
HAL Id: hal-01691690
https://hal.science/hal-01691690v1

Submitted on 24 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on operator splitting and decomposition of
convex programs

Philippe Mahey, Arnaud Lenoir

To cite this version:
Philippe Mahey, Arnaud Lenoir. A survey on operator splitting and decomposition of convex programs.
RAIRO - Operations Research, 2017, 51 (1), pp.14-41. �10.1051/ro/2015065�. �hal-01691690�

https://hal.science/hal-01691690v1
https://hal.archives-ouvertes.fr


A survey on operator splitting and decomposition
of convex programs

Arnaud Lenoir∗ Philippe Mahey†

January 5, 2016

Abstract

Many structured convex minimization problems can be modeled by
the search of a zero of the sum of two monotone operators. Operator
splitting methods have been designed to decompose and regularize at
the same time these kind of models. We review here these models and
the classical splitting methods. We focus on the numerical sensitivity of
these algorithms with respect to the scaling parameters that drive the
regularizing terms, in order to accelerate convergence rates for different
classes of models.

Keywords : Operator Splitting, Augmented Lagrangian, Decomposition
Methods.
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1 Introduction

We survey here some classical monotone operator splitting methods and
discuss technical issues which address the difficult question of the acceleration
of the numerical performance of these techniques when dealing with the
decomposition of large-scale convex programs.

Monotone operator theory has been developed for Hilbert spaces in the
seventies by different people, where we first distinguish the monograph by
Brezis [11] and the seminal research results of J.J. Moreau [65] on the prox-
imal mapping. The Proximal Point Method (PPM) became popular in the
Mathematical Programming community with the seminal papers of Rockafel-
lar [72, 71] who showed precisely its link with the Augmented Lagrangian
algorithm. Operator splitting is generally referred when dealing with the
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sum of maximal monotone operators and aiming at decomposing the nu-
merical computations on each operator separately. Early splitting algo-
rithms were analyzed by Lieutaud in his thesis [57] using the term Fractional
Steps method, borrowed from early works by russian researchers (Denidov,
Marchuk, Samarskii and Yanenko, see Temam [80] for a convergence anal-
ysis). The first application of the celebrated Alternate Direction Method
of Multipliers (ADMM) stems back to the work of Glowinski and Marocco
[41] who solved some heat conduction equations, see too Gabay and Mercier
[39] and the theoretical analysis by Gabay [38]. In 1979, Lions and Mercier
[58] analyzed the convergence of a family of splitting methods (combining
forward and backward steps like in the earlier methods of Douglas-Rachford
and Peaceman-Rachford for linear operators), for solving a general monotone
inclusion problem involving the sum of two maximal monotone operators. In
parallel, Cohen [19] introduced the Auxiliary Problem principle to define a
very general family of decomposition algorithms, generalizing the role of the
Proximity step in Augmented Lagrangian functions. The necessity of re-
formulation to decompose separable convex programs was the motivation
of Spingarn’s Partial Inverse method [77]. The Partial Inverse method was
then shown to be closely related to ADMM and to the Douglas-Rachford
method by J. Eckstein in his thesis and a collection of related papers (see
[30, 33]). In parallel, Chen and Teboulle [17] derived a decomposition algo-
rithm adapted from Rockafellar’s Proximal Method of Multipliers (PMM, see
[71]) and Mahey et al [60] analyzed the convergence rate of the Proximal De-
composition Algorithm (PDA), generalizing Spingarn’s block-decomposition
algorithm [78].

In the recent years, the research on the subject has been mainly focused
on the following issues :

• Revisiting forward-backward schemes and extending to some classes of
non convex models ([76, 2, 24, 75]);

• Extending splitting methods to composite operators ([13, 9, 1]);

• Exploring new strategies adapted to new models coming from Signal
Processing and Classification theory ([22, 14, 43, 10]);

• Studying worst-case complexity bounds ([42, 48, 75]);

• Introducing scaling parameters to accelerate convergence with self-
adaptive update ([29, 47]).

We will focus on the last point in our presentation as it is a critical issue to
derive efficient algorithms to decompose large optimization problems. For in-
stance, it is well-known that the rate of convergence of the Douglas-Rachford
method is highly sensitive to the choice of the parameter introduced in the
proximal step. More worrying is the fact that the control of the rate of the
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primal and dual sequences are conflicting, thus limiting the best expected
linear rate of convergence to the value 0.5 and provoking nasty spiralling
effects (see [30, 45]).

On the other hand, worst-case complexity bounds have been studied
in the spirit of Nesterov’s smoothing techniques [67] to better understand
the limits of performance of splitting methods for decomposing the sum of
general convex functions. Some results may look rather frustrating as com-
mented in a recent study [26] : the global convergence of Douglas-Rachford
splitting scheme can be as fast as the Proximal iteration in the ergodic sense
and as slow as a subgradient method in the non ergodic sense.

The present study does not pretend to cover all research around operator
splitting methods and applications. Since the original work of Gabay thirty
years ago [38], a few interesting tutorials and surveys have been proposed in
the literature, see [32, 5, 75, 51].

We first present the main splitting techniques to find a zero of the sum of
two maximal monotone operators. We apply the most promising techniques
to the decomposition of separable convex programs in section 3, focusing on
constrained optimization problems in finite dimension. In section 4, we ex-
plore theoretical and practical issues on the convergence of operator splitting
methods.

2 Splitting the sum of two monotone operators

2.1 Forward and backward steps

Let recall first a few useful definitions about monotone operators. We will
use the notation 〈·, ·〉 to denote the dot product in a Hilbert space X.

Definition 1 T : X 7→ X is monotone if

〈T (x)− T (x′), x− x′〉 ≥ 0,∀x, x′ ∈ X

It is maximal if its graph is not strictly contained in the graph of any mono-
tone operator. It is strongly monotone with constant a > 0 if

〈T (x)− T (x′), x− x′〉 ≥ a‖x− x′‖2,∀x, x′

and co-coercive with module a > 0 if

〈T (x)− T (x′), x− x′〉 ≥ a‖T (x)− T (x′)‖2,∀x, x′

For example, the subdifferential of a closed convex function on a convex sub-
set of IRn is a maximal monotone operator. A symmetric linear operator
which is positive definite (thus the subdifferential of a strongly convex func-
tion) is strongly monotone (the constant will be the smallest eigenvalue).
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Co-coercivity is the dual property, so that an operator is co-coercive if its
inverse is strongly monotone.

Let T be a maximal monotone operator on X. Let consider first the
following inclusion :

Find x∗ such that 0 ∈ T (x∗) (1)

When T is the subdifferential operator of a closed convex function, it corre-
sponds naturally to the global minimization of that function on X.
The forward step is the following iteration :

xt+1 ∈ (II− λtT )(xt)

which is not completely defined unless T (xt) is a singleton. The parameter
λt > 0 is the stepsize and it is generally expected to decrease at each iteration
like in the so-called subgradient algorithm for minimizing nonsmooth convex
functions.
The backward step is the following iteration :

xt+1 = (II + λT )−1(xt)

where JTλ = (II+λT )−1 is the resolvent operator of T which is indeed defined
on the whole space so that the backward iteration is now uniquely defined
for any λ > 0. It is too a firmly non expansive operator (or co-coercive with
modulus 1, see Minty [64] and the definitions of averaged operators below)
which means that :

∀x, x′ ∈ X, 〈x− x′, JTλ (x)− JTλ (x′)〉 ≥ ‖JTλ (x)− JTλ (x′)‖2

This suggests that the backward step behaves like a fixed-point iteration to
solve (1) which can be derived directly by :

0 ∈ T (x)⇐⇒ 0 ∈ λT (x)⇐⇒ x ∈ (II + λT )(x)⇐⇒ x = (II + λT )−1(x)

To say more about the parameter λ > 0, the fixed-point equation above says
that we have substituted the operator T by its Moreau-Yosida approximation
Tλ = 1

λ(II − JTλ ). It is shown in Brézis [11] that Tλ is maximal monotone
and Lipschitz with constant 1/λ. When T is the subdifferential of a closed
convex function f , the iteration becomes :

xt+1 = arginf f(x) +
1

2λ
‖x− xt‖2 (2)

This implicit step can be viewed as an explicit gradient step to minimize
the regularized Moreau-Yoshida function fλ(x) = inf{f(z) + 1

2λ‖z − x‖2}
which is indeed smooth with gradient Tλ(x). Thus, (2) is equivalent to
xt+1 = xt − λ∇fλ(xt).
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Implementing iteration (2) gives the celebrated Proximal Point Method
(PPM) the convergence of which was first analyzed by Martinet [62]. Rock-
afellar in his analysis of (PPM) concluded that the rate of convergence im-
proves when λ increases [72].

The former subproblem is generally implementable when f corresponds
to the dual function associated with a constrained optimization problem,
yielding in the primal space the famous Augmented Lagrangian algorithm
(the first detailed analysis of this relation is due to Rockafellar [71]).

To complete our introduction on the basic iterative schemes, we review
the notion of averaged operators, introduced by Baillon et al [4] (see too
[5]). Let S be a non expansive operator on X (such that ‖Sx − Sx′‖ ≤
‖x− x′‖, ∀x, x′). A ρ-averaged operator is, for any ρ ∈ (0, 1), defined by :

Sρ = ρS + (1− ρ)II

Averaged operators are too non expansive, but they are more amenable to
fixed-point iterations than general non expansive ones as they share the
following property :

‖Sρx− Sρx′‖2 ≤ ‖x− x′‖2 −
1− ρ
ρ
‖(II− Sρ)(x)− (II− Sρ)(x′)‖2

Sρ shares the same set of fixed-points with S and the convergence of the
general fixed-point iteration xt+1 = Sρt(x

t) (referred as the Krasnosel’ski-
Mann algorithm) converges to a solution x∗ in that set (see [21]). Moreover,
it was shown in [26] that the sequence ‖xt − x∗‖ is nonincreasing and that
‖Sxt − xt‖2 = o(1/t), assuming only that the sequence τt = ρt(1 − ρt) is
bounded away from 0.

Conveniently, compositions of averaged operators are easily seen to be
averaged. Indeed, if Sa and Sb are averaged operators with constant a and b
respectively, then Sρ = Sa◦Sb is averaged too with constant 1−(1−a)(1−b) <
1.

It is immediate to observe that the resolvent operator JTλ of a maximal
monotone operator T is 1/2-averaged which is incidentally equivalent to
be firmly non expansive. In consequence, the backward iteration in the
Proximal Point method converges to a fixed-point of JTλ , i.e. a zero of T .
These convergence properties of the averaged operator iterations will apply
to most splitting schemes studied in the next section.

Finally, we introduce the reflector operator associated with a monotone
operator T :

Definition 2 Let T : IRn 7→ IRn maximal monotone, P = (II + T )−1 and
Q = II− P . The operator

N = P −Q = 2P − II = II− 2Q

is the generalized reflector associated with T .
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That notion truly generalizes a symmetry corresponding to the case when
T = NA is the normal cone of a linear subspace A so that Graph(T ) =
A×A⊥. Generalized reflectors correspond exactly to the set of non expansive
operators. The correspondence between the graphs of T and N appears
clearly in the following construction:

Proposition 1 Let T : IRn 7→ IRn maximal monotone and N its generalized
reflector. Then y ∈ T (x)⇐⇒ d = N(s) with :{

s = x+ y
d = x− y or

{
x = 1

2(d+ s)
y = 1

2(d− s)

which leads to the following decomposition:

Proposition 2 Let T : IRn 7→ IRn maximal monotone and u ∈ IRn. Then
the following assertions are equivalent :

i) y ∈ Tx

ii) x = P (s) and s = x+ y

iii) y = Q(s) and s = x+ y

In other words, there exists a unique pair (x, y) ∈ Graph(T ) such that x+y =
s. That decomposition on the graph of the maximal monotone operator T
is called the Moreau-Minty decomposition [64]. It will be at the heart of the
Proximal Decomposition method presented in the next section.

2.2 Main splitting methods

We consider now the basic model of interest to derive decomposition meth-
ods, i.e. the case of T = T1+T2 where T1 and T2 are two maximal monotone
operators on X. The basic problem is then :

Find x∗ ∈ X such that 0 ∈ T1(x∗) + T2(x
∗) (P )

One generally defines an operator splitting method as one which combines
forward and backward steps applied separately to operators T1 and T2 but
never to T1 + T2.

We will use throughout the following trivial reformulation in the primal-
dual space X ×X :

x∗ is a solution of (1) if and only if there exists y∗ ∈ X such that (x∗, y∗)
solves :

y∗ ∈ T1(x
∗) (3)

−y∗ ∈ T2(x
∗) (4)
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Before getting into the description of the main splitting algorithms, let intro-
duce a generic example for (P) that will be extensively used in the remainder :

Find x∗ ∈ A that minimizes f(x) (P0)

where f is closed convex on X and A is a subspace of X. Typically, f is a
separable function andA is the coupling subspace. The optimality conditions
for (P0), assuming the existence of an optimal solution x∗, are :

(x∗, y∗) ∈ A×A⊥
⋂

Graph (T ) (5)

where T = ∂f .

2.2.1 Double Backward splitting

As suggested by its name, that splitting scheme uses two sequential proximal
steps on each operator :

xt+1 = JT2λt ◦ J
T1
λt

(xt) (6)

In general, the zeroes of the composed operator JT2λ ◦ J
T1
λ do not cor-

respond to the zeroes of T1 + T2. A possibility to solve (1) is to force the
scaling parameter λt to decrease to zero and characterize convergence in the
following ergodic sense :

Assuming
∑

t λt = +∞,
∑

t λ
2
t < +∞, the sequence {zt =

∑t
τ=0 λτx

τ∑t
τ=0 λτ

}
converges to a zero of T (see Passty [68]).

2.2.2 Forward-Backward splitting

Here we use a forward step associated with (3), i.e. :

x− λy ∈ (I − λT1)(x)

composed with a backward step on (4) :

x = JT2λ (x− λy)

so that the forward-backward iteration is given by :

xt+1 = JT2λ ◦ (I − λT1)(xt) (7)

Observe that the same parameter λ should be used in both forward and
backward steps at each iteration.

If T1 = ∇F where F is smooth convex and T2 = NC , the normal cone
of a closed convex set, this is in fact the Projected Gradient method origi-
nally proposed by Goldstein [44]. Indeed, the resolvent JT2λ is the projection
operator on C.
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Figure 1: Sequence of iterates for Forward-backward algorithm

Convergence was analyzed first by Passty [68] who proved ergodic conver-
gence of the sequence {zt} like in the former section. To get the convergence
of the whole sequence, one needs additional properties like the co-coercivity
of T1 with modulus a and a controlled stepsize λ in the interval [0, 1/2a](see
Mercier [63] and related extensions in [16]).

Figure 1 illustrates the convergence on the example of two operators
T1, T2 with values in IR.

2.2.3 Peaceman- and Douglas-Rachford splitting methods

Peaceman-Rachford method was originally applied to linear operators [69]
and we consider here its extension to monotone operators as studied by Lions
and Mercier in [58].

Observe first that the optimality conditions (3),(4) can be rewritten in
the following way :

x∗ + y∗ = [N2 ◦N1](x
∗ + y∗)

where N1 and N2 are the reflectors associated with operators T1 and T2
respectively. Indeed, using Prop. 1, elementary calculations transform (3)
in x∗ − y∗ = N1(x

∗ + y∗) and (4) in x∗ + y∗ = N2(x
∗ − y∗). The operator

N2 ◦N1 is non expansive, inducing the following iteration :

st+1 = [N2 ◦N1](s
t)

so that the primal and dual sequences of iterates are obtained using the
construction of Prop. (2). A scaling parameter can be introduced again
using the following change of scale of both operators substituting T1 by
aT1(b

−1)̇ and T2 by aT2(b
−1)̇ with a, b > 0. It corresponds to a simple

change of variables, x ← b−1x for the primal variables, and y ← a−1y for
the dual variables. The iteration is now detailed using the new primal and
dual variables with the single parameter λ = b

a :
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Algorithm 1 Peaceman Rachford algorithm (PRA)
Require: λ > 0, t = 0, choose (x0, y0)

1: xt+
1
2 = JT1λ (xt + λyt)

2: yt+
1
2 = λ−1(xt − xt+

1
2 ) + yt

3: xt+1 = JT2λ (xt+
1
2 − λyt+

1
2 )

4: yt+1 = λ−1(xt+1 − xt+
1
2 ) + yt+

1
2

5: t← t+ 1; Go To step 1

Convergence of algorithm (PRA) is not guaranteed in the general case
but can be stated with some additional hypotheses (the following proposition
is proved in [58]) :

Proposition 3 • If T1 (respectively T2) is strongly monotone, then xt+
1
2

(resp. xt) converges to the unique optimal primal solution x∗.

• If T1 (respectively T2) is co-coercive, then yt+
1
2 (resp. yt) converges to

the unique optimal dual solution y∗.

Many authors, following Varga [83], have considered a natural underre-
laxation of (PRA) associated with a new parameter α > 0 :

st+1 = [(1− αt)II + αt(N2 ◦N1)](s
t) (8)

Its convergence is now guaranteed for any 0 < αt < 1 as shown by Lions
and Mercier in [58]. Indeed, the iteration operator is now averaged and,
moreover, the case α = 1/2 is of interest because it is exactly the Douglas-
Rachford method for linear inclusions [28] which is known to be intimately
linked with the Alternate Direction method of Multipliers (ADMM) ([41, 38])
and the Partial Inverse method of Spingarn [77]. We will not detail here
the fine correspondence between these now classical splitting methods. For
a complete overview of this material, Eckstein’s PhD thesis [30] is a very
accurate and partly unexploited reading.

We give below the classical form of Douglas-Rachford algorithm (DRA)
for finding a zero of the sum of two maximal monotone operators.

Algorithm 2 Douglas Rachford algorithm (DRA)
Require: λ > 0, t = 0, choose (x0, y0)

1: xt+
1
3 = JT1λ (xt + λyt)

2: yt+
1
3 = λ−1(xt − xt+

1
3 ) + yt

3: xt+
2
3 = JT2λ (xt+

1
3 − λyt+

1
3 )

4: yt+
2
3 = λ−1(xt+

2
3 − xt+

1
3 ) + yt+

1
3

5: (xt+1, yt+1) = 1
2 [(xt+

2
3 , yt+

2
3 ) + (xt, yt)]

6: t← t+ 1; Go To step 1
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The only difference with (PRA) is the addition of step 5 where we substi-
tute the last primal-dual estimate in (PRA) by the mean of the two successive
estimates during the iteration. Observe that the second proximal step on T2
flips the sign of the dual counterpart y. To be more precise as observed in
[30], we have the following proposal :

Proposition 4 At each step of algorithm (DRA), the sequence {zt} given
by zt = xt + λyt satisfies :

JT2λ (zt) = xt (9)

(II− JT2λ )(zt) = λyt (10)

NT2
λ (zt) = xt − λyt (11)

so that (xt, yt) ∈ Graph(T2). The role of the new variable zt = xt+λyt, which
combines the primal and dual iterates, is central as the sequence generated
by (DRA) satisfies :

zt+1 = [JT1λ ◦N
T2
λ + II− JT2λ ](zt)

Lenoir [55] has shown that the averaging step 5 of algorithm 2 could be
performed between the proximal steps without changing the convergence
properties of the method, thus allowing to play with the modeling of the two
operators composing the inclusion problem.

The sequence of iterates for (DRA) is illustrated on Figure 2.

2.2.4 Proximal decomposition method

We close now this section with the presentation of the Proximal Decompo-
sition on the graph of a maximal monotone operator, motivated by Prop.
(2). The main idea is that the two proximal steps used in (DRA) can be
performed in parallel, followed by the averaging step which is itself a prox-
imal step performed on an appropriate coupling subspace. Having in mind
the generic model (P0), this can be done by duplicating the space X and
creating two copies x1 and x2 of the original variables x to get an equivalent
formulation :

Find (x1, x2) ∈ X ×X | 0 ∈ T1(x1) + T2(x2) and x1 = x2

Let denote by A = {(x1, x2) ∈ X×X | x1 = x2} the coupling subspace. Ob-
serve that the dual variables can again be introduced to write the optimality
condition in the following way :

y∗1 ∈ T1(x∗1)
y∗2 ∈ T2(x∗2)

(y∗1, y
∗
2) ∈ A⊥

10



 

Figure 2: Douglas-Rachford algorithm

which is equivalent to (3)-(4) asA⊥ = {(y1, y2) | y1+y2 = 0}. The optimality
conditions above induce the following fixed-point equations x∗1 = JT1λ (x∗1 +

λy∗1) and x∗2 = JT2λ (x∗2 + λy∗2), inducing the alternate proximal steps of the
following algorithm proposed in Mahey et al [60] under the name ’Proximal
Decomposition method’ :

Algorithm 3 Proximal Decomposition algorithm (PDA)
Require: λ > 0, t = 0, choose (x0, y0) and set x01 = x02 = x0 and y01 =
−y02 = y0

1: x
t+ 1

2
1 = JT1λ (xt1 + λyt1)

2: y
t+ 1

2
1 = λ−1(xt1 − x

t+ 1
2

1 ) + yt1

3: x
t+ 1

2
2 = JT2λ (xt2 + λyt2)

4: y
t+ 1

2
2 = λ−1(xt2 − x

t+ 1
2

2 ) + yt1

5: xt+1
1 = xt+1

2 = 1
2(x

t+ 1
2

1 + x
t+ 1

2
2 )

6: yt+1
1 = −yt+1

2 = 1
2(y

t+ 1
2

1 − yt+
1
2

2 )
7: t← t+ 1; Go To step 1

To resume, (DRA) alternates proximal steps on T1 and T2 in a Gauss-
Seidel fashion, whereas (PDA) produces the same proximal steps in parallel
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Figure 3: Proximal decomposition algorithm

in a Jacobi fashion. But (PDA) can also be interpreted as the application of
(DRA) to the following inclusion in X ×X :

Find (x∗1, x
∗
2) ∈ X ×X such that 0 ∈ A(x∗1, x

∗
2) +B(x∗1, x

∗
2)

where A =

[
T1 0
0 T2

]
and Graph(B) = A×A⊥.

The sequence of iterates for (PDA) is illustrated on Figure 3.
The name ’Proximal Decomposition’ is justified by the application of that

scheme to model (P0). There is no need to introduce the copies of primal
variables, simplifying the above steps in :
Step 1 : (xt+

1
2 , λyt+

1
2 ) is the Moreau-Minty Decomposition of xt + λyt on

the graph of T .
Step 2 : (xt+1, yt+1) = (x

t+ 1
2

A , y
t+ 1

2

A⊥ )
where xA denotes the projection of x on the subspace A.

(PDA) shares a strong link with a former method introduced by Spingarn,
the Partial Inverse method [77]. Motivated by model (P0), he introduced
the Partial Inverse operator associated with the maximal monotone operator
T and the subspace A, defined by its graph :

Graph (TA) = {(xA + yA⊥ , xA⊥ + yA) | y ∈ T (x)}

TA is maximal monotone if and only if T is so, and, moreover, we have

0 ∈ TA(s)⇐⇒ sA⊥ ∈ T (sA)
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In other words, the projections of a zero of TA on the orthogonal subspaces
A and A⊥ are the primal and dual solutions of (P0) respectively. Thus,
Spingarn proposed to apply (PPM) to operator TA to solve (P0). But the
backward iteration applied to the Partial Inverse operator reduces to :

st+1 = (II + TA)−1 ⇐⇒ st − st+1 ∈ TA(st+1)

Using the definition of the graph of TA, this implies that there exists (x, y) ∈
Graph (T ) such that st+1 = xA + yA⊥ and st − st+1 = xA⊥ + yA, or equiv-
alently : st = x + y (so that (x, y) is the Proximal Decomposition of st on
the graph of T ) and st+1 = xA + yA⊥ .

Observe that the relationship between (PDA) and Spingarn’s Partial In-
verse needs to set the λ parameter to 1. Eckstein has derived too the direct
relationship between (DRA) and the Partial Inverse method in [30] using
appropriate changes of variables.

The main advantage of (PDA) is that it can easily be extended to in-
clusions with more than two operators. Again, if the inclusion involves p
maximal monotone operators T1, . . . , Tp on X :

Find x∗ ∈ X such that 0 ∈ T1(x∗) + · · ·+ Tp(x
∗)

we can create p copies of space X and apply (PDA) to the cross-product
T = T1× . . .×Tp which is indeed a maximal monotone operator on Xp over
the coupling subspace A = {(x1, . . . , xp) ∈ Xp | x1 = · · · = xp} :

Find ξ∗ = (x∗1, . . . , x
∗
p), ζ

∗ = (y∗1, . . . , y
∗
p) such that (ξ∗, ζ∗) ∈ Graph(T )

⋂
A×A⊥

3 Application to the decomposition of convex pro-
grams

Decomposition methods are designed to answer two different objectives :

• To reduce the dimension of large-scale optimization problems with dif-
ferent interconnected subsystems; the challenge here is to identify the
coupling variables and/or constraints.

• To exploit hidden ’easy’ submodels or, equivalently, to isolate the ’hard’
features of the model without which the model is solvable by ad hoc
software.

Reformulations of the model are frequently necessary to identify these situ-
ations. A typical example for the first case is block-angular linear programs
which gave rise to the first decomposition algorithms for Operations Research
like Dantzig-Wolfe’s and Benders’ decomposition methods (see Lasdon’s text-
book [53] for example). In this case, the separable coupling constraints (or
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variables) contain the hard features of the model as they prevent to try
solving the block subproblems separately.

These strategies lead frequently to implicit value functions (like the dual
function with Lagrangian Relaxation) which are typically nonsmooth. As
was mentioned before, the inherent non smoothness of the dual function is
the main motivation of the Proximal Point method, leading to Augmented
Lagrangian subproblems. The problem is that separability which allows de-
composing the Lagrangian subproblems is destroyed by the quadratic terms
introduced in the Augmented Lagrangian function. Operator splitting meth-
ods will be able to address that issue.

3.1 Separable Augmented Lagrangian

We consider first a general convex minimization problem in IRn : Minimize
p∑
i=1

fi(x)

x ∈ S
(P1)

where the fi are extended real valued convex functions supposed to be proper
and lower-semi-continuous on the closed convex set S ⊂ IRn. Additional local
constraints may be present in the model, here modeled inside the functions
fi. A convenient special case for illustrating the next methods is the problem
of finding x ∈

⋂
i=1,...,pCi where the Ci are closed convex sets. A simple way

to decouple the p pieces of the objective function is to introduce p copies of
the variable x denoted ξi, i = 1, . . . , p and reformulate problem (P1) in the
product space (IRn)p :

Minimize
p∑
i=1

fi(ξi)

ξi ∈ S, i = 1, . . . , p
ξ = (ξ1, . . . , ξp) ∈ A

(12)

where A = {ξ ∈ (IRn)p| ξ1 = · · · = ξp} is the coupling subspace.
Thus, (P1) has been reformulated into the generic model (P0). That

reformulation has been early used by Pierra [70] who applied the double-
backward splitting to (12) (recall that this requires the parameter to decrease
to zero).

The application of algorithm (PDA) to (12) is straightforward, working
in IRnp with primal ξ = (ξ1, . . . , ξp) and dual variables ζ = (ζ1, . . . , ζp). The
monotone operator in the product space will be the cartesian product of the
subdifferential operators ∂f1 × · · · × ∂fp :
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Algorithm 4 PDA-separable
Require: t = 0, λ > 0, ε > 0, ξ0 ∈ A, ζ0 ∈ A⊥
1: repeat
2: for all i = 1, . . . , p do

3: ξ
t+ 1

2
i := arg minξi∈S fi(ξi) + 1

2λ‖ξi − ξ
t
i − λζti‖2

4: ζ
t+ 1

2
i := λ−1(ξti − ξ

t+ 1
2

i ) + ζti

5: ξt+1
i ← 1

p

∑
i ξ
t+ 1

2
i

6: ζt+1
i ← ζ

t+ 1
2

i − 1
p

∑
i ζ
t+ 1

2
i

7: end for
8: t← t+ 1
9: until ‖ξt+1 − ξt‖+ ‖ζt+1 − ζt‖ < ε

The algorithm (PDA-separable) can be applied to many structured mod-
els, but a typical situation which we will describe now is the case of a sepa-
rable objective with separable coupling constraints.

We are interested in solving the following convex program, called here-
after the S-Model, defined on the product space IRn = IRn1 × . . .× IRnp .

Minimize
p∑
i=1

fi(xi)

p∑
i=1

gi(xi) = 0

xi ∈ Si, i = 1, . . . , p

(S −Model)

where fi are extended real valued convex functions on closed convex sets Si,
supposed to be proper and lower-semi-continuous (l.s.c) and gi are affine:

gi : IRni → IRm

xi 7→ gi(xi) = Gixi − bi

where Gi are (ni ×m) not necessarily full-rank matrices and bi ∈ IRm.
We will now apply (PDA-separable) to the Lagrangian dual of the S-

Model, i.e.

Maximizeu∈IRm

p∑
i=1

hi(u)

where hi(u) = infxi∈Si fi(xi) + 〈u, gi(xi)〉. The concave dual problem is thus
in the form of problem (P1), so that it can be reformulated by creating p
copies of the dual variables u = ξ1 = · · · = ξp to get an equivalent model in
IRmp :

Maximizeξ=(ξ1,...,ξp)∈A

p∑
i=1

hi(ξi) (13)

15



where A = {(ξ1, . . . , ξp) ∈ IRmp | ξ1 = · · · = ξp} is the coupling subspace.
Let ζ = (ζ1, . . . , ζp) be the corresponding variables in duality relation with
ξ. The application of (PDA) will give the following algorithm :

Algorithm 5 PDA-dualseparable
Require: t = 0, λ > 0, ε > 0, ξ0 ∈ A, ζ0 ∈ A⊥
1: repeat
2: for all i = 1, . . . , p do

3: ξ
t+ 1

2
i := arg maxhi(ξi)− 1

2λ‖ξi − ξ
t
i − λζti‖2

4: ζ
t+ 1

2
i := λ−1(ξti − ξ

t+ 1
2

i ) + ζti

5: ξt+1
i ← 1

p

∑
i ξ
t+ 1

2
i

6: ζt+1
i ← ζ

t+ 1
2

i − 1
p

∑
i ζ
t+ 1

2
i

7: end for
8: k ← k + 1
9: until ‖ξt+1 − ξt‖+ ‖ζt+1 − ζt‖ < ε

Observe that the quadratic term added in the proximal step 3 of algo-
rithm 5 is here subtracted as the dual problem is a maximization problem.

The algorithm can be developed in the primal setting yielding a separable
Augmented Lagrangian algorithm early proposed by Spingarn [78]. Indeed,
the optimality conditions of the proximal step are :

ξ
t+ 1

2
i = ξti + λζti + λgi(x

t+ 1
2

i )

where gi(x
t+ 1

2
i ) ∈ ∂hi(ξ

t+ 1
2

i ) and xt+
1
2

i minimizes the Augmented Lagrangian

obtained by substituting ξi by ξ
t+ 1

2
i in the ordinary Lagrangian function

Li(xi, ξi) = fi(xi) + 〈ξi, gi(xi)〉, which gives the following subproblem :

Minimizexi∈Si fi(xi) + 〈ξti , gi(xi)〉+
λ

2
‖gi(xi) + ζti‖2

The presentation of the algorithm can be simplified, avoiding the use of auxil-
iary variables ξ as ξt = (ut, . . . , ut) after the projection on A and integrating
the intermediate step t+ 1

2 by observing that

ut+1
i = ut + 1

pr(x
t+1)

y
t+ 1

2
i = −gi(xt+1

i )

where r(x) =
∑

i gi(xi) is the residual of the relaxed coupling constraints.
The complete algorithm, called (SALA) for Separable Augmented La-

grangian Algorithm, is then :
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Algorithm 6 SALA : a Separable Augmented Lagrangian Algorithm
Require: t = 0, λ > 0, ε > 0, u0 ∈ IRm, ζ0 = (y01, . . . , y

0
p) ∈ A⊥

1: repeat
2: for all i = 1, . . . , p do
3: xt+1

i :∈ arg minxi∈Si fi(xi) + 〈ut, gi(xi)〉+ λ
2‖gi(xi) + yti‖2

4: end for
5: rt+1 ←

∑p
i=1 gi(x

t+1
i )

6: for all i = 1, . . . , p do
7: yt+1

i ← −gi(xt+1
i ) + 1

pr
t+1

8: end for
9: ut+1 ← ut + λ

p r
t+1

10: t← t+ 1
11: until ‖r(xt+1)‖ < ε

Observe that the variables ζ must lie in the orthogonal subspace A⊥ =
{ζ = (ζ1, . . . , ζp) |

∑
i ζi = 0}. They are exactly the right-hand side al-

locations ζi = −gi(xi) used in resource-directive primal decomposition (see
Lasdon for example [53]). Indeed, the primal separable counterpart of (13)
is :

Minimizeζ=(ζ1,...,ζp)∈A⊥

p∑
i=1

vi(ζi) (14)

where vi(ζi) = inf{fi(xi) | gi(xi) = −ζi, xi ∈ Si} is the implicit primal block
function (convex on a convex domain with the current hypotheses).

In other words, (SALA) is exactly the application of an Augmented La-
grangian algorithm to the resource-directive reformulation (14) followed by
the projection steps on the respective subspaces.

We observe here that Separable Augmented Lagrangian algorithms have
been early proposed in the literature (see [79, 7, 20] for instance), but these
methods do not rely on splitting schemes, rather linearizing the non separable
terms to give rise to three-levels decomposition schemes with extensions to
the non convex case.

3.2 Alternate direction method of multipliers

We consider now another situation involving two different convex functions.
The functions can be smooth or not and are generally composite as they
include linear transformations of the variables, so that many authors have
analyzed the following M-model :

Minimize f(x) + g(Mx) (P2)

with f : IRn 7→ IR strongly convex, g : IRm 7→ IR simply convex and M is a
(generally full-rank) (m×n) matrix. A dual formulation is also convenient as
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the conjugate function of f (i.e. f∗(y) = sup{〈y, x〉− f(x)}) is differentiable
and the dual problem associated with (P2) presents the same nice structure
as the primal :

Minimize f∗(MTu) + g∗(−u) (15)

Even if this model can be reformulated as {min f∗(v) + g∗(−u) | v +
MTu = 0}, thus minimizing the sum of two convex functions on a linear
subspace, the direct application of the Forward-Backward splitting is natural
using T1 = ∂f∗ and T2 = ∂g∗ ◦ (−MT ). The resulting algorithm (see [38]
and [81]) is given below :

Algorithm 7 FB-M
Require: t = 0, λ > 0, ε > 0, x0, z0, u0

1: xt+1 := arg min f(x)− 〈ut,Mx〉
2: zt+1 := arg min g(z) + 〈ut, z〉+ λ

2‖z −Mxt+1‖2
3: ut+1 := ut − λ(Mxt+1 − zt+1)
4: t← t+ 1

Convergence properties of the FB-M scheme have been analyzed by Chen
and Rockafellar [16].

Application of (DRA) to the M -Model leads naturally to what is gener-
ally referred to as the Alternate Direction Method of Multipliers (ADMM)
originally studied by Gabay [38] (see too [8]).

Algorithm 8 ADMM
Require: t = 0, λ > 0, ε > 0, x0, z0, u0

1: xt+1 := arg min f(x)− 〈ut,Mx〉+ λ
2‖z

t −Mx‖2
2: zt+1 := arg min g(z) + 〈ut, z〉+ λ

2‖z −Mxt+1‖2
3: ut+1 := ut − λ(Mxt+1 − zt+1)
4: t← t+ 1

The structural links between (ADMM), (DRA) and the Proximal Point
method (PPM) have been extensively detailed by Eckstein (see [33, 34]).
One recurrent question which remains partly open with (ADMM) is the
extension to more than two blocks of variables. As mentioned early by Lions
and Mercier [58], the Douglas-Rachford splitting method does not naturally
generalize to more than two operators. Even if an extension of (DRA) with n
operators has been early proposed by Douglas and Gunn [27], the sequential
steps in (ADMM) turn the convergence analysis more intricate. A recent
study has even exhibited an academic example with three blocks which is
indeed divergent [15]. Of course, the question can be turned around as
commented before, by including the separable functions into a single dual
operator and forcing the dual copies in a coupling subspace playing the role
of the second operator, as in the (PDA) algorithm. Eckstein and Svaiter [35]
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have introduced a projective splitting method which avoids the introduction
of copies for the coupling variables when an arbitrary number of monotone
operators are present in the model.

There is still a comment on ADMM assumptions and rates of conver-
gence. Many authors have studied the convergence properties of ADMM
(which assumptions on the functions and, with which rates of convergence ?)
as shown in the recent monograph [10], beyond the natural results inherited
from (DRA) as early studied by Lions and Mercier [58]. It appears that lin-
ear convergence is possible when at least one of the block function is strongly
convex. A recent study by Hong and Luo [48] made new progress in relaxing
these assumptions and extending too to more than two blocks. Their sepa-
rable model extends the M-model to include the S-model used in the former
section. It also uses block functions of the form fi(xi) = f0i(Aixi) + f1i(xi)
where f0i are strictly convex and smooth and f1i are typically polyhedral.
Some steering matrices Ai can be zero allowing not strongly convex blocks.
The coupling constraints should be linearly independent, i.e. the matrix
[G1| · · · |Gp] is full-rank, but some Gi may not. These assumptions allow to
prove linear convergence of the primal and dual sequences as well as the se-
quence of the coupling constraints violation. Similar results in earlier papers
exploiting the strongly convex parts in the objective function can be cited
here, like [46, 66, 50].

Inspired by multi-block Gauss-Seidel algorithm, Goldfarb and Ma [42]
proposed a generalized ADMM which converges in O(1/

√
ε) iterations to

obtain an approximation within ε of the optimal value but requires that all
functions are smooth. Other generalized splitting strategies based on block-
coordinate iterations have been recently proposed by Combettes et al [23].

We have seen in this section the impact of problem reformulation to
get constructive variants of the basic splitting schemes. The literature has
focussed mainly on the M-Model and its dual version (15). An alternative
and interesting primal-dual setting has been recently proposed by Chambolle
and Pock [14] who used a saddle-point formulation :

inf
x

sup
y
f(x)− g∗(y) + 〈y,Mx〉

and proved convergence of the following splitting algorithm :

Algorithm 9 CP
Require: t = 0, λ > 0, ε > 0, x0, y0

1: xt+1 := arg min f(x) + 1
2λ‖x− x

t + λMT yt‖2

2: yt+1/2 := arg min g∗(y) + 1
2µ‖y − y

t − µMxt+1‖2

3: yt+1 := yt+1/2 + θ(yt+1/2 − yt)
4: t← t+ 1

where 0 ≤ θ ≤ 1 and scaling parameters chosen such that λµ‖M‖2 < 1.
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Convergence to a saddle-point (x∗, y∗) was proved in the ergodic sense with
rate O(1/t).

4 Convergence results and complexity issues

We close this survey by inspecting practical issues concerning operator split-
ting techniques. Before relating the different extensions which have been
investigated, and they are quite numerous, it is of interest to overview the
areas of applications where splitting methods have been used successfully.
Historically, R. Temam [80], R. Glowinski [40], Gabay and Mercier [39]
among many others, have used (DRA) to solve evolution equations in Me-
chanics, referring the approach as a penalty-dualization method. As the
formal setting involves inclusion problems with general monotone operators,
the application of splitting methods to Variational Inequalities is still an at-
tractive subject for applied mathematicians. Besides these applications, the
report of Bensoussan et al [6] and more recently, the textbook by Bertsekas
and Tsitsiklis [8] have largely contributed to disseminate these techniques
to the areas of Mathematical Programming and Operations Research where
decomposition techniques are very popular since the sixties. Among many
different areas of applications, we can cite Multicommodity Flow problems
with convex arc costs ([61], [37]), Stochastic Programming (adapting (DRA)
to two-stage stochastic optimization with recourse leads to the Progressive
Hedging method of Rockafellar and Wets [74]), Fermat-Weber problems (the
Partial Inverse of Spingarn was applied to a polyhedral operator splitting
model in [49]). More recently, new models received a lot of interest in the
areas of Image Reconstruction and Signal Processing ([14, 24]), with similar
models in Classification problems [43, 10]. These models involve in general
the combination of two norms, one being smooth but not the other one,
inducing the use of the M-model. For instance, the lasso or compressed
sensing problem considers f(x) = ‖x‖1 and g(x) = 1

2µ‖y−Ax‖
2, where A is

a huge sparse matrix, with applications in deblurring images [14], classifying
big data [43] or matrix rank minimization [36]. More references concerning
these applications to Image and Signal Processing can be found in [51].

Motivated by these applications, new versions of the classical splitting
schemes have been proposed. As a striking example, we note the recent
primal-dual splitting, inspired by the Forward-Backward scheme, on inclu-
sion problems involving composite operators like 0 ∈ Ax+K∗BKx where A
and B are general maximal monotone operators and K is a linear continuous
operator with adjoint K∗. The convergence of the explicitly composite case
was first analyzed by Briceño-Arias and Combettes in [13] (see too [9] and
[1] for an extension of Spingarn’s Partial Inverse method).

Another line of rich theoretical studies concerns the exploitation of smooth-
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ness in the models. This induces a extension of model (P0) to :

Minimizex∈A f(x) + h(x)

where f is still convex andA a coupling subspace, but h is convex and smooth
with a Lipschitzian gradient. Smoothness is better exploited by Forward-
Backward schemes and Briceño-Arias has proposed a Forward-DRA scheme
in [12], further improved by Davis in [25] (see too [82] or [18] for similar
related algorithms).

