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Abstract: We explore the limits of the photosensitive response of thin, 15 to 35 nm, films
of complex azobenzene dyes. They show high refractive index, reaching 1.8, and significant
photo-induced birefringence. We have successfully recorded strong, birefringent phase gratings
with visible light and used the diffraction efficiency measurements to monitor their temporal
evolution. The photo-induced gratings in such thin films were found not to be associated with
any periodic surface relief, a typical feature in thicker azobenzene layers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

OCIS codes: (160.5335) Photosensitive materials; (160.4760) Optical properties; (160.3710) Liquid crystals; (160.1190)
Anisotropic optical materials; (310.5448) Polarization, other optical properties; (050.1950) Diffraction gratings.

References and links
1. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym.

Sci. Part B: Polym. Phys. 52, 163–182 (2014).
2. J. Griffiths, “Photochemistry of azobenzene and its derivatives,” Chem. Soc. Rev. 1, 481–493 (1972).
3. F. P. Nicoletta, D. Cupelli, P. Formoso, G. De Filpo, V. Colella, and A. Gugliuzza, “Light responsive polymer

membranes: A review,” Membranes 2, 134–197 (2012).
4. G. S. Kumar and D. C. Neckers, “Photochemistry of azobenzene-containing polymers,” Chem. Rev. 89, 1915–1925

(1989).
5. S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth.

Met. 81, 125–127 (1996).
6. J. Kauppo, “Photoalignment control and surface-relief gratings in commercial azobenzene-based photoalignment

layers,” Bachelor’s thesis thesis supervisor: Prof. Matti Kaivola thesis advisor: D.Sc. (Tech.) Arri Priimägi, School of
Science, Aalto University (2014).

7. M. L. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through pho-
toisomerization,” in “Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and
Interconnects,” R. A. Lessard, ed. (SPIE-Intl Soc Optical Eng, 1994).

8. L. Frey, M. Kaczmarek, J. M. Jonathan, and G. Roosen, “Analysis of gratings induced in azo-dye doped liquid
crystals,” Opt. Mat. 18, 91–94 (2001).

9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye
surface command photoalignment material for photonics applications,” Appl. Opt. 49, 1720–1727 (2010).

10. L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and
T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J.
Mater. Chem. C 1, 7483–7487 (2013).

                                                                        Vol. 8, No. 2 | 1 Feb 2018 | OPTICAL MATERIALS EXPRESS 420 

#308985 https://doi.org/10.1364/OME.8.000420 
Journal © 2018 Received 12 Oct 2017; revised 29 Nov 2017; accepted 13 Dec 2017; published 18 Jan 2018 

http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.8.000420&domain=pdf&date_stamp=2018-01-18


11. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J.
Appl. Phys. 108, 033101 (2010).

12. G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into
dna-based polymeric matrix: Computer modeling and experiment,” Chemical Physics Letters 484, 321–323 (2010).

13. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Analyses of the diffraction efficiencies, birefringence, and
surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).

14. J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer
films for laser-induced surface relief gratings,” Chem. Mater. 19, 3877–3881 (2007).

15. O. R. Bennani, T. A. Al-Hujran, J.-M. Nunzi, R. G. Sabat, and O. Lebel, “Surface relief grating growth in thin films
of mexylaminotriazine-functionalized glass-forming azobenzene derivatives,” New J. Chem. 39, 9162–9170 (2015).

16. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent
analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized
interfering beams,” J. Phys. Chem. B 103, 6690–6699 (1999).

17. F. Lagugné Labarthet, P. Rochon, and A. Natansohn, “Polarization analysis of diffracted orders from a birefringence
grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).

18. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,”
Sci. Rep. 4, 1–4 (2014).

19. N. Tsutsumi, “Recent advances in photorefractive and photoactive polymers for holographic applications,” Polym.
Int. 66, 167–174 (2017).

20. F. You, M. Y. Paik, M. Häckel, L. Kador, D. Kropp, H. W. Schmidt, and C. K. Ober, “Control and suppression of
surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers,” Adv. Funct. Mater. 16, 1577–1581
(2006).

