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Abstract

We propose a modified version of the Flow Deviation method of Fratta,
Gerla and Kleinrock to solve multicommodity problems with minimal conges-
tion and a bounded number of active paths. We discuss the approximation of
the min-max objective function by a separable convex potential function and
give a mixed-integer non linear model for the constrained routing problem. A
heuristic control of the path generation is then embedded in the original al-
gorithm based on the concepts of cleaning the quasi inactive paths and the
reduction of the flow width for each commodity. Numerical experiments show
the validity of the approach for realistic medium-size networks associated with
routing problems in broadband communication networks with multiple proto-
cols and label-switched paths (MPLS).
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1 Introduction

We will consider a network routing problem with multiple pairs of origins and des-
tinations where we want to minimize the maximal relative congestion on the arcs
of the network under the restriction that the number of paths used to carry the traf-
fic is bounded. The problem of minimizing the flow on the most congested link is
of valuable interest for the design of data communication networks (see [4]). This
basic problem is known to be hard to solve even if it can be written as a linear pro-
gram. When additional constraints are present in the model, like path restrictions as
considered here, it will result in very difficult problems for which exact methods are
likely to be useless (see [15] for instance).

The particular path restriction we consider here is that the number of paths which
support any feasible commodity flow is bounded by a given number (possibly de-
pending on the commodity). Of course, when that number is equal to 1, we get the
classical and difficult non bifurcated routing problem of unsplittable flows as de-
noted by Kleinberg [13], and when the number is very large, we obtain the relatively
easier routing problem with any flow splitting allowed. The intermediate situation
considered here is of practical interest when dealing with label switched paths (LSP)
in modern broadband communication networks. Indeed, in multiple protocol label-
switched networks (MPLS) like all-optical IP backbones, different LSP are allowed
to support the traffic for a given pair of nodes, but too many LSPs will deteriorate
the performance of the protocols. One should thus try either to minimize the total
number of LSPs (thus minimizing the number of wavelength conversions) with ad-
ditional delay bounds to avoid congestion (see [3]) , or to minimize the congestion
with bounds on the number of supporting LSPs. Observe that the first choice turns
to be much more intricated as it includes the problem of searching a minimal set of
paths to carry a given feasible flow, which is purely combinatorial. This is why we
focus here on the second choice.

We will analyze here the adaptation of the Flow Deviation algorithm for Net-
work Routing (see [4]) to this constrained minimal congestion problem. As the
Flow Deviation method was designed to solve multicommodity flow problems with
separable convex costs, we will show first how the maximal congestion cost func-
tion can be approximated by these nonlinear functions, following earlier approaches
based on polynomial approximation schemes and potential functions (see Bien-
stock’s book for a comprehensive state-of-the art, [6]).
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The Flow Deviation will be briefly surveyed in section 3, with emphasis on
the path flow updates. In section 4, the routing model with a bounded number of
paths will be established and different heuristic procedures will be proposed. These
algorithmic issues will be validated in the last section.

2 Minimal congestion problems and potential func-
tions

In the remainder, we will call active a path carrying a positive path flow.

Let G = (V,E) be a directed graph such that V is the set of nodes with |V |= n,
and E is the set of arcs with |E|= m. Each arc is assigned a capacity Ce,e ∈ E, and
T is a traffic requirement matrix such that, for each pair (i, j) of nodes, ti j represents
the amount of traffic required from node i to node j. Each pair of nodes such that
ti j > 0 will be referred to as a commodity and the index k will be associated with a
commodity, i.e. a pair of origin and destination nodes (respectively ok and dk), and
a traffic requirement tk = tokdk . The total flow on a given arc e ∈ E will be denoted
by xe = ∑k xk

e where xk
e is the amount of commodity k routed on arc e. In the node-

arc formulation of the multicommodity flow problem, we will need the node-arc
incidence matrix A, (where aie = +1,a je = −1, if e = (i, j) ∈ E) to express the
individual flow constraints as F k = {xk ∈ IRm | Axk = bk,xk ≥ 0}, where

bk
i =







+tk if i = ok

−tk if i = dk

0 otherwise

The basic problem of minimizing the most congested arc in the routing of a
multicommodity flow consists in minimizing the piecewise linear convex function
f (x) = maxe

xe
ce

. The problem may nevertheless be modelled as a linear program by
adding an additional variable z as described below :

(MINCONG) min z

s.t.

