is the germ of an analytic function. It is therefore consistent
to define the Borel transform of a constant as the formal unity of the convolution product (i.e.,
the Dirac “function”):

B(1) := δ. (2)
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In the following, we will restrict ourselves to the cases where f̂ is the germ of an analytic
function at the origin, endlessly continuable on C, i.e., that on any line L of C a representative of
the germ f̂ has a countable number of singularities and is continuable along any path obtained by
following L and avoiding the singularities by going over or below them. Moreover, we will assume
that these singularities are algebraic, that is to say that they are not more singular than a pole.
More precisely, if ξ0 is a singularity of φ̂, we shall have

∃α ∈ R | |(ξ − ξ0)
−αφ̂r(ξ)| −→

ξ→ξ0
0. (3)

The supremum of the α for which the above holds will be called the order of φ̂ at ξ0. Notice
that if α is positive, it is important that the condition is not directly on φ̂ but on φ̂r, obtained
from φ̂ by subtracting a suitable polynomial in ξ. A typical example for α a positive integer is
φ̂r(ξ) ≃ (ξ− ξ0)

α ln(ξ− ξ0), but there are no reason for φ̂ itself to have a zero at ξ0. Alternatively,
the singularity can be characterized by the behavior of the difference of the function and its analytic
continuation after looping around ξ0, but this does not work for poles. It is even possible to have
singularities with an infinite order, but in our applications, the order will always be a finite rational
number.

Let us call R̂ES the space of germs of analytic functions at the origin endlessly continuable on

C and R̃ES ⊂ aC[[a]] the set of formal series whose image under the Borel transform is in R̂ES.

When working with elements of R̂ES we will say that we are in the convolutive model, while R̃ES
will be called the formal model. We will also say that we are in the Borel plane and the physical
plane, respectively.

There exists an inverse to the Borel transform: the Laplace transform. For φ ∈ R̂ES we write
φ̂ for the analytic continuation of the Borel transform of φ. The definition of the Laplace transform
on φ̂ involves a certain direction θ in the complex plane:

Lθ[φ̂] :=

∫ eiθ∞

0

φ̂(ζ)e−ζ/adζ. (4)

It is well defined for at least some values of a if φ̂ is smaller than some exponential in the direction
θ. The resummation operator in the direction θ is the composition of the Borel transform and the
Laplace transform in the direction θ:

Sθ := Lθ ◦ B. (5)

If φ̂ does not have any singularities in the directions θ between θ′ and θ′′ included and satisfies
suitable exponential bounds at infinity in this sector, different Lθ[φ̂] coincide wherever they are
both defined through Cauchy’s theorem, so that they define a single analytic function on the sector
delimited by θ′ − π/2 and θ′′ + π/2, which is a possible resummation of the formal series φ̃. We
see that the different resummations are defined in sectors whose limits depend on the singularities
of the Borel transform, but their definition domains have nontrivial intersections.

In the following, we will need more general objects than the elements of R̂ES and the corre-

sponding R̃ES. We define simple resurgent symbols with an additional variable ω ∈ C with the
meaning that the corresponding object in the formal or geometric models get multiplied by e−ω/a,
so that:

φ̇ω := e−ω/aφ ∈
˙̃

RES ⊃ R̃ES

In the formal model, linear combinations of simple resurgent symbols are simple examples of
transseries. One can define more general transseries, but this would lead us away from our topic.
A very pleasant introduction to transseries, very accessible to physicists is [9].

Finally, the operator Sθ extends to
˙̂

RES through the formula

Sθ[φ̂
ω](a) := e−ω/aLθ[φ̂](a) (6)

and by linear extension.

1.2 Stokes automorphism and Alien derivative

Now let φ ∈ R̃ES be such that φ̂ ∈ R̂ES has singularities in the direction θ. Then we define the
lateral resummations Sθ± as the usual one but with the Laplace transform Lθ± involving integrals
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avoiding the singularities by going above (for Lθ+) or below (for Lθ−) all of them. They correspond
to the limit of Sθ′ when θ′ tends to θ either from above or from below.1

Sθ±[φ](a) :=

∫ ei(θ±ε)∞

0

φ̂(ζ)e−ζ/adζ. (7)

The extension of the lateral resummations to the elements of
˙̃

RES is similar to the extension of
the regular ones given by equation (6).

Now, the key point is that the lateral resummation are linked by the so-called Stokes automor-
phism in the direction θ, written Gθ.

Lθ+ ◦Gθ = Lθ−. (8)

We clearly have Gθ :
˙̂

RES −→
˙̂

RES. Since both Lθ+ and Lθ− are algebra morphisms from
the convolutive algebra in the Borel plane to the algebra of functions, Gθ is an automorphism of

the convolution algebra
˙̂

RES. This automorphism encodes how the function “jumps” when the
direction of integration crosses a line of singularities (called a Stokes line), already in the extended
convolutive model. It can be decomposed in homogeneous components that shift the exponents of
the extended models by the complex numbers ω which belong to the direction θ: they are called the
lateral alien operators ∆+

ω . The action of the alien operator ∆+
ω on φ̂σ is linked to the singularity

of φ̂σ in ω and carries the index ω + σ. The fact that Gθ is an automorphism translates in the
following relations for its components:

∆+
ω (f̂ ⋆ ĝ) =

∑

ω′+ω′′=ω

∆+
ω′f ⋆∆+

ω′′g, (9)

where the sum includes the cases where ω′ or ω′′ is 0, and ∆+
0 is defined to be the identity.

Since the relation (9) is not very simple, we use the logarithm of the Stokes automorphism,
which is a derivation. The homogeneous components of this logarithm are therefore also derivations,
which are called alien derivatives. More precisely

Gθ = exp

(

∑

ω∈Γθ

∆ω

)

, (10)

with Γθ the singular locus of the function of interest in the direction θ. The alien derivatives and
lateral alien derivatives are linked by the equivalent relations

∆+
ωn

=

n
∑

p=1

∑

ω1+···+ωp=ωn

1

p!
∆ω1 · · ·∆ωp

∆ωn
=

n
∑

p=1

∑

ω1+···+ωp=ωn

(−1)p−1

p
∆ω1 · · ·∆ωp

with all the ωis on the same half-line from the origin to infinity.
As their names suggest, the alien derivatives are indeed derivations for the convolution product.

We shall not give a proof here (we refer the reader to [7] for such a proof), but this fact shall not
come as a surprise. Indeed, it is well-known that the operator A acting on smooth function as a
translation

A[f ](x) = f(x+ 1)

induces an automorphism on the space of functions. And we can write

A = exp

(

d

dx

)

thanks to the Taylor expansion for analytic functions, so that it appears as the exponential of a
derivation. Since the Stokes automorphism can be viewed as a translation across a Stokes line, it
is understandable that its logarithm is a derivative.

1 In most applications, the possible arguments of the positions of the singularities form a discrete set, so that
the different Sθ′ define the same analytic function for an open set of values of θ′ and we do not really need to take
the limit in the definition of Sθ±. However, it is possible to have singularities for example at the positions of all
Gaussian integers Z+ iZ, in which case the limiting procedure is unavoidable.
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The alien operators are a priori defined in the convolutive model, but it is convenient to extend

them to
˙̃

RES by
B[∆ωφ] := ∆ωφ̂, (11)

and similarly for ∆+
ω . The alien derivatives, so extended to formal series, become derivatives for

the point-like product, since the point-like product of functions becomes the convolution product
in the Borel plane.

The alien derivatives have other useful properties. The most important one is

∆ω∂z = ∂z∆ω (12)

in the formal model, with z = 1/a. A proof of this result can be found in [7], and another in the
general case (which is of interest for us) is in [10]. The commutation with the ordinary derivative

is not so simple if we consider the alien derivative to act in R̂ES and not in the dotted model. In
fact, in many texts, what we denote simply as ∆ω is denoted ∆̇ω.

1.3 Real resummations

Stokes operators can be a part of the study of the monodromy around singular points of a differ-
ential equation, but it may happen that the Borel transform φ̂ has singularities in the direction
θ in which we are interested to perform a resummation, typically the direction θ = 0 for a series
with only real coefficients. In this case, the lateral resummations get imaginary parts. This can
be a nice feature when the imaginary part of the energy corresponds to the decay probability
through tunneling of a state, but generally, we would like to obtain a real solution for a physical
problem. The issue is that the simple mean of the two different lateral summations is real, but it
is nevertheless not satisfying: we would like this real resummation to satisfy the same equations
as the formal solution and this can only be ensured if the convolution product of the means is the
mean of the convolution products. The only way to ensure this is to take a suitable combination
of the analytic continuations of the function along all the paths that can be taken, going above or
below each of the singularities.

It has been known for a long time that such a real solution is given by the so-called median
resummation, a fact that have been shown explicitly in [11]. A possible expression for this median
resummation is

Smed := Sθ− ◦G
1/2
θ = Sθ+ ◦G

−1/2
θ (13)

where the power of the Stokes automorphism is defined from a natural extension of the definition
(10):

G
ν
θ := exp

(

ν
∑

ω∈Γθ

∆ω

)

. (14)

Since the Stokes operator Gθ is an automorphism, its powers are also automorphisms and the
median resummation respects products as a composition of operations preserving products.

Returning to the definition of the Stokes automorphism, it can be seen that ∆+
ω corresponds to

taking the difference between two possible analytic continuation of the Borel transform beyond the
point ω. The different alien derivatives can also be computed as combinations of different analytic
continuations of the Borel transform, going above or below the different singularities (but without
ever going backwards). The median summation likewise is a suitable average of the different
possible analytic continuations of the Borel transform. When we go beyond a singularity ω, we
must take a different combination of analytic continuations of the Borel transform: the function
we will integrate in the Laplace transform has therefore singularities at the points ω that cannot
be avoided and result in nonperturbative contributions to the resummed function.

The square root of the Stokes operator is simple, but since it gives quite an important weight
to paths which cross the real axis a large number of times, the obtained average may grow faster
than the lateral values. In [12], Ecalle shows how one could circumvent this problem through
accelerations, which allow to reduce the ambiguity between lateral summations from 1/exp(z)
to 1/exp(exp(. . . (z) . . . )), with theoretically any finite composition of exponentials, through the
control of ‘emanated’ resurgence. However, other averages are possible, the organic averages,
still compatible with the convolution product, which are essentially no larger than the lateral
determinations and therefore allow us to avoid this whole procedure. In any cases, these averages
still define from the Borel transform a function which is real on the real axis and has singularities
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on the real axis so that the sum is only defined in the positive half-plane, since it is impossible to
relate this integral to others on different integration axis.

At the approximation level we will reach in the present work, such subtleties will not have a
clear effect. However, they can become important if we are to improve on our treatment of these
nonperturbative contributions.

2 Rehearsal

We are still working with the model used in our previous investigations [5, 6, 4], the massless
supersymmetric Wess–Zumino model. Even if it is far from a realistic particle physics model, the
fact that we only deal with two-point functions and their simple dependence on a unique kinetic
invariant gives a more tractable situation than more realistic theories. Nevertheless, the presence
of singularities on all integer points for the Borel transform of the renormalization group β-function
is probably the generic case in massless exactly renormalizable QFTs, the kind we would like to
better understand for their relevance in the description of our universe.

