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ABSTRACT. This paper deals with a two-microbial species model in competition for a single-resource
in the chemostat including general intra- and interspecific density-dependent growth rates with distinct

removal rates for each species. In order to understand the effects of intra- and interspecific interfer-

ence, this general model is studied by determining the conditions of existence and local stability of

steady states. The operating diagrams show how the model behaves by varying the operating pa-

rameters and illustrate the effect of the intra- and interspecific interference on the disappearance of

coexistence region and the occurrence of bi-stability region.

RÉSUMÉ. Dans ce travail, on étudie un modèle général densité-dépendant intra et inter-spécifique

où deux espèces microbiennes sont en compétition pour une seule ressource dans le chémostat avec

des taux de prélèvement distincts pour chaque espèce. Afin de comprendre les effets d’interférence

intra et inter-spécifique, ce modèle général est analysé en déterminant les conditions d’existence et

de stabilité locale des points d’équilibre. Les diagrammes opératoires montrent comment le modèle se

comporte en faisant varier les paramètres opératoires et illustrent l’effet d’interférence intra-et inter-

spécifique sur la disparition de la région de coexistence et l’émergence d’une région de bistabilité.
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1. Introduction

In the classical chemostat model with several species in competition for a single re-

source, the well-known Competitive Exclusion Principle (CEP) states that generically at

most one species can survive to the competition [5, 8]. Although the theoretical prediction

of this model has been corroborated by the experiences of Hansen and Hubbell [5], the

biodiversity found in nature as well as in waste-water treatment processes and biological

reactors seems to contradict the CEP. In order to construct more coherent models with

observations of the real world, different mechanisms of coexistence were proposed in the

literature such that the intra- and interspecific interference [1], the flocculation [2, 4] and

the density-dependence [6, 7]. The present paper studies how the intra- and interspe-

cific interferences are mechanisms of coexistence for competing species in the chemostat.

In this context, we will consider the following two species model with general density-

dependent growth functions:






Ṡ = D(Sin − S)− µ1(S, x1, x2)x1 − µ2(S, x2, x1)x2

ẋ1 = [µ1(S, x1, x2)−D1]x1

ẋ2 = [µ2(S, x2, x1)−D2]x2.

(1)

where xi, i = 1, 2, denotes the concentration of species i and S is the nutrient concen-

tration; Sin and D denote, respectively, the concentration of substrate in the feed bottle

and the dilution rate of the chemostat. The Di are not necessarily equal to D and can

be interpreted as the sum of the dilution rate D and the natural death rate of the species:

Di = D + ai, where ai > 0. For i = 1, 2, j = 1, 2, i 6= j, µi(S, xi, xj) denotes

the growth rate of species i. This model was considered in a series of paper by Lobry et

al. [6, 7]. Our study provides theoretical explanations for the phenomenon, which was

numerically observed in [6], where the coexistence holds when only intraspecific inter-

ference occurs, whereas it can disappear when the strength of interspecific interference

is large enough. On the other hand, our study describes the operating diagram which

shows the stability regions, in dependence of the operating parameters D and Sin, when

all biological parameters are fixed.

For convenience, we use the abbreviations LES for Locally Exponentially Stable

steady states in all that follows. The proof of all results may be found in [3]. For i = 1, 2,

j = 1, 2, i 6= j, we make the following assumptions.

(H1) µi(0, xi, xj) = 0 and µi(S, xi, xj) > 0 for all S > 0, x1 > 0 and x2 > 0.

(H2) ∂µi

∂S
(S, xi, xj) > 0, ∂µi

∂xi
(S, xi, xj) 6 0 and ∂µi

∂xj
(S, xi, xj) 6 0 for all S > 0,

x1 > 0 and x2 > 0.

Condition (H1) means that the growth can take place if and only if the substrate is present.

Condition (H2) means that the growth rate of each species increases with the concentra-

tion of substrate and is inhibited by intra- and interspecific interference.

2. Study of the model

In the following, we study the existence conditions and local stability of all corre-

sponding steady states of (1) that has the following types of steady states:

– E0 = (Sin, 0, 0), called the washout, where both populations are extinct: x1 = x2 =
0. This steady state always exists.

– E1 = (S̃1, x̃1, 0), where second population is extinct: x2 = 0 and x̃1 > 0.
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– E2 = (S̃2, 0, x̃2), where first population is extinct: x1 = 0 and x̃2 > 0.

– E∗ = (S∗, x∗
1, x

∗
2), where both populations survive: x∗

1 > 0, x∗
2 > 0.