{

∑
k

xk
e−Cez≤ 0, ∀e ∈ E

xk ∈ Fk, k = 1, . . . ,K
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Even if it is a linear multicommodity flow problem, thus an LP which can be
solved by standard decomposition techniques exploiting the underlying flow struc-
ture, it is generally considered a hard problem. The first reason why this occurs is
that the objective function f is convex piecewise linear and not separable with re-
spect to arcs. The second reason is that it produces optimal solutions with a large
number of active paths, being in that sense equivalent to the Maximum Concurrent
Flow problem as shown below. Bienstock has reported in [6] a set of numerical
experiments on very large maximum concurrent flow problems (with up to 4 • 10 5

rows and 2•106 columns) exhibiting abnormal cubic growth of the cpu time to solve
them with the CPLEX dual code.

Observe that (MINCONG) is formulated without explicit capacity constraints
on the total arc flows. This means that, besides its natural applications to congestion
control in data networks, the routing problem (MINCONG) may be considered as
an optimization formulation of the multicommodity flow feasibility problem, as we
have the following relations : (MINCONG) is feasible if and only if there exists at
least one path linking each origin to its destinations. Let z∗ be an optimal value for
(MINCONG); there exists a feasible multicommodity flow if and only if z ∗ ≤ 1.

The path structure of an optimal solution of (MINCONG) can be analyzed by
considering its arc-path formulation. Let Pk be the set of paths linking origin ok with
destination dk and xkp be the path flow flowing on path p ∈ P k, i.e. xkp is the portion
of the demand tk routed on path p. The arc-path version of (MINCONG) is then :

(PCONG) min z

s.t.















∑
k

∑
p;e∈p

xkp−Cez ≤ 0 e ∈ E

∑
p∈Pk

xkp = tk k = 1, . . . ,K

xkp ≥ 0 k = 1, . . . ,K, p ∈ Pk

We recall that a path is active when it carries some positive flow; an arc e will be
called critical when it corresponds to the maximal congestion, i.e. when xe = Cez.
An active path containing critical edges will be called a critical path. Suppose now
that some commodity is routed on a critical path p at the optimal solution and that
there exists a second active path p′ supporting that commodity which is not critical.
Both paths define a cycle, so that one can modify the solution deviating a small
quantity from p to p′. A new basic optimal solution should be obtained when p′
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turns to be critical. That situation can thus only occur when there are multiple
optimal solutions, else :

Proposition 1 Suppose (PCONG) has a unique optimal solution; then, if any com-
modity is routed on a critical path in an optimal solution of (PCONG), then all paths
used to route that commodity are critical.

An optimal solution to (PCONG) will contain at most K + σ active paths (and at
least K), where σ is the number of critical edges.

As observed in [21], (MINCONG) is also strongly related to the Maximum Con-
current Flow problem (MAXTHRU), where one wants to maximize the throughput
of the network for a given set of capacities. The throughput Z of the network is a
load factor that multiplies the traffic matrix. In the model shown below, X k repre-
sents again the k-th commodity flow :

(MAXTHRU) max Z

s.t.

{

∑
k

X k
e ≤ Ce

X k ∈ Fk(Z) k = 1, . . . ,K

where Fk(Z) = {X k ∈ IRm |AX k = Zbk,X k ≥ 0}.

One can easily verify that, for any optimal solution x∗ of (MINCONG), with
optimal value z∗, there exists an optimal solution X ∗ of (MAXTHRU), with optimal
value Z∗, such that x∗ = z∗X∗ and z∗ = 1/Z∗. Moreover, the crucial fact is that both
problem solutions share the same set of active paths.

Both problems (MINCONG) and (MAXTHRU) have received a lot of attention
in the past decade, namely since the seminal paper by Shahrokhi and Matula [21]
who first proposed a fully polynomial approximation scheme to solve (MAXTHRU)
with uniform capacities. They showed that the minimization of a separable expo-
nential penalty function on the arcs yields a flow with a nearly maximal throughput.
They chose the following penalty function :

φe(xe) = exp(
2m2

ε
xe)
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where ε is a positive parameter which defines the approximation. They found a
complexity bound of O(nm7/ε5) and showed that the number of active paths is in
O(m3/ε2). Faster algorithms based on refinements of that exponential penalty func-
tion have been proposed later and extended to non uniform capacities and to other
packing and covering problems (see [17], [12], [11]). Following Bienstock in [6],
we will denote these separable penalty functions by the term of potential functions.

3 The flow deviation method

The Flow Deviation method (FD) is an adaptation of the classical linearization algo-
rithm of Frank and Wolfe [9] to solve multicommodity flow problems with convex
costs. It has been first proposed by Fratta, Gerla and Kleinrock [10] in the context
of designing packet-switched networks and has been widely used by the transporta-
tion community (see [16]) and in telecommunications networks (see [4]). We recall
below the formal ideas behind Frank-Wolfe’s algorithm for general nonlinear pro-
grams with linear constraints :

Minimize Φ(x)

s.t. Ax = b

x≥ 0

The method proceeds by successive linearization solving LP subproblems at each
iteration t where the gradient ∇Φ(xt) has been computed. Let x̃t be the optimal
solution of the subproblem at iteration t

x̃t = Argminx∈P∇Φ(xt)• x

where P = {x ∈ IRn |Ax = b,x≥ 0} is the polyhedron of feasible solutions supposed
bounded. Thus, we can assume that x̃t is an extreme point of P. The direction dt =
x̃t − xt is a descent direction in the sense that the directional derivative ∇Φ(xt) • dt

is strictly negative. Then the new iterate is obtained by carrying out a line search on
the segment [xt , x̃t ] with the non linear function Φ. Convergence results have been
obtained in the strictly convex case (see [5] for example) but the method suffers from
very slow convergence tail which is evidenced by the following fact : the solution
of the non linear program is in general not a vertex of the feasible polyhedron so
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that, as the sequence of feasible solutions converges towards a point on a face of the
polyhedron, the angle between successive descent directions tends to 180◦ (see Fig.
1). It is shown in [5] how typical sublinear convergence rate can be exhibited in very
simple and low-dimensional situations. This drawback is somehow compensated by
the observed fact that nearly optimal solutions -typically within 1% of optimality -
can be obtained very quickly.

x2

x1x0

xopt

x∗

Figure 1: Zigzagging convergence of Frank and Wolfe’s method

On the other hand, the positive aspect of the implementation of Frank-Wolfe’s
method to multicommodity flow problems is the simplicity of the subproblems res-
olutions which reduce to shortest-path computation and the solution update which
consists in fairly deviating flows from the active paths towards the new ones without
explicitly computing the individual commodity flows as we can see below.

Now, to apply the Flow Deviation method to (MINCONG), we need to approx-
imate the non smooth congestion function f (x) = maxe xe/Ce by a smooth convex
function. This can be done by using a separable potential function as shown in the
former section. An interesting link between the Flow Deviation algorithm and the
resolution of (MINCONG) has been analyzed recently by Bienstock and Raskina
in [7]. They proposed an algorithm to solve (MINCONG)which alternates between
a magnification step where the throughput is increased for a fixed congestion and
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a potential reduction step where congestion is minimized for a fixed throughput.
That latter step is realized by performing flow deviation inner steps with the Klein-
rock’s congestion function used in [10]. The interesting fact is that this function
has an interpretation as a measure of the Quality of Service (QoS) of the network.
It is indeed the average delay suffered by a data packet on arc e. In [10], indepen-
dence assumptions with Poisson arrivals on the queuing network lead to Kleinrock’s
delay function which is proportional to Φe(xe) = xe

Ce−xe
. The total cost is simply

Φ(x) = ∑e Φe(xe). Observe that the objective function acts as a barrier function on
the capacity constraints which can thus be ignored in the model :

Minimize Φ(x)

s.t. xk ∈ Fk,k = 1, . . . ,K

where Fk = {xk ∈ IR|E| |Axk = bk,xk ≥ 0} is the set of flows for commodity k.

Assume that we get a strictly feasible multicommodity flow at iteration k, i.e.
such that xe < Ce,∀e. Then, the linearization step of (FD) reduces to separate
shortest-path computations for each commodity k with arc lengths ∇Φe(xt

e). The
solution x̃t corresponds to the situation where all demands tk are routed separately
on these new paths. Note that x̃t may not satisfy the capacity constraints. The new
solution xt+1 is obtained by carrying out a line search on the segment [xt , x̃t ]. Note
again that the new solution will be forced to strict feasibility by the barrier function.

The main point in the procedure above is the fact that all computations are per-
formed on the total flow variables. However, in some situations, one may be inter-
ested in computing the optimal path flows. An arc-path formulation is then neces-
sary and the (FD) iterations can be carried out on the path flow variables as explained
in [4]. The first step of the procedure is unchanged so that, if p̃ is the shortest path
with the first-derivative arc lengths for a given commodity k, then we set x̃k p̃= tk and
x̃kp = 0 for p 6= p̃, so that the flow deviation step can be computed in the following
way :

xt+1
kp = xt

kp +θt(x̃
t
kp− xt

kp),∀p ∈ Pk

where θt is the optimal step size which minimizes the objective function over all
θ ∈ [0,1]. As mentioned before, the method is a descent algorithm so that the values
Φ(xt) decrease monotonically. On the other hand, we can obtain easily a lower
bound of the optimal value at each iteration by computing L̃Bt = Φ(xt)+ ∇Φ(xt) •
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(x̃t − xt); these succesive values need not increase monotonically, so we must keep
the highest value as the current lower bound

LBt = max
h=1,...,t

L̃Bh

In the original (FD) method, an equal fraction of the flow on the nonshortest
paths is shifted to the shortest path. One may observe that this update of path flows
will tend to increase monotonically the number of active paths. Variants of the basic
Flow Deviation method can be built by modifying one of the inner steps of the
algorithm, i.e.

• either by modifying the search direction, for instance by substituting the shortest-
path calculations by min-cost flow subproblems for each commodity,

• or by deviating non uniform flow proportions on the newly generated paths.

To understand the first strategy, one can add the redundant constraints xk
e ≤Ce,∀e,k

to the model (MINCONG); after the linearization, the direction-finding subproblem
of (FD) decomposes now in K minimum-cost flow problems. The computational
overhead of these subproblems compared to the original shortest-path calculations
is compensated by the choice of feasible paths (considering one commodity at a
time). But the drawback is that more paths are likely to be generated which is ex-
actly what we do not wish, and the path flow updates are not so straightforward as
in the original method. Our testing with that variant has confirmed these difficulties
and we had to decide not to implement it in our algorithm. Observe nevertheless
that some authors have chosen to implement min-cost flow computations instead of
shortest-path calculations to improve the worst-case behaviour of some approxima-
tion algorithms (see [12] or [20]).

There are many different strategies to modify the search direction which result
in non uniform deviations from the current active paths to the shortest one. Second-
order information can be used to yield Newton or Quasi-Newton directions as sug-
gested in [4]. Conjugate gradient strategies have also been tested in earlier works
(see [14]). Again, the expected gain in convergence rate is overtaken by the extra
work of performing each iteration and reconstituting the path support.

We will discuss in the last section heuristic procedures to carry out (FD) steps
with a bounded number of paths.
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4 Bounding the number of paths

We will finally consider a more complex but realistic situation where some path
constraints are added to the (MINCONG) model. A way to find an interesting com-
promise between low congestion and unsplittable flow is to add some constraints on
the number of active paths for each commodity. The general case has been scarcely
considered in the literature, the research focussing mainly on the very special cases
where either a single path is forced for each commodity or two disjoint paths are
required for security reasons (see Kleinberg’s thesis [13] for example). Another in-
teresting type of constraints is the case of k-splittable flows where each commodity
flow may be splitted uniformly among k routes [2]. Besides these studies, approxi-
mation and heuristic techniques have been devoted to the reduction of the number of
supporting paths with a linear or non linear objective function (see [8], [18], [19]).

Let Rk,k = 1, . . . ,K be the maximum number of paths on which commodity k
can be routed. Thus a feasible routing is a set of Rk paths chosen in the set Pk

for each k such that ∑Rk
p=1 xkp = tk,k = 1, . . . ,K. It can be referred to as a (non

uniform) k-splittable flow, following Skutella and others. In [18], additional con-
straints on the size of the trunks (path capacities) are considered. We will not con-
sider these constraints here but instead use the congestion objective function dis-
cussed in the previous sections. These problems are all known to be NP-complete
as soon as Rk is lower than the number of paths supporting the optimal solution of
(PCONG). A mixed-integer programming formulation can be formalized to model
the bound on the number of paths, introducing 0-1 variables associated with each
path in (PCONG) :

(BPCONG) min z

s.t.











































∑
k

∑
p;e∈p

xkp−Cez ≤ 0 e ∈ E

∑
p∈Pk

xkp = tk k ∈ K
xkp− tkykp ≤ 0 k ∈ K , p ∈ Pk

∑
p∈Pk

ykp ≤ Rk k ∈K
xkp ≥ 0 k ∈ K , p ∈ Pk

ykp ∈ {0,1} k ∈ K , p ∈ Pk

In the following, the number of active paths to support a given feasible flow will be
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called the flow width. If one solves a capacitated multicommodity flow problem with
linear costs, the total number of active paths at the solution is at most K + m, and,
supposing K = O(m), this results in an average of 2 active paths per commodity.
In practice, unfortunately, many commodities will be routed on a single path and a
few of them will spread their flow on a large number of paths. Now considering an
uncapacitated model with a nonlinear barrier function as above, the flow width at
the optimal solution can be bounded thanks to Caratheodory’s theorem by m+1 for
each commodity. This is still a too large number and, even worse, the behaviour of
the (FD) procedure will tend to add more paths than necessary in the construction of
the current solution. Indeed, supposing one new path is generated at each iteration,
as the procedure deviates flow in equal proportion from all active paths to these new
ones, the flow width will monotonically increase with the iteration count. This nasty
fact could be avoided at the cost of eliminating redundant paths in the definition of
the current solution as a convex combination of path flows. Typically, pivoting steps
are needed to compute the smallest representation in term of path flows.

The question we address here is how to maintain a limited number R of paths in
the (FD) process. The difficulties to achieve this goal are :

• Global optimality will in general be far out of reach because most situations
will result in NP-hard problems;

• the arc-path model being implicit, we can only reroute the flows issued from
the cancelled paths towards the already generated paths;

• feasibility issues turn to be crucial as one does not know if the network will
be able to support the traffic on a smaller number of paths.

The central idea to approximately solve (BPCONG) is to adapt the Flow De-
viation (FD) to the case of k-splittable flows. One can observe that the same idea
has been used very early in the seminal paper by Fratta, Gerla and Kleinrock [10]
who applied it to the particular case of unsplittable flows (R k = 1,∀k). The heuristic
procedure simply tries to deviate all the demand on the newly generated shortest
paths without violating any capacity constraint. This can be performed commodity
per commodity until no improvement in the objective function is observed. It seems
clear that that simple method can stop too early with a very poor feasible solution
unless the traffic load is very low. Besides that, the major problem with the adapta-
tion of (FD) to k-splittable flows is the accumulation of active paths in the iterative
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process. Indeed, the flow is deviated in equal proportions from all current paths to
load the new one and, either all previous path flows are set to zero (θ t = 1) or all are
decreased (0 < θt < 1) and the flow width increased by one unit, the latter situation
being the most likely to occur. Now observe that the general problem to find a set
of paths supporting a given feasible flow has in general many solutions. Indeed,
if Mk is the arc-path incidence matrix associated with the set Pt+1