Our former studies are all based on the same simple Schwinger–Dyson equation, solved through
the combination of the extraction of the anomalous dimension of the field from the Schwinger–
Dyson equation and the use of the renormalization group equation to obtain the full propagator
from this anomalous dimension. We will limit ourselves to the simplest one of the Schwinger–
Dyson equations, since it allows us to retain a degree of explicitness in the apparent explosion of
different series appearing in the object named the display by Jean Ecalle, an object which collects
all information on the alien derivatives of a function. A proper extension of the arguments put
forward in [13] should prove that any higher order correction to this Schwinger–Dyson equation
will only change higher order terms in the individual components of this display, letting its main
characteristic unchanged. The factorial growth of the number of high order terms beyond the large
N , planar limit would present a further challenge, but we will see that there are plenty of questions
to solve before.

The fundamental insight in [4] is that it is in the Borel plane, where the alien derivatives have
a clear meaning as singular parts of a function at a given point, that general properties are easier
to prove. However, most computations are easier to carry on in the form of transseries, where the
computations look like mechanical operations on formal objects. However, one important compo-
nent in the computation scheme of [4] was the contour integral representation of the propagator,
with its characteristic property that the possible contours change when considering different points
in the Borel plane. It would be interesting to give an interpretation of these contour integrals in
the formal scheme and recover how computations can be done using the expansion of the Mellin
transform, with subtracted pole parts, at integer points. However, we will see that the simple
approximations used for this work do not need such a development.

We start with the renormalization group equation (RGE) for the two-point function

∂LG(a, L) = γ(1 + 3a∂a)G(a, L), (15)

where we have used β = 3γ, which can be proved by superspace [14] or Hopf [15] techniques. A
derivation of this equation for the solution of a Schwinger–Dyson equation is detailed in [5], see
also [16]. Here L = ln(p2/µ2) is the kinematic parameter. Expanding G in this parameter L,

G(a, L) =

+∞
∑

k=0

γk(a)

k!
Lk (16)

(with γ1 := γ)2 gives a simple recursion on the γks

γk+1 = γ(1 + 3a∂a)γk. (17)

Therefore, at least in principle, it is enough to know γ to rebuild the two-point function.
On the other hand, we also have the (truncated) Schwinger–Dyson equation, graphically de-

picted as

( )−1

= 1− a . (18)

2Be aware that other authors [17, 18] use different conventions but the same γk notations.
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The L.H.S. is the two-point function while the R.H.S. contains two dressed propagators, which are
equal to the free propagator multiplied by the two-point function. Computing the loop integral
allows to write this equation as

γ(a) = a

(

1 +

+∞
∑

n=1

γn
n!

dn

dxn

)(

1 +

+∞
∑

m=1

γm
m!

dm

dym

)

H(x, y)

∣

∣

∣

∣

∣

x=y=0

=: aI(H(x, y)). (19)

with H known as the Mellin transform of the one-loop integral:

H(x, y) :=
Γ(1− x− y)Γ(1 + x)Γ(1 + y)

Γ(2 + x+ y)Γ(1− x)Γ(1 − y)
. (20)

The idea of [19], which was fully exploited in [6] is to replace the one-loop Mellin transform by a
truncation containing its singularities. Let us define

Fk := I

(

1

k + x

)

=
1

k

(

1 +

+∞
∑

n=1

(

−
1

k

)n

γn

)

. (21)

(which gives the contributions of the poles 1/(k + x) or 1/(k + y) of H) and

Lk := I

(

Qk(x, y)

k − x− y

)

=

+∞
∑

n,m=0

γnγm
n!m!

dn

dxn

dm

dym
Qk(x, y)

k − x− y

∣

∣

∣

∣

x=0,y=0

(22)

which contains the contributions from the part of H singular on the line k − x − y = 0. Here Qk

is a suitable expansion of the residue of H at this singularity, a polynomial in the product xy.
It was shown in [19] that these Fk and Lk obey renormalization group derived equations. Here

we are only interested in the equations of Lk which are

(k − 2γ − 3γa∂a)Lk = Qk(∂L1∂L2)G(a, L1)G(a, L2)
∣

∣

∣

L1=L2=0
=

k
∑

i=1

qk,iγ
2
i . (23)

The Schwinger–Dyson equations can also be written in terms of these functions. Since we are
looking for a resummation of the two-point function along the positive real axis, and since it was
shown in [4] that the Lk are responsible for the singularities of the Borel transform of γ (and
therefore of the two-point function) on the real axis, we will only take care of the terms of the
Schwinger–Dyson equation involving Lk. They have the very simple form

γ(a) = a
+∞
∑

k=1

Lk(a) + (contributions from Fk)= a+O(a2). (24)

In order to simplify the results of [4], we consider γ and all the other quantities as formal series
in r := 1/(3a) rather than in a. We then perform a Borel transform in r, according to the
conventions most used in the mathematical literature. The perturbative domain is then the one
for large values of r and typical nonperturbative contributions will be of the form e−nr for some
integer n. The advantage being that the singularities of the Borel transform γ̂ are now located in
Z∗ rather than Z∗/3. Let us notice that we now have γ̂(0) = 1/3, but what is most relevant is that

β̂(0) = 3γ̂(0) = 1.
As explained in [4], a perturbative analysis (i.e., for ξ small) of the Borel-transformed renor-

malization group equation suggests to write the Borel transform Ĝ := B(G− 1) as a loop integral

Ĝ(ξ, L) =

∮

Cξ

f(ξ, ζ)

ζ
eζLdζ (25)

where Cξ is any contour enclosing ξ and the origin. Writing the renormalisation group equation
(15) in the Borel plane and in term of the f(ξ, ζ) function we get

(ζ − ξ)f(ξ, ζ) = γ̂(ξ) +

∫ ξ

0

γ̂(ξ − η)f(η, ζ)dη +

∫ ξ

0

β̂′(ξ − η)ηf(η, ζ)dη. (26)
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3 Resummations of the anomalous dimension

We purposefully put a plural in the “resummations” of the title of this section to emphasize
that two distinct resummations will be performed here. First the median resummation and its
transseries analysis deliver exponentially small terms, then we sum the dominant terms of the
obtained transseries.

3.1 Transseries solution

We want to compute the leading coefficient of e−nr in the transseries expansion of β. Let us start
by writing the Schwinger–Dyson equation (24) and the renormalization group-like equation (23)
with the variable r. We obtain, while singling out the lowest order term coming from F1,

β =
1

r
+

1

r

+∞
∑

k=1

Lk + (contributions from Fk) (27)

and

kLk =
2

3
βLk − rβ∂rLk +

k
∑

i=1

qk,iγ
2
i . (28)

We are interested in the freedom in the solutions of this system of equations: the perturbative
solution is uniquely defined, but since it is a system of differential equations, it must have a space
of solutions. Using the fact that the two dominant terms of β are r−1 − 2/3r−2, the dominant
orders of the linearized equation for Lk are:

kLk = −∂rLk +
2

3
r−1(Lk + ∂rLk) (29)

The dominant order of the solution is:

Lk = mkr
2
3 (1−k)e−kr (30)

One can check that the additional terms coming from substituting this value of Lk in the system
of equations are smaller by at least r−2, so that they cannot change the exponent 2

3 (1− k) of this
solution, but only multiply this solution by a power series in r−1. Since a possible deformation
of the solution proportional to e−kr signals the possibility of a nonzero ∆k, we recover the results
of [4] on the possible forms of the alien derivations of β, now written in the formal model instead
of the convolutive one.

The computation of the r−1 corrections was carried out in [6] in the case of L1 and involves
summations over the effect of all the other Lk as well as over the Fk. The language was different,
but the resulting computations are totally equivalent to what would be the computation of the
terms proportional to m1 in a full solution. Such a computation nevertheless involves summations
over k which give highly nontrivial combinations of multizeta values, some of which cancel and the
others can be expressed as product of zeta values. In our following work [4], the introduction of
the contour integral representation of the propagator of equation (25) gave a simple interpretation
of these results and a prospective way of carrying the computations up to larger orders. We will
not consider these corrections here, since the simple study of the dominant terms gives already
quite interesting results.

The nonlinear nature of the system of equations (27,28) means that the general solution will have
terms with any product of the mk as coefficient. The behavior of exponentials under differentiation
and multiplication ensures that such a term will also have a factor e−nr with n the sum of the
indices of the mk in the coefficient. We therefore have that e−r only appears with the coefficient
m1, but e

−2r can have the coefficients m2 or m2
1, e

−3r, the coefficients m3, m2m1 or m3
1,. . . The

question then is to know which is the larger possible term for a given coefficient
∏

mk in the
evaluation of β. It turns out that the larger possible terms come from the product rβ∂rLk if Lk

was the source of the largest term in β with the same coefficient. The end result is that the largest
power of r coming in Lk for some product of mj including mk is 2

3

∑

(1 − j), giving a term with
an exponent less for β. The nice point is that the dominant term among the ones with the factor
e−nr is the one proportional to mn

1 , which has no additional powers of r for L1 and just the factor
r−1 for β.

8



We therefore can parameterize the sum of the dominant terms in L1 with

L1 =

∞
∑

n=1

cnm
n
1 e

−nr (31)

Using that at this order, β is r−1+r−1L1, the equation (28) for k = 1 gives the following recurrence
relation for the cn:

(1− n)cn =

n−1
∑

p=1

cn−p p cp (32)

If we define a formal series S by

S(x) :=
∑

n≥1

cnx
n. (33)

we obtain that a first transseries solution for L1 is given by

L1 = S(m1e
−r) (34)

3.2 Summation of the transseries

The previous subsection introduced the formal series S, and we need to know its properties, in
particular its radius of convergence. The inductive formula (32) for the cn’s implies a differential
equation for S(x) (seen as a formal series):

S(x)

x
− S′(x) = S(x)S′(x).

Dividing by S(x) and regrouping terms depending on S, one obtains:

S′(x)

S(x)
+ S′(x) =

1

x
.

The left hand side is the logarithmic derivative of the function F (x) := S(x)eS(x) so that we have

S(x)eS(x) = kx,

for some k ∈ R. From the definition of m1 in (30) and the comparison with the formula (31), we
see that c1 = 1, which also fixes k = 1. The presence of a minimum of the function u → ueu for
u = −1 with the value −1/e gives rise to a singularity of S(x) for x = − 1

e of the square root type.
Since it is the singularity nearest to the origin, it implies that the convergence radius of the series
is 1

e .
In fact, the above function inversion problem has been studied and the solution of the case

k = 1 is known as (the principal branch of) Lambert’s W -function. Using the initial condition
S′(0) = 1 and the fact that W ′(0) = 1 we find that the series S(x) of (33) is actually

S(x) = W (x). (35)

An explicit series representation of the Lambert W -function is known :

W (x) =
∑

n≥1

(−n)n−1

n!
xn.

This formula can be deduced from the Lagrange inversion formula. The convergence radius 1/e is
then a simple consequence of the Stirling formula for the factorial.

All in all we have shown that the sum of the lowest order terms in all nonperturbative sectors
of the anomalous dimension is

γres(r) = r−1W (m1e
−r) +O(r−2) (36)

and is defined in the region |m1e
−r| < 1/e of the complex plane.

The construction presented here is a particular example of “transasymptotic analysis”, which
suggests that similar formulae exist at any order in e−r. See for example [20] and references therein.
An interesting aspect of the analysis in [20] is that they show that the singularity of this lowest
order resummed solution signals a singularity of the full solution in its vicinity.
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3.3 Links with the alien calculus

In the preceding sections, we studied a possible transseries deformation of the perturbative solution
for the β-function, but to what use can it be put for the evaluation of the function? In particular,
could it be possible to have a determination of m1? Part of the response comes from the idea
of the bridge equations. Since the Stokes automorphism and its powers respect products and
commutes with the derivation with respect to r, the functions remain solution of the equations
when transformed by these automorphisms. Since in the formal model, the alien derivation ∆n

gives rise to a factor e−nr, the solutions after the action of a Stokes automorphism will be in the
form of a transseries.

Since the most general transseries solution is a function of the parameters mk appearing in
the linear deformations of the solution (30), alien derivatives can be expressed through derivations
acting on these parameters, giving bridges between alien calculus and ordinary calculus. The alien
derivation ∆n is, a priori, any combination of operations which lower the weights by n, so that
for example, ∆1 has not only a term proportional to ∂/∂m1, but also m1∂/∂m2 and many others.
Nevertheless, the same reasons which made the terms proportional to mn

1 dominate imply that the
coefficient f of ∂/∂m1 is the most important part of ∆1. A value for this coefficient f could be
extracted in [6] from the comparison of the asymptotic behavior of the perturbative series for γ
deduced from the singularities of the Borel transform and the known coefficients of this series.

The dominant term in the singularity at the point n necessarily comes from the coefficient of
mn

1 and can only be extracted by the fn(∂/∂m1)
n term in ∆n

1 . The n! coming from the iterated
differentiations is compensated by the 1/n! factor in front of ∆n

1 in the definition of ∆+
n , so that

we obtain, from the relation between alien derivatives and singularities of the Borel transform,
that L̂1 has a pole in n with residue cnf

n, while the only divergent part for β̂ is proportional to
−cnf

n log(|ξ − n|).
These singularities of the Borel transform are transmitted to the median average. In turn, these

singularities of the integrand produce nonperturbative contributions to the result of resummation,
so that the factors like f , determined through alien calculus, can be used to fix the unknown
coefficients in the transseries expansion. What is important is that the consistency of all the steps
of the resummation procedure with the products and derivation ensures that the result respects
the original equations and must therefore be of a form compatible with the transseries solution.
The influence of the singularity at 1 will therefore be sufficient to obtain the dominant part for the
singularities for all n.

Although we have been able to compute nonperturbative terms, with coefficients which could
be computed from the perturbative expansion of the anomalous dimension, the situation seems
quite complicated. Indeed the resurgent analysis seems to make the situation go from bad to worst:
instead of a unique formal series, we end up with formal series multiplying e−rn for each n, and
with furthermore coefficients which are polynomials in r−2/3 and log r of degrees growing with n,
with many undetermined coefficients. Moreover, each of these series are actually divergent and
need some form of resummation. However, we may remember that in many cases, divergent series
are not so bad news, and as Poincaré has put it, they are “convergent in the sense of astronomers”:
the first few terms give a fairly accurate approximation of the final result, as is the case for example
in quantum electrodynamics. Our position will therefore be to use the information we have and
forget for the time being about all the unknown quantities. We would of course prefer to have
arguments proving that indeed what we neglect is negligible, but it is the best we can do at the
moment.

We reshuffle the transseries and write them as series in r whose terms are series in e−r. This
operation is inspired by a remark of Stingl [21], page 70 about physical considerations on what the
“true” observables are, were put forward to provide a justification to this manipulation. The take
home message could be that it is important to keep all the terms of a convergent series but series
with 0 convergence radius could be truncated without remorse. A physicist way of dealing with
such a situation would be to look at how the results change when we add terms from the formal
series, but we would need at least one more term.

A more mathematical view could come from transmonomials [22], which are special functions
with simple properties under the action of alien derivatives. This could lead to an expansion of
the function where transmonomials get multiplied by “alien constants”, functions on which all
alien derivatives give zero and therefore easily computable from their power series expansion. The
simplest transmonomial U1, with the only non zero alien derivative ∆1U

1 = 1 would replace e−r

in all our transseries expressions and take care of the dominant terms at large orders neglected in
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the naive approach.
To conclude this short exposition of the idea of resumming the transseries, let us emphasize

that in other contexts, methods using grouping of terms of nonsummable families have been put
to good use to produce convergent expressions. Arbitrary groupings can produce arbitrary results,
but some well defined procedures have been shown to reproduce the results of a Borel summation.
A prime example is the arborification procedure presented in Ecalle’s work on mould calculus [23],
which separates terms in smaller parts to be regrouped in other objects. Our procedure might
be seen as an arborification where only ladder trees give nonzero contributions. The reader can
be referred to [24], Section 6 for a clear introduction of the arborification–coarborification in the
context of linearization problems. Other cases appear in the study of Dulac’s problem [12]. The
main advantage of such procedures is that they allow practical computation. It is thus possible
that the somewhat ad hoc computation presented above can also be justified.