The components S = S̃i and x = x̃i of a boundary steady state Ei are the solutions of

equations
D(Sin − S̃i) = Dix̃i, µi

(

S̃i, x̃i, 0
)

= Di.

Straightforward calculations show that we have the following result which gives the con-
dition of existence of a boundary steady state Ei.

Proposition 2.1. Let Ei be a steady state of (1) with x̃i > 0 and xj = 0, j 6= i. Then S̃i

is given by S̃i = Sin −
Di

D
x̃i where xi = x̃i is the solution of

µi

(

Sin −
Di

D
xi, xi, 0

)

= Di. (2)

This steady state exists if and only if

µi(Sin, 0, 0) > Di (3)

holds. If it exists then it is unique.

The component S = S∗ of a coexistence steady state E∗ is given by S∗ = Sin −
D1

D
x∗
1 −

D2

D
x∗
2 and the components (x1 = x∗

1, x2 = x∗
2) must be a solution of

{

f1(x1, x2) = 0

f2(x1, x2) = 0,
(4)

fi(x1, x2) := µi

(

Sin −
D1

D
x1 −

D2

D
x2, xi, xj

)

−Di, for i = 1, 2, j = 1, 2, i 6= j.

(5)

The functions (5) are defined on the set

M =

{

(x1, x2) ∈ R
2
+ :

D1

D
x1 +

D2

D
x2 6 Sin

}

. (6)

S∗ is positive if and only if (4) has a solution in the interior Mo of M , defined by (6). To

solve (4) in this open Mo, we need the following result:

Lemme 2.1. Assume that (3) holds for i = 1, 2 and let x̃i be a solution of (2). The

equation fi(x1, x2) = 0 defines a smooth decreasing function

Fi : [0, x̃i]→ R, xi 7→ Fi(xi)

such that Fi(x̃i) = 0 and the graph γi of Fi lies in Mo (see Figure 1). More precisely,

(x1, F1(x1)) ∈Mo [resp. (F2(x2), x2) ∈Mo] for all xi ∈ (0, x̃i).

Notice that Fi : [0, x̃i] → [0, x̄j ], xi 7→ Fi(xi), where x̄j = Fi(0) is the unique

solution of

µi

(

Sin −
Dj

D
xj , 0, xj

)

= Di. (7)

The following four cases must be distinguished (see Fig. 1):

Case 1: x̄1 > x̃1 and x̄2 > x̃2, Case 2: x̄1 < x̃1 and x̄2 < x̃2, (8)

Case 3: x̄1 < x̃1 and x̄2 > x̃2, Case 4: x̄1 > x̃1 and x̄2 < x̃2. (9)
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Figure 1: Case 1: (a) unique intersection, (b) an odd number of intersections. Case 2: (a) unique

intersection, (b) an odd number of intersections. Case 3: (a) no intersection, (b) an even number of

intersections. Case 4: (a) no intersection, (b) an even number of intersections.

Définition 2.1. A positive steady state E∗ = (S∗, x∗
1, x

∗
2) of (1) is said to be blue [resp.

red] if and only if, on the right of (x∗
1, x

∗
2), the tangent of γ1 at point (x∗

1, x
∗
2) is above

[resp. under] the tangent of γ2 at point (x∗
1, x

∗
2).

Théorème 2.1. Assume that (H1), (H2) and (3), for i = 1, 2 hold.

1) Blue positive steady states are unstable. If for all S, x1, x2,

∂µ1

∂x1

<
∂µ1

∂x2

and
∂µ2

∂x2

<
∂µ2

∂x1

(10)

hold, or D1 = D2 = D, then red positive steady states are LES, that is to say, positive

steady states are alternatively unstable and LES.

2) If Case 1 holds, the system can have generically an odd number of positive steady

states, while E1 and E2 are unstable. The positive steady states at the left-hand end and

right-hand end are red (see Fig. 1, Case 1). If, in addition, for all S, x1, x2,

∂µ1

∂x1

<
D1

D2

∂µ1

∂x2

and
∂µ2

∂x2

<
D2

D1

∂µ2

∂x1

(11)

hold, then the positive steady state is unique (see Fig. 1, Case 1.a).

3) If Case 2 holds, the system can have generically an odd number of positive steady

states, while E1 and E2 are LES. The positive steady states at the left-hand end and right-

hand end are blue (see Fig. 1, Case 2). If, in addition, for all S, x1, x2,

∂µ1

∂x1

>
D1

D2

∂µ1

∂x2

and
∂µ2

∂x2

>
D2

D1

∂µ2

∂x1

(12)

hold, then E∗ is unique and unstable (see Fig. 1, Case 2.a).