k of paths for the
k-th commodity after updating the flows at iteration t and x t+1 (resp. f t+1) is the
path flow vector for the new active paths (resp. the arc flow vector), we look for a
solution of the following linear system :



















M1 · · · Mk · · · MK

eT

. . .
eT

. . .
eT



















xt+1 =



















f t+1

d1
...

dk
...

dK



















where e is a vector of 1. This system always possess at least one solution with non
negative components (the one which corresponds to the classical uniform deviation
and used all paths in the current representation), but we should be able to find a better
solution using less paths for the same arc flow values. Unfortunately, the problem
to find a minimum supporting path set for a given flow, i.e. to compute the minimal
flow width, is NP-hard (see [22]). Moreover, the indetermination in the definition of
the path support is more intricate in the case of multicommodity flows as, for a given
feasible multicommodity flow, there are in general an infinity of individual arc flow
solutions which satisfy the multicommodity flow constraints ∑k xk

e = xe,∀e ∈ E. For
a single positive flow on a directed graph, the flow decomposition theorem (see [1])
guarantees there exists a support with at most n + m paths and cycles (and at most
m cycles). When the only directed cycles in the network are the ones which use the
return arc from the sink back to the source, it can be easily seen that the minimum
number of active paths is bounded above by m− n + 2 (using paths with linearly
independent incidence vectors). But this number will in general be too large to be
of practical interest as network protocols do not allow for a splitting in more than,
say, 10 paths, even in large dense networks.

The basic ingredients of our procedure are :

Cleaning the poorest routes: the cleaning procedure is based on the idea that some
routes belonging to the initial solution may not belong to the optimal solution. Then,
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the flow deviation procedure will decrease the amount of flow but will still maintain
a positive quantity of flow on these routes. Thus a first strategy to reduce the number
of paths consists in canceling the paths which support a quantity of flow which is less
than a given relative threshold. The solution is then updated, either by optimizing the
cost on the corresponding reduced set of paths before generating any new path, or by
fairly sharing the canceled quantity of traffic on the remaining paths. Observe that
the new objective function value can have increased during that phase, but in most
situations, the canceled paths will not be active any more in the future solutions,
including the optimal one.

Iterative loading of commodities: a second strategy, already mentioned in the case
of unsplittable flows, consists in updating the flow one commodity at a time. This
can be interpreted as a Gauss-Seidel like version of the Flow Deviation method,
where the line-search is performed on a single commodity flow. As a consequence,
the stepsize θ wil be greater and more path flows will decrease significantly with a
higher probability to be canceled.

Avoiding unprofitable shortest path calculations: in the original (FD) algorithm,
a shortest path is computed for each commodity at each iteration. However, com-
putational experiments show that, most of the time, the new shortest path already
belongs to the current solution set of active paths. Only few brand new improving
paths are identified during the optimization (typically, less than 100 paths are stored
at the end of several thousands FD iterations). Then, it may be interesting to try to
look for an improving path among the active paths instead of computing a shortest
path. We have modified the improving path selection in the following way : during
a given number τ of iterations, the improving path is computed among the active
paths. At the begining, τ← 10. Then, at the end of the minor iterations, a shortest
path is computed. If this path is also an active one, then τ← 2τ otherwise τ← 10.

Controlling the flow width: there are two ways to control the flow width for each
commodity. The first one (external) is based on relaxing first the width constraint,
then trying to satisfy it progressively. The second one (internal) keeps the width
constraint during the flow deviation procedure. In the external procedure, the width
constraint is restored using the same idea as in the cleaning procedure. At each
iteration of the restoration, the active path with the smallest amount of flow is fairly
rerouted among the remaining ones, then a flow deviation with τ← ∞ is applied
to locally optimize the flow structure. A path control is added at each step in the
internal procedure : once a flow reaches its width limit, τ← ∞, if its width drops
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below the limit, then τ← 10.

5 Numerical experiments

The (FD) algorithm and its variants adapted to problem (BPCONG) have been coded
in C and compiled through gcc 3.2 on the gnu/linux system. The numerical tests
were performed on an Intel P3 800 MHz computer with 256 Mb RAM.

Test networks: The test networks used for the numerical experimentation are of
two types : 1) a realistic core network instance with 12 nodes, 88 arcs and 74 com-
modities; 2) a testbed of 20 random instances; those instances are built on planar
graphs (obtained through Delaunay triangulation) whose size ranges from 10 to 40
nodes. For each size, 5 different sets of demands have been randomly defined. The
number of commodities has been set to 2n, 4n, 6n, n(n−1)/2 and n(n−1) where n
is the number of nodes.

Initialization procedure: flow deviation needs an initial solution. Thus, one has to
provide a way to compute a feasible solution. This is achieved through the following
heuristic, denoted by INITFD. It first consists in cutting all demands into equal-sized
packets. Then each packet is routed, one at a time, on the shortest path where arc
costs are the load first derivative. Arc loads are updated after each packet has been
sent. Packets are randomly chosen from the remaining ones at each iteration to
prevent bias and ill behaviour. However, this is not sufficient to guaranty feasibility
of the solution since wrong routing decisions may be made. In practice, when the
network is not close to saturation, those problems are not likely to appear.

In Table 1, results are shown for varying values of the throughput γ (a common
multiplying factor for all commodities demand). INITFD, FD and FD+ rows re-
spectively give informations for the heuristic, the classical flow deviation method
and the flow deviation method using the cleaning procedure and the improved path
generation. For each method and each γ, CPU time in seconds, value of the optimal
solution are reported. The last seven columns give the number of commodities in
the solution with the given number of active paths. The cleaning procedure (FD+
method) helps a lot reducing the number of active paths. Combined with the modi-
fied path generation, they also provide a strong reduction in CPU time. The reason
is that the cleaning procedure removes paths that are not likely to be in the optimal
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γ meth. time (s) z∗ #1 #2 #3 #4 #5 #6 #7
INITFD 9.23 9.295 44 14 8 8 0 0 0

0.5 FD 4.36 9.169 43 13 10 8 0 0 0
FD+ 0.07 9.169 46 15 13 0 0 0 0
INITFD 9.64 28.014 39 16 10 5 0 2 2

1.0 FD 84.63 27.418 38 14 10 8 0 0 4
FD+ 5.01 27.418 38 23 11 2 0 0 0
INITFD 10.71 73.739 39 18 8 5 0 2 2

1.5 FD 372.68 71.186 38 14 10 8 0 0 4
FD+ 43.01 71.186 40 20 11 1 2 0 0

Table 1: cleaning procedure and improved path generation (γ influence)

solution. Thus, removing those suboptimal paths avoid a lot of iterations that would
otherwise be needed to reduce their amount of flow down to zero.

Table 2 shows the impact of the required final gap (column “gap”) on the FD and
FD+ methods. The meaning of the columns is the same as before. It can be clearly
seen that the cleaning procedure and the internal path generation help keeping low
CPU time as well as providing solutions with a low number of path per commodity.
This also suggests the fact that FD+ as a better experimental convergency towards
the optimal solution.