4 Properties of the Green function

4.1 Nonperturbative mass scale generation

The mass of a particle is given by the position of a pole of the two-point function as a function of
the invariant p2 of the momentum. In our case, there is always a pole for p2 = 0, reflecting the fact
that we started from a massless theory, since the function G we are studying is a multiplication
factor for the free propagator, the same for all states of the supermultiplet. We define a mass
scale as the value of the external momentum p for which the Green function has a singularity. The
expansion of G in powers of the logarithm L = log(p2/µ2) is ill suited for such an analysis. We
expect the sign of p2 to fundamentally change the situation, the pole for a physical particle being
for a timelike p, while L only change by iπ when going from timelike to spacelike momenta.

This is why we will rather use the integral representation (25):

Ĝ(ξ, L) =

∮

Cξ

f(ξ, ζ)

ζ
eζLdζ.

It was shown in [4] that the function ζ 7→ f(ξ, ζ) has singularities at ζ = ξ and at ζ = 0. Therefore
we can expand the contour Cξ to infinity without changing the value of the integral. This being
done, we can make the lateral alien derivative go through the integral and obtain:

∆+
n Ĝ(ξ, L) =

∮

C

∆+
n f(ξ, ζ)

ζ
eζLdζ,

where the lateral alien derivative acts on the ξ variable. Taking the lateral alien derivative of the
renormalisation group equation (26) we get

(ζ−(ξ+n))∆+
n f(ξ, ζ) =

1

3
∆+

n β̂(ξ)+
1

3

n
∑

i=0

(

∆+
n−iβ̂ ⋆∆

+
i f
)

(ξ, ζ)+

n
∑

i=0

(

∆+
n−iβ̂

′⋆Id.∆+
i f
)

(ξ, ζ). (37)

We are looking for the dominant term in ∆+
n f(ξ, ζ) seen as a function of ξ. It will come from the

dominant term in ∆+
n β̂, which is constant in ξ, while all other terms give higher powers of ξ. It

will therefore be given by a term fn,0(ζ), which satisfies

(ζ − n)fn,0(ζ) = cnf
n.

Plugging this into the integral representation of ∆+
n Ĝ(ξ, L) we get

∆+
n Ĝ(ξ, L) =

cnf
n

n

(

enL − 1
)

+O(ξ2/3).

The transseries expansion of G deduced from these singularities of Ĝ is then

Gres(r, L) = 1 +
1

r

+∞
∑

n=1

cn
n
(fe−r)n

(

enL − 1
)

+ higher orders

Now, as we have done for the anomalous dimension in the previous section we can simply sum the
above series, without worrying on the other terms. If we neglect 1 with respect to enL = (p2/µ2)n,
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we obtain a function of feL−r with Taylor coefficients cn/n. Since the cn are the Taylor coefficients
of Lambert’s W -function, these are the coefficients of the primitive of the W -function divided by
x. This is a function which grows only logarithmically for positive arguments, but goes to 0 has
a three half power of the variable at −1/e. f was numerically computed in [6] to be 0.208143(4).
This shows that for an euclidean momentum where eL is positive, we are in a situation where the
function grows really slowly and the large terms of the series, proportional to (p2)n, combine to
a simple logarithmic correction to the propagator. Since propagators can be Wick rotated to the
euclidean domain in loop computations, this means that nothing prevents us, at this approximation
level, from defining consistently the renormalized theory. On the other hand, we have for a finite
value of p2 in the timelike domain a singularity of the propagator which defines a mass scale

MNP (r)
2 =

µ2

f
er−1. (38)

Let us notice that we find that the nonperturbative mass goes to infinity as r goes to infinity,
which corresponds to a going to 0+. This was to be expected. However this mass scale is not
renormalization group invariant, since a renormalization group invariant mass scale should involve
a factor r2/3. We hope that a more careful analysis can give back this factor so that we obtain a
fully consistent analysis of this nonperturbative mass scale.

Let us finally remark that the detour by the contour integral representation of G, which is very
valuable if we wanted to consider all the corrections proportional to powers of L in the expansion
of G, is not really necessary at this level of approximation. We could have simply deduced that a
term proportional to (p2)n appears when considering a e−nr term in the β-function.

4.2 Analyticity domain: a necessary acceleration?

We want to see how the resummed two-points function Gres could be obtained through Laplace
transforms, to better understand its analyticity domain. We make the bold approximation that
the size of the Borel transform at a point can be approximated by the contribution of the nearest
singularity. We have seen that the singularity in the point n is dominated by the contribution
1/n!∆n

1 Ĝ in the lateral derivative, which has the factor cn(p
2)n. The coefficients cn have also a

power like behavior so that the domain in r where the Laplace transform of Ĝ is well defined
shrinks when p2 grows. Since we would like that our theory defines the two-point function for
any values of the momentum, we cannot define it by a simple Laplace transform. Indeed, even if
the reformulation of the Schwinger–Dyson equation we use does not make it explicit, the proper
definition of the two-point function is necessary to compute the loop integral appearing in the
definition of the β function. It is therefore important to have at all stages computation which are
uniform in p.