21. L.Miccio,M. Paturzo, A. Finizio, and P. Ferraro, “Light induced patterning of poly(dimethylsiloxane)microstructures,”
Opt. Exp. 18, 10947–10955 (2010).

22. A. Priimagi, J. Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola,
“Hydrogen-bonded polymer–azobenzene complexes: Enhanced photoinduced birefringence with high temporal
stability through interplay of intermolecular interactions,” Chem. Mater. 20, 6358–6363 (2008).

23. Q. Guo, A. Srivastava, V. Chigrinov, and H. Kwok, “Polymer and azo-dye composite: a photo-alignment layer for
liquid crystals,” Liq. Cryst. 41, 1465–1472 (2014).

24. O. Yaroshchuk and Y. A. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.
22, 286–300 (2012).

25. K. L. Marshall, O. Didovets, and D. Saulnier, “Contact-angle measurements as a means of probing the surface
alignment characteristics of liquid crystal materials on photoalignment layers,” in “Liquid Crystals XVIII,” I. C.
Khoo, ed. (SPIE, 2014).

26. S. Serak, T. Bunning, and N. Tabiryan, “Ultrafast photoalignment: Recording a lens in a nanosecond,” Crystals 7, 338
(2017).

27. M. Bouzige, P. Legeay, V. Pichon, and M.-C. Hennion, “Selective on-line immunoextraction coupled to liquid
chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and
industrial effluents,” J. Chromatogr. A 846, 317 – 329 (1999).

28. E. A. Harland G. Tompkins, Irene, ed., Handbook of ellipsometry (William Andrew, Inc, 2005).
29. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods

to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516, 7979 – 7989 (2008).
Proceedings of the EMRS 2007 Fall Meeting Symposium H: Current trends in optical and x-ray metrology of
advanced materials and devices {II} Warsaw, Poland.

30. Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3,” Opt.
Exp. 17, 18681–18692 (2009).

31. M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, “Conductive atomic force
microscopy investigation of switching thresholds in titanium dioxide thin films,” J. Phys. Chem 119, 11958–11964
(2015).

32. J. W. Weber, T. A. R. Hansen, M. C. M. van de Sanden, and R. Engeln, “B-spline parametrization of the dielectric
function applied to spectroscopic ellipsometry on amorphous carbon,” J. Appl. Phys. 106, 123503 (2009).

33. G. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416 – 422 (1993).
34. O. M. Tanchak, , and C. J. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: The

photomechanical effect,” Macromolecules 38, 10566–10570 (2005).
35. C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 1,” Proc. Indian Acad. Sci. 2,

406–412 (1935).
36. C. Raman and N. N. Nath, “The diffraction of light by high frequency sound waves, part 2,” Proc. Indian Acad. Sci. 2,

413–420 (1935).
37. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt.

Soc. Am. 68, 806 (1978).

                                                                        Vol. 8, No. 2 | 1 Feb 2018 | OPTICAL MATERIALS EXPRESS 421 



1. Introduction

Azobenzene based materials exhibit strong, selective photosensitivity and have been explored
for different photonic applications [1]. They undergo photo-chemical isomerization from the
trans form to the less stable cis form, under irradiation with UV and visible light [2] to achieve a
photo-stationary composition that is wavelength and temperature dependent. The photo-chemical
or thermal isomerism between the cis and trans forms [1, 3] is shown in Fig. 1. The trans-isomer
preferentially absorbs UV and blue photons polarized parallel to its molecular axis, changing the
conformation of the N = N bond at the center of the molecule. As such the isomer transforms
into its cis form. The cis isomer is shorter than the trans isomer [4] (0.6 nm against 1 nm), has
different dipole moment and, hence, refractive index. The lifetime of the cis state is molecule
dependent [5], but it is, in general, relatively short lived [6] (∼ 1 s) in the case of interest for liquid
crystal alignment. The cis isomer decays back to the trans- isomer with a random orientation
(Angular Hole Burning model [7]). Therefore, the net effect of prolonged illumination of an
azo-based layer is the preferential alignment of its molecules in the direction perpendicular
to the incident light local polarization, which has also been explored for writing gratings in
guest-host liquid crystal systems [8]. This orientation process is reversible [9], but stable in
ambient conditions. Such azobenzene layers can optically encode high resolution patterns, which
are used as polarization gratings and spiral phase wave-plates [10–12].