Table 3 summarizes the behaviour of FD and FD+ for the whole set of instances.
Again, FD+ compares well against FD. BLABLABLA à ajouter

Table 4 illustrates the path control procedure on the optimal solution. The first
column shows the width upper bound R for every commodities. In all cases, flow
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gap meth. time (s) z∗ #1 #2 #3 #4 #5 #6 #7
− INITFD 9.64 28.014 39 16 10 5 0 2 2

10−1 FD 0.00 28.012 38 17 10 5 0 2 2
FD+ 0.00 28.012 38 17 10 5 2 1 1

10−5 FD 0.06 27.629 38 14 10 8 0 2 2
FD+ 0.03 27.629 38 15 11 6 2 2 0

10−3 FD 0.95 27.441 38 14 10 8 0 0 4
FD+ 0.50 27.441 38 14 18 4 0 0 0

10−4 FD 17.61 27.420 38 14 10 8 0 0 4
FD+ 4.73 27.418 38 22 12 2 0 0 0

10−5 FD 84.63 27.418 38 14 10 8 0 0 4
FD+ 5.01 27.418 38 23 11 2 0 0 0

Table 2: cleaning procedure and internal path generation (gap influence)

deviation with internal path management (FD+int) requires less CPU time than flow
deviation with external path management (FD+ext). There are two reasons: first,
when FD+int reaches some commodity width limit, it is quite difficult to find an
alternate path to exchange with an active one. Second, removing an active path in
FD+ext does a lot of perturbation. The quality of the solution for both methods is
nearly the same. No accurate gap can be produced since the only valid lower bound
is unconstrained flow deviation lower bound.

Finaly, the last table shows flow deviation behaviour for the unsplittable case
that is, when R = 1. We compare flow deviation with internal path management
(FD+int) against two heuristics. H1 (resp. H2) sorts the commodities by decresing
(resp. increasing) demands and then route each one on the shortest path, where the
cost are the delay first derivative. Those costs are updated after each routing. It can
be seen H1 is quite close to FD for a much lesser CPU time. This shows the limits
of our approach, when the width constraint is very low.
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FD FD+
problem n k z∗ time (s) z∗ time (s)
T 10 20 10 20
T 10 40 10 40
T 10 45 10 45
T 10 60 10 60
T 10 90 10 90
T 20 40 20 40
T 20 80 20 80

T 20 120 20 120
T 20 190 20 190
T 20 380 20 380
T 30 60 30 60

T 30 120 30 120
T 30 180 30 180
T 30 435 30 435
T 30 870 30 870
T 40 80 40 80

T 40 160 40 160
T 40 240 40 240
T 40 780 40 780

T 40 1560 40 1560

Table 3: results for the random instances

R meth. time (s) z∗ #1 #2 #3 #4
no FD 5.03 27.418 38 23 11 2
3 FD+int 1.90 27.438 38 26 10 0

FD+ext 8.53 27.418 38 29 7 0
2 FD+int 9.47 27.478 40 34 0 0

FD+ext 33.38 27.478 39 35 0 0
1 FD+int 12.05 39.608 74 0 0 0

FD+ext 15.41 39.608 74 0 0 0

Table 4: path control
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starting solution integer flow FD
heur. value time (s) value time (s)
H1 39.614 0.00 39.577 0.00
H2 175.509 0.00 39.575 0.01

FD+int 39.608 12.05

Table 5: unsplittable flow

6 Conclusion

The Flow Deviation algorithm remains a very versatile and prolific tool to solve
routing and design problems in networks since the pioneer work of M. Gerla in
the seventies. Several variants and algorithmic improvements have been proposed
and validated here to take in consideration some bounds on the number of active
paths to support the less congested solutions. As the resulting model leads to NP-
hard problems for most practical situations, heuristic have been first proposed to
show how the simplicity of the Flow Deviation updates is very useful to control
the number of paths for each commodity. Of course, extreme situations like the
unsplittable situation associated with heavy loads are unlikely to yield nice results
with these heuristics as the theoretical approximation bounds are known to be quite
weak for these hard problems. In these cases, branching procedures and the efficient
generation of valid cuts should be added to the basic (FD) iteration to get good
solutions. These studies are currently under studies with a limited computational
experience on small to medium-size networks.
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