We will present first some algorithmic enhancements relative to conver-
gence issues and, in the second part, discuss numerical scaling issues.

4.1 Algorithmic enhancements

Many variants of the basic schemes have been analyzed in the literature and
we focus here on a few important choices that can produce new decomposi-
tion methods rather than on the variety of models to which these schemes
may be applied. Most of these enhancements correspond to known variants
of the Proximal Point method itself.

We will discuss the following issues :

• the use of relaxation parameters;

• the introduction of additional regularizing terms;

• approximate solutions in the proximal steps;

The first idea has been early proposed by Glowinski and Marocco in
the original presentation of (ADMM) [41], substituting the dual update in
Algorithm 8 by :

ut+1 := ut − γλ(Mxt+1 − zt+1)

where γ is a relaxation parameter, indeed corresponding to :

ũt+1 = ut − λ(Mxt+1 − zt+1)

ut+1 := γũt+1 + (1− γ)ut

and they proved that convergence is guaranteed for 0 < γ < 1+
√
5

2 . Observe
that this strategy should be compared to the generalization of (PRA) defined
in (8). On the other hand, most users of (DRA) have fixed γ = 1 to focus
on the estimation of the scaling parameter λ as seen below. More insight
on relaxed versions of (FB), (DRA) and (PRA) and their theoretical rates
of convergence may be found in the recent study by Davis and Yin and
companion papers [26].

The second aspect concerns the addition of proximal terms in the primal
and/or dual update formulae as early proposed for (PPM) by Rockafellar
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[71] in the Proximal method of Multipliers. The corresponding extension
of the (FB-M) algorithm was proposed by Chen and Teboulle [17] and a
similar idea was used by Eckstein [31] to extend (ADMM) (see too [84, 3]).
A recent survey by Shefi and Teboulle [75] recalled the complexity issues to
improve global convergence ratios, in particular for regularized versions of
the splitting schemes. The Proximal-ADMM can be sketched as the following
algorithm :

Algorithm 10 Prox-ADMM
Require: t = 0, λ > 0, ε > 0, x0, z0, u0

1: xt+1 := arg min f(x)− 〈ut,Mx〉+ λ
2‖z

t −Mx‖2 + 1
2µ1
‖x− xt‖2

2: zt+1 := arg min g(z) + 〈ut, z〉+ λ
2‖z −Mxt+1‖2 + 1

2µ2
‖z − zt‖2

3: ut+1 := ut − λ(Mxt+1 − zt+1)
4: t← t+ 1

where µ1, µ2 > 0 drive the proximal terms for the {xt} and {zt} sequences.
Global convergence of the Proximal-ADMM algorithm and variants are

considered in [75] with refined convergence rates. In the general case without
further assumptions on f and g, typical ergodic convergence is exhibited with
O(1/

√
t) global rate. Assuming g is convex Lipschitz continuous, then the

whole primal-dual sequence converges with O(1/t) global rate.
Approximate solutions in the proximal steps have been considered early

by Rockafellar [72] and further introduced in many splitting schemes (see
[21]). A typical inexact version of (DRA) will be :

Algorithm 11 Inexact-ADMM
Require: t = 0, λ > 0, ε0 > 0, x0, z0, u0

1: xt+1 :≈ε1t arg min f(x)− 〈ut,Mx〉+ λ
2‖z

t −Mx‖2
2: zt+1 :≈ε2t arg min g(z) + 〈ut, z〉+ λ

2‖z −Mxt+1‖2
3: ut+1 := ut − λ(Mxt+1 − zt+1)
4: t← t+ 1

where a :≈ε b is a shorthand for ‖a − b‖ ≤ ε. As in the inexact version of
the Proximal Point method, convergence is maintained if the errors satisfy∑∞

t=0 εt < +∞ (see [33]).

4.2 Scaling and numerical enhancements

Many authors have revisited the basic splitting methods discussed in the
former sections to improve convergence results and obtain implementable
algorithms with optimized performance. As mentioned before, the intro-
duction of a second parameter to generate a family of Peaceman-Rachford
pure iteration appeared in Lions and Mercier’s paper [58]. Later, Spingarn
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in [78] suggested to use a weighted scalar product to scale the projection
step, but the difficulty to adjust many parameters during the convergence
process reduced the attempts to implement these ideas. By the way, many
authors have considered the introduction of different parameters associated
with scaling matrices in the same spirit of what has been investigated for
Augmented Lagrangian algorithms. The particular sensitivity to parameter
λ of the supposedly most efficient splitting, i.e. (DRA) or (PDA), deserves
special attention.

4.2.1 Convergence rates for a single scaling parameter

To analyze the role of the scaling parameter, we use here the Proximal De-
composition setting where T1 = T is a maximal monotone operator, coercive
with constant ρ and Lipschitz with constant L, and T2 is the subdifferential
of the indicator of a linear subspace, i.e. Gr(T2) = {(x, y) ∈ X×X | (x, y) ∈
A × A⊥}. Recall that this corresponds to minimizing a strongly convex
function (possibly separable) on a coupling subspace. The scaled proximal
decomposition on the graph of T with parameter λ > 0 corresponds to the
following step : given (x, y) ∈ X × X, find the unique pair (u, v) ∈ Gr(T )
such that u + λv = x + λy = z. The corresponding proximal steps on the
primal and dual variables are :

u = (II + λT )−1(z)

v = λ−1(z − u))

which are followed by the projection steps on A×A⊥. It was proved by Lions
and Mercier [58] for the general case (T2 is a maximal monotone operator)
and revisited by Mahey et al [60] for the proximal decomposition that linear
convergence is guaranteed with a convergence rate

ru(λ) =

√
1− 2λρ

(1 + λL)2

inducing the best choice for λ = 1/L with optimal rate
√

1− ρ
2L . Observe

now that the update of the dual variable y is equivalent to :

v = (II + µT−1)−1(µz)

with λµ = 1. We can then derive an upper bound for the rate of the dual
sequence as we did for the primal one, noting that the coercivity constant for
T−1 is 1/L and its Lipschitz constant is 1/ρ. Straightforward calculations
give the convergence rate (of the dual sequence) :

rv(λ) =

√
1− 2λρ2

L(1 + λρ)2
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Figure 4: Primal and dual optimal convergence rates

with the best choice λv = 1/ρ giving the optimal rate
√

1− ρ
2L .

Then the optimal rates are equal but for different values of the parameter.
Figure 4 (taken from [59]) shows the two rates as function of λ. The best
compromise is to minimize max(ru(λ), rv(λ) which yields

λ∗ =
1√
ρL

Following the analysis in [59], we can obtain lower and upper bounds for
both primal and dual sequences using the properties of operator T :

1

1 + λL
‖z − z′‖2 ≤ ‖u− u′‖2 ≤ 1

1 + λρ
‖z − z′‖2

λρ

1 + λρ
‖z − z′‖2 ≤ ‖u− u′‖2 ≤ λL

1 + λL
‖z − z′‖2

Setting λ = λ∗, we get the same bounds (LB for the lower bound and UB
for the upper bound) for both sequences :

LB = 1

1+
√
L
ρ

≤ 0.5

UB = 1

1+
√

ρ
L

≥ 0.5
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Figure 5: Primal-dual residual rates

Ideally, we would expect a rate of 0.5 for both sequences when λ is tuned to
its compromise value λ∗. Figure 5 compares the behaviour of primal and dual
rates (estimated during the tail of iterations) τu, and τz respectively, with re-

spect to parameter λ, and the primal-dual rate τuz = lim

‖

 ut+1

zt+1

−
 u∗

z∗

‖
‖

 ut

zt

−
 u∗

z∗

‖ ,

the latter keeping a deceivingly slow pace.
This rather frustrating limiting rate of 0.5 induces us to explore the

possibility of multidimensional parameters, as discussed below.
Another drawback, early observed by Eckstein [30] is spiralling which

tends to slow down the iterates in the neighborhood of a fixed point (a typical
behaviour is shown in Figure 7). This phenomenon was currently observed
when splitting is applied to polyhedral (thus not strongly monotone) models.

4.2.2 Multidimensional scaling

It is easy to extend the former splitting methods to a multidimensional scal-
ing strategy. To understand the transformation, for a positive definite matrix
M , let consider a variable change z = Mx and substitute the monotone op-
erator T by T = M−T ◦ T ◦M−1. T is indeed maximal monotone if T is so
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and their graphs correspond in the following way :

y ∈ Tx⇐⇒ u ∈ T (z) for u = M−T y and z = Mx

Consequently, a backward step with the scaled operator T derived back in
the original x-space using the inverse transformation x = M−1z, corresponds
to the resolvent operator (II + ΛT )−1 where Λ = MTM .

Setting the scaling parameter λ = 1, it appears that the matrix Λ plays
the role of the scaling parameter in the splitting method. Convergence result
are identical but different convergence rates are expected if the scaling ma-
trix Λ is adequately chosen. Most practical applications of multidimensional
scaling suggest to use a diagonal scaling to turn the estimation of the param-
eters easier. The choice of the scaling matrix depends on the model (or its
reformulation) to maintain the decomposition features of the method. For
instance, considering the S-Model, the scaling corresponds to substituting
each resource allocation in (S −Model) by Mgi(xi) + yi = 0. It is shown
on a simple quadratic example with two coupling constraints that two differ-
ent parameters can drastically improve convergence (see Figure 6 illustrating
the rate of convergence of the primal-dual sequences with a two-dimensional
scaling).

Many applications of operator splitting techniques include precondition-
ing techniques which is indeed equivalent to multidimensional scaling, the
exhaustive list of references is far too long to be included here (see for in-
stance [10]).

4.2.3 Spiralling and foldings

Analyzing now the spiralling effect observed in many practical situations
where strong monotonicity is not present, it was shown in [56] an acceleration
strategy based on iterative foldings. The idea takes roots in a former study
by Lawrence and Spingarn [54] on folding operators. In the case where
T1 = ∂F and T2 = ∂C with F and C polyhedral, they introduced a family
of averaged operators F , called foldings, which are piecewise isometric, non
expansive and positively homogeneous, and showed that the iteration

st+1 =
1

2
st +

1

2
F(st)

produces successive directions which generate linear subspaces, themselves
converging to a limit subspace where spiralling is expected. In [56], the
authors used the following hypotheses on the operators :

• The subdifferential operator T1 = ∂F is proto-differentiable, which
means that the graph of the directional variations of T1 converges
graphically to a limit operator, the proto-derivative of T1, a weaker
notion than differentiability (see [73] for details).

26



1
0.5

0
0.5

1
1.5

2

0
0.511.5

22.53
0.5

0.6

0.7

0.8

0.9

1

log( 1)
log( 2)

(I
)

1=1, 2=100

1 = 2

Figure 6: Multidimensional scaling

27



Figure 7: Breaking spiralling by iterative folding

• C is the the indicator function of a coupling subspace.

In this case, they show how to accelerate convergence by application of av-
eraged sequence of foldings to break spiralling (see Figure 7).

4.2.4 Variable scaling and parameter updates

The high sensitivity to the value of the scaling parameters turns their es-
timation a difficult issue in practice. So, many researchers have considered
the generalization of splitting methods with varying scaling parameters at
each iteration. The earliest proposal to our knowledge is a variant of the
Forward-Backward splitting proposed by Tseng [81]. In his analysis, he gave
conditions on the scaling parameter to guarantee linear convergence of the
algorithm, based on the previous knowledge of the co-coercivity radius of
one of the two operators. This is of course difficult to check in practice.
The use of adaptive updates of parameters in the splitting algorithms has
been early studied by Kontogyorgis and Meyer in [52] with the additional
difficulty of revising the theoretical convergence results. Typically, in the
case of a single parameter λ, convergence will be maintained if the sequence
{λt} of parameters converges to a limit value and satisfies

+∞∑
t=0

|λt+1 − λt| < +∞
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Practical choices for the implementation of these updates appeared in [47]
for (ADMM) and in [29] for (SALA), taking the following form :

λt+1 =

{
θλt if 0 ≤ t ≤ 100 and t ≡ 0 (mod 10)
λt else

where θ ∈ [0.5 1].
More sophisticated updates that take in consideration the relative be-

haviour of primal and dual sequences are proposed in [59]. Based on the
S-Model, their analysis estimates the primal and dual rates by computing
τx = ‖rt+1‖

‖rt‖ where rt =
∑

i gi(x
t
i) is the primal residual at iteration t, and

τu = ‖δt+1‖
‖δt‖ where δt = ∇L(xt, ut) the gradient of the ordinary Lagrangian

of the S-Model. The proposed update of the parameter is such that both
sequences are kept at a similar pace and is implemented by :

λt+1 =

(
τx
τu

)α
λt

with 0 < α < 1.

5 Conclusion

We have surveyed the main monotone operator splitting methods and their
applications to the decomposition of separable convex problems. This is a
still very active research area where recent motivations concerning large-scale
problems in signal processing and statistical learning have induced many new
adaptations of these relatively old methods which appeared as early as the
fifties with Douglas- and Peaceman-Rachford algorithms for linear operators.
As these techniques can be interpreted as separable versions of the Aug-
mented Lagrangian dual methods, their main benefit is the regularization
effect of the proximal steps which induce numerical stability and smoothness
of the implicit primal and dual value functions. We have seen the importance
of reformulation to better exploit the decomposition features of each split-
ting scheme, for example by opposing the S-Model and the M-model. This
reveals that the operator splitting techniques are potential candidates for the
decomposition of nonconvex problems, even if this has been relatively little
explored in the applications (see [2] for theoretical extensions dealing with
semi-algebraic functions). The main drawback which has slowed down their
practical use is the difficulty to reach better convergence rates, like super-
linear convergence which is unlikely to occur even in the strongly monotone
models, neither theoretically nor practically. Nevertheless, we have discussed
that question in the last section showing that multidimensional scaling along
with adaptive updates of the parameters can significantly improve the speed
of convergence in many concrete applications.
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Finally, as for most decomposition methods, parallel implementations
are natural issues that have been tested by different authors which were not
surveyed in the present paper (see Bertsekas and Tsitsiklis [8] or Eckstein’s
thesis [30]).
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