The fact that the dominant terms in the transseries representation sum up to an analytic
function of p2, with a well behaved extension to any positive values of p2 is of no relevance here:
the Laplace transform is well defined only if p2 is small enough that we are in the convergence
domain of the sum of the dominant terms. We need

|e−r| ≤ eκ = |c|−1e−L+1,

in other terms that the real part of r should be larger than −κ, which grows like L.
In order to be able to do the Laplace integral, we could think of doing a Borel transform with

respect to p2, but we cannot see how it could be possible to use the Borel-transformed two-point
function as an ingredient of the Schwinger–Dyson equations. A possible way out is rather through
acceleration. This formally corresponds to making a Laplace transform followed by the Borel
transform of the function expressed in terms of a new variable, which is a growing function of the
old one. If the Laplace transform was well defined, one sees that there exists a kernel K(ξ1, ξ) such

that the new Borel transform f̂1 of a function f is given by:

f̂1(ξ1) =

∫ ∞

0

K(ξ1, ξ)f̂(ξ)dξ. (39)

For fixed ξ1, the kernel K(ξ1, ξ) vanishes faster than any exponential when ξ goes to infinity,
allowing this acceleration transform to remain defined in cases where the Laplace transform in
the original variable was not possible. In fact, since the Borel transform remains of exponential
growth, but only with a coefficient which can be arbitrarily large, the acceleration transform can
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be defined whenever its kernel has a slightly faster decay than the exponential. This is the case
already for the kernel associated with the change of variable r → r1 = er, for which the kernel
behaves like exp(−ξ log ξ) for large ξ and fixed ξ1.

The terms we kept of the transseries expression of the two-point function translate in the
following value for its accelerated Borel transform in terms of the Borel transform Ŵ of the Lambert
function:

Ĝ1(ξ1, p
2) ≃ Ŵ (ξ1p

2) (40)

Since the Lambert function is holomorphic in a neighborhood of the origin, its Borel transform
is an entire function, so that Ĝ1 is well defined at this approximation level. However, if the final
Laplace transform is to be valid for any value of p2, it must be done in directions such that Ŵ is
smaller than any exponential, and this in turn restrict the angular width of the domain in r1 = er

where the field theory can be defined by resummation. In turn, this implies that the imaginary
part of r is bounded: the limits of the analyticity domain are lines of fixed imaginary part, which
correspond to circle arcs tangent to the real axis in the original coupling a. The ensuing analyticity
domain is quite similar to the one proposed by ’t Hooft [25] for any sensible quantum field theory.

It remains to know whether for some functional of the two-point function singularities of the
Borel transform in the variable ξ1 could appear, ensuring that there are non trivial alien derivatives
in this second Borel plane and thus proving the unavoidable character of acceleration. We must
remember that the approximation of the system of equations obeyed by the renormalization group
function used in this work is a rather crude one. Conceptually, we do not have a clearly defined
differential system, but a functional equation involving the two-point function with its dependence
on the momentum. For the perturbative solution, we could transform it to an infinite system of
differential equations by considering the function to be given by its Taylor series at the origin in
the variable L, but this approximation is not suitable for the computation of the properties of
the analytic continuation of the Borel transform. We had to introduce terms associated with the
poles of the Mellin transform to obtain deformation parameters naturally associated with each
of the terms enr, with n any nonzero integer. But our system of differential equations has other
components, since we also need the coefficients γk. This suggests that the terms we discussed
in [4] do not exhaust the possible transseries deformations of the solution, but the change in the
representation of the two-point function which would allow to pinpoint these additional possible
terms goes far beyond the ambition of this work.

In fact, this acceleration procedure should not be viewed with too much fear. It can be seen
as a tool to transform the difficult problem of bounding the analytic continuation of the Borel
transform into the much simpler problem of finding some kind of formal solutions which allow to
characterize the possible alien derivatives in a second Borel plane. In any case, what happens in
the different Borel planes are somehow unrelated, so that the process of analytic continuation,
analysis of the singularities and eventually averaging of the Borel transform is totally independent
of the fact that it will be followed by a Laplace transform or an acceleration transform.

Conclusion

Using to a bigger extent the power of alien calculus and transseries expansions we have been able
to go much further than in our previous work [4]. The dominant terms of the singularities of the
Borel-transformed anomalous dimension of the theory has been computed. This computation was
carried out by using transseries expansions and considering the effect of lateral alien derivatives
on the Schwinger–Dyson and the renormalization group equation of the theory. Then, using a
suitable form of the median resummation, this gave the first order in every ‘instantonic’ sectors of
the anomalous dimension of our theory.

Following a procedure suggested by Stingl, we have kept in this transseries solution the terms
of a formal series in e−r, forgetting the terms in (negative) powers of r. This series of the dominant
terms turned out to be convergent and its sum evaluated.

The same analysis could also be transferred to the two-point function of the theory. Indeed, the
two-point function is essentially determined by the anomalous dimension through the renormaliza-
tion group. The important point is that the singularity of the anomalous dimension in the point
n of the Borel plane, or a term e−nr in the transseries expansion, gives rise to a term proportional
to (p2)n for the two-point function. What looked like negligible contributions to the anomalous
dimension becomes dominant in the two-point function for large p2. While an explicit value of the
factor multiplying p2 could not be obtained, the functional dependence can be obtained. In the
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euclidean domain, which corresponds to p2 positive with our conventions, the asymptotic behavior
of the Lambert function means that this series of powers of p2 has a finite radius of convergence.
These powers of p2 sum up to something of merely logarithmic growth. This final asymptotic
behavior may however appear only for so large values of the momentum that it would be totally
invisible in usual nonperturbative studies, where the ratio between the largest and the smallest
scales that can be studied is rather limited. Nevertheless the two-point function has, at this
approximation level, a quite regular behavior at the smallest scales, in contradistinction to the
divergence for some finite scale obtained with finite order approximations of the β-function: many
general arguments for the triviality of such a quantum field theory with a positive β-function break
down. We must however remain cautious, since we are just scratching the surface of the kind of
beyond perturbative theory analysis resummation theories allow, and many new phenomena may
be revealed by a more careful study.