When illuminated by the interference pattern of two laser beams, thick azo-based layers (100 nm
to 2 µm) form surface relief gratings [13–15] (SRGs), with troughs as deep as 200–300 nm.
Their depth depends on the polarization and intensity of the recording laser beams, and on the
recording duration [16]. In particular, while circularly polarized beams can produce relatively
deep surface reliefs also in the thinner layers considered in these studies (thickness ∼ 150 nm),
linearly polarized beams produce a very shallow relief [17]. More complex surface relief patterns
were also demonstrated using, for example, incident vortex beams [18].

In liquid crystal display applications, much thinner layers, with thicknesses of the order of
a few tens of nanometers, are used. They have been mostly considered for their effect on the
neighboring materials, in particular for photo-aligning liquid crystals [10, 11, 19–24]. In relevant
studies the main focus was on their strong influence in modulating liquid crystal orientation and
the associated applications for waveplates. However, despite extensive investigations of very thin
films of azo-based materials for liquid crystal photo-alignment, there is little information on their
intrinsic optical properties.
In this work, we investigated thin layers (up to 35 nm) of azo-benzene materials, namely

PAAD complex azo-dyes [11], as stand alone films not integrated with other materials, to
characterize their optical properties and investigate any photo-induced response. In particular,
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Fig. 1. Schematic representation of the photo-chemical isomerization between trans- and cis-
forms in azobenzene based materials [3].
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we explore the possibility of creating photo-induced birefringent phase grating without surface
relief. Independently of their applications for liquid crystal alignment, the nanoscale resolution
and light-induced tunability of the optical properties of such layers will make them attractive, on
their own merit, for integration in nanophotonic devices to enhance their functionality.
We produced thin films of various PAADs using spin coating methods and measured the

thickness and absorption of the films using a stylus profilometer and an optical spectrophotometer,
respectively. We combined this information with spectroscopic ellipsometry to estimate their
complex refractive index and identified the minimum film thickness required to ensure good
optical quality, uniformity and significant photo-induced changes. Photo-induced changes in
PAAD films were investigated using an interferometric setup to record gratings and monitor the
diffraction efficiency as a function of the recording time and the polarizations of the recording
and probe beams. Finally, we used atomic force microscopy to investigate the surface topography
of these gratings for any evidence of surface relief.

This paper is structured as follows. Section 2 is devoted to the description of the methodology,
in particular different film fabrication and characterization techniques. Section 3 presents the
experimental measurements of the physical and optical parameters of the films as well as of
their photo-induced changes. Section 4 analyses the results. The conclusions end the paper by
highlighting the most important findings and discuss plans for future work.

2. Methodology

The azo dyes used in this study are based on azo-coupling of the diazonium salt of benzidinedisul-
fonic acid with the derivatives of phenol having different numbers and positions of pendants
such as -alkyl and -cyano groups at the phenol ring. Three different versions of PAAD complex
dyes were investigated, namely PAAD 22D, 22N and 22E. PAAD are proprietary materials
(BEAM Co. Orlando, FL) and the three variations are based on the same chemical composition.
They were developed with the aim of shifting the absorption band away from the ultraviolet and
into the visible region of the spectrum (towards 532 nm), while maintaining their stability and
uniformity. In earlier works, several versions of PAAD-27, 22 and 72 [25], [26] were studied for
their contact angle and photoalignment properties with liquid crystals. As presented in Tab. 2, the
three samples we have used show some differences in the wavelengths of their absorption peaks.
They also have different wetting properties on glass and ITO glass substrates, which influence
the uniformity and thickness of the films.
Thin films of PAAD dyