Title

Learners’ dynamics of lived experience. An application of the course-of-action method in a teacher education program

Authors

Dieumegard Gilles – LIRDEF - Faculté d’Education- ESPE – Université de Montpellier
gilles.dieumegard@umontpellier.fr

Perrin Nicolas – Equipe CRAFT, Université de Genève et HEP Vaud, Lausanne
nicolas.perrin@hepl.ch

Abstract

Our research explores the dynamics of learners’ lived experience: to this end we use the “course-of-action method” which originates in ergonomics and is based on the enaction paradigm. This method enables us to endeavor a fine grained analysis of the understanding processes of trainees in a teacher education course.

Data are provided by video records and written traces from the course, but also by subsequent “self-confrontation interviews” in which one views oneself on video and report his/her lived experience. We first analyze all these data comprehensively by identifying successions of units of activity and of “conceptual links”. A second stage of comparative analysis investigates the understanding of the trainees.

Results show that trainees’ experience combined in various ways listening, reading, copying and thinking about these various sources of statements. Hence backtracking was frequent, leading trainees to partial and delayed understanding. Breakdown experiences of the trainees could entail a conceptual development, but they could also make them temporarily drop out from the course.

By focusing on lived experience, our method complements other microgenetic approaches of learning insofar as it allows studying the dynamics of understanding even at moments when learners remain silent which are widespread in ecological situations.

Extended Summary

1) Theoretical framework

Our research focuses on learners’ “lived experience”, a notion coming from the phenomenological tradition and referring to what "a singular subject is subjected to at any given time and place, that to which she/he has access in the first person" (Depraz, Varela, & Vermersch, 2003, p. 2). As a theoretical framework we adopt the enaction paradigm (Varela, Thompson, & Rosch, 1992) in which lived experience is regarded as a manifestation of each person’s autonomy. In that paradigm, knowledge is fundamentally considered in relation to a process of distinction of entities (situations, elements, processes) and relations between them which arises in lived experience (Maturana & Varela, 1980). This approach brings us close to the “Knowledge in Pieces” approach of conceptual development (diSessa, 2014) to the extent to which we consider knowledge elements which are loosely and unstably interacting together in various ways.

2) Aims of the study and research question

We study learning processes in the context of teacher education programs which alternate traineeship period in elementary schools and courses in schools of education. We investigate the understanding of trainees during a course about lesson planning which associates simulation and debriefing and is supposed to foster relationship between work situations and scientific knowledge. Particularly, how do the trainees understand the scientific references about learning and teaching which are presented during the debriefing?

3) Methodology

We study the experience of the trainer (female) and of four trainees (three females and one male) during the debriefing stages of the course. We use the “course-of-action method” (Theureau, 2006) which was originally designed for ergonomics but may apply to the study of lived experience dynamics of any agent in any situation.

We video-recorded each session using a static wide shot showing the behavior of the trainer and the trainees, and what was displayed on the beamer and the black board. In
addition, photocopies were taken of the trainees’ notes and of the documents given by the trainer. We completed these data with “self-confrontation interviews” in which one views oneself on videos of the sessions, and is asked to re-live the situation in order to show (for example by miming or gesturing), tell and comment, instant after instant, the reportable part of his/her lived experience. This technique is close to stimulated recall interviews but also benefits from research about how to obtain accounts of lived experience (Depraz et al., 2003; Petitmengin, 2006).

A first stage of data analysis consists in a comprehensive identification, for each agent and instant after instant, of units of activity and “conceptual links” which are relations between entities and properties experienced in the units; their succession represents the dynamics of lived experience. A second stage of comparative analysis leads to examine a) the coverage between the conceptual links which were expressed by the trainer and those which were experienced by the trainees; b) the dynamics of trainees’ understanding with synchronies or time lags which were either retroactive or proactive.

4) Results
Our study reveal three salient results:

a) Trainees’ experience combined in various ways listening to the trainer’s and other trainees’ speeches, reading and copying displayed slides, and thinking about these two dynamical sources of statements;
b) Backtracking, that is retroactively thinking to what was previously told or displayed, was frequent in this kind of multi-temporal experience. Therefore the understanding of the trainees was most often partial and delayed;
c) Breakdowns, that are experiences of discrepant conceptual links, could result in a conceptual development if trainees found a satisfying combination between newly experienced and familiar conceptual links. However, if they did not find that, they switched off.

5) Discussion/conclusions
Our method fits within the methodological principles of microgenetic approaches of learning (diSessa, 2014; Parnafes & diSessa, 2013). Nevertheless diSessa (2014) cannot analyse students’ understanding if it is not spontaneously manifest in interactions in classroom, drastically reducing data which corresponds to his purpose. Therefore focusing on learners’ experience allows us studying the dynamics of understanding even at moments when learners remain silent which are widespread in ecological situations. Moreover, it can benefit from and contribute to a recent trend in cognitive sciences towards the development of second-person methods giving access to phenomenological experience (Froese, Gould, & Seth, 2011; Petitmengin, 2006).

REFERENCES