The simple analytic dependences on p2 of all the terms in the expansion of the two-point
function make it easy to study its analytic continuation to the timelike domain, with negative
p2. In this case, a singularity appears which is of square root type. This singularity defines a
nonperturbative mass scale for the theory, but our computation is not fully satisfying since this
mass scale is not fully renormalization group invariant.

The fact that even our fairly simple computation revealed a nonperturbative mass scale for
the theory is quite remarkable. Also we did not have to choose the functional dependence of the
two-point function, but it was provided by our computation. In our case, singularities of the Borel
transform were associated with ultraviolet divergent contribution to the two-point function: in an
asymptotically free theory like QCD, we would obtain infrared divergent contributions, but likewise
it could be possible to sum this contributions to obtain well behaved propagators up to the lowest
scales. Since we do not decide a priori their functional form, we may have signs of confinement in
the form of states having singularities different than poles in the timelike domain.

Considerations about the way that the sum of the terms of the transseries could come from the
Laplace integral give indications on the growth of the Borel transform, which is harder to check:
changing the variable on which the final Laplace transform is done corresponds to an integral
transform (dubbed acceleration by Ecalle) with a kernel that have faster than exponential decay at
infinity. A suitable change of variables therefore allows to define a new germ of analytic function
near the origin, the singularities of which can be studied by a new set of alien derivations. If all
such possible accelerations do not present singularities, the first Borel transform should be suitable
to directly define the sum, giving an indirect check on the growth of the Borel transform.

Limits on the analyticity domain for complex values of the coupling constant devised by ’t
Hooft [25] and Stingl [21] suggests, contrarily to what Stingl said in some papers, that at least
one such acceleration should be needed in the case of nonabelian gauge theories. This question
is linked to the shape of the analyticity domain in the coupling constant of the theory, that we
did not study. However, in the case of the two-point function, if r is given an imaginary part
of iπ, e−r changes sign and the singularity which was for timelike momenta enters the euclidean
domain. This should pose serious problems to the continuation of the theory to such values of the
coupling, so that r should be limited to a band of finite extension in the imaginary direction, which
converts to the horn-shaped domains proposed by ’t Hooft when converting back to the coupling
proportional to r−1.

It should certainly be interesting to compute the higher order corrections to the transseries
solutions of the system of equations studied here and try to deduce their full system of alien
derivations. An effective computation however appears to be quite a formidable task, but in what
are certainly simpler cases, mould calculus has been shown to provide for quite explicit results,
expressing results in terms of resurgent monomials [22]. With this strategy, one could avoid as
much as possible to work explicitly in the Borel plane, even if the analytic continuation of functions
in the Borel planes (plural if acceleration is needed) is the ultimate justification of the computations
one may attempt.

Moreover, our study could also be carried out when including additional terms involving higher-
loops primitively divergent diagrams in the Schwinger–Dyson equation. This should allow to
expand the results of [13], which only considered the asymptotic behavior of the perturbative
series, that is, the singularities closest to the origin of the Borel transform.

In this work, we limited ourselves to the two-point functions, which have a simple dependence
on a unique Lorentz invariant: a general study of quantum field theory would certainly benefit
from a careful investigation of the analytic properties of the Borel-transformed Green functions in
all their variables.
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Finally, let us notice that the probable usefulness of mould calculus in the realm of quantum
field theory expands the list of elements of Ecalle’s theory of resurgence which should be used in
physics: we have used alien calculus, median resummation and it seems very likely that acceleration
will be needed in the next steps of our program. Bridge equations are nowadays a common tool of
some physicists (see e.g., [26]) and we argued that we might also use mould calculus while resurgent
monomials will come into the game. Proper use of these tools could well provide solutions to old
questions in quantum field theory.
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42(1-2):73–164, 1992. URL: http://eudml.org/doc/74962.

[24] Frédéric Fauvet and Frédéric Menous. Ecalle’s arborification–coarborification transforms and
Connes–Kreimer Hopf algebra. 2012. arXiv:1212.4740v2.

[25] G. ’t Hooft. Can We Make Sense Out of “Quantum Chromodynamics”?, pages 943–982.
Springer US, Boston, MA, 1979. doi:10.1007/978-1-4684-0991-8_17.

[26] Iñês Aniceto, Ricardo Schiappa, and Marcel Vonk. The resurgence of instan-
tons in string theory. Comm. in Number Theory and Physics, 6(2):339–496, 2012.
doi:http://dx.doi.org/10.4310/CNTP.2012.v6.n2.a3.

16

http://arxiv.org/abs/1005.0196
http://dx.doi.org/10.1007/s11005-010-0415-3
http://arxiv.org/abs/math/0202234
http://dx.doi.org/10.1007/s002220100153
http://arxiv.org/abs/hep-ph/0207349
http://dx.doi.org/10.4171/073-1/3
http://eudml.org/doc/74962
http://arxiv.org/abs/1212.4740v2
http://dx.doi.org/10.1007/978-1-4684-0991-8_17
http://dx.doi.org/http://dx.doi.org/10.4310/CNTP.2012.v6.n2.a3

	Elements of resurgence theory
	Borel transform and Borel resummation
	Stokes automorphism and Alien derivative
	Real resummations

	Rehearsal
	Resummations of the anomalous dimension
	Transseries solution
	Summation of the transseries
	Links with the alien calculus

	Properties of the Green function
	Nonperturbative mass scale generation
	Analyticity domain: a necessary acceleration?