4) If Case 3 [resp. Case 4] holds, then generically the system has no positive steady state

or an even number of positive steady states where E1 is LES [resp. unstable] and E2 is

unstable [resp. LES]. The positive steady state at the right-hand [resp. left-hand] end,

if it exists, is blue (see Fig. 1). If, in addition, (11) or (12) hold, then the system has no

positive steady state (see Fig. 1, Case 3.a [resp. Case 4.a]).
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3. Operating diagram

The operating diagram shows how the system behaves when we vary the two control

parameters Sin and D in (1). We restrict our attention to the case where D1 = D2 = D

and the growth function µi is the modified Monod function

µi(S, xi, xj) =
miS

ki + S + βi(xi + αixj)
, i = 1, 2, (13)

where mi denotes the maximum growth rate, ki the half-saturation constant; βi the in-

hibition factor for the growth of the species i due to intra- and interspecific interference;

αi is a nonnegative parameter which denotes the strength of the interspecific interference.

Let Υi be the curve of equation D = µi(Sin, 0, 0), i = 1, 2,

Υi = {(Sin, D) : D = µi(Sin, 0, 0)} .

Recall that x̃i and x̄i are defined as the solutions of (2) and (7), respectively. These

equations become now

µi (Sin − x̃i, x̃i, 0) = D, µj (Sin − x̄i, 0, x̄i) = D, i = 1, 2, j = 1, 2, i 6= j.

Therefore, x̃i and x̄i depend on the operating parameters Sin and D. We denote them by

x̃i(Sin, D) and x̄i(Sin, D). Define the sets

Υc
i = {(Sin, D) : x̃i(Sin, D) = x̄i(Sin, D)},

which are curves in the generic case. In Fig. 2, the curves Υi and Υc
i , i = 1, 2 separate the

operating plane (Sin, D) in at most six regions, labeled as Ik, k = 0, . . . , 5. The regions

I4 and I5 are empty in case (a) and the regions I4 and I3 are empty in case (b) and (d),

respectively. Table 1 shows the existence and stability of steady states in the regions Ik,

of the operating diagram, in Fig. 2.

(a)D

Υ1

Υ2

Υc
1

I0

I1

I2

I3

Sin

(b)D

Υ1

Υ2

Υc
1

Υc
2

I0

I1

I2 I3

I5
Sin

(c)D

Υ1

Υ2

Υc
1

Υc
2

I0

I1

I2

I3

❄

I4

◗◗s

I5
Sin

(d)D

Υ1

Υ2

Υc
2

Υc
1

I0

I1

I2

I4

I5 Sin

Figure 2: Operating diagrams of (1). Cyan color represents the region of washout (E0 is LES), red

color represents the region of coexistence (E∗ is LES), blue color represents the region of bi-stability

(E1 and E2 are LES), green [resp. yellow] color represents a region of competitive exclusion (E1

[resp. E2] is LES).

Fig. 2 shows how this region of coexistence changes and even disappears when inter-

specific interference is added in the model. For instance, if the first species interspecific

coefficient is fixed, then varying the second species interspecific coefficient leads to a

reduction of the coexistence region I3 until the occurrence of bi-stability region I4, fol-

lowed by the disappearance of the coexistence region I3 (see Fig. 2(a-b-c-d)).
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Region E0 E1 E2 E∗

(Sin, D) ∈ I0 S

(Sin, D) ∈ I1 U S

(Sin, D) ∈ I2 U S U

(Sin, D) ∈ I3 U U U S

(Sin, D) ∈ I4 U S S U

(Sin, D) ∈ I5 U U S

Table 1: Existence and local stability of steady states.

4. Conclusion
In this work, we analyzed the effect of the intra- and interspecific interference on the

coexistence of microbial species in a chemostat, by allowing a large classe of response

functions with differential removal rates. For this class of response functions, we distin-

guished four cases, (8) and (9), which are qualitatively similar to the cases encountered

in the classical Lotka-Volterra competition model. When the intraspecific interference is

dominant with respect to interspecific interference there exists at most one positive steady

state, that is LES if it exists. Inversely, when the intraspecific interference is dominated

by interspecific interference, there exists at most one positive steady state, that is unstable

if it exists. The operating diagrams show how regions of coexistence and bi-stability of

steady states vary with intra- and interspecific interference. More precisely, increasing the

values of interspecific interference terms reduces the region of coexistence and increases

the regions of competitive exclusion with the occurrence of a bi-stability region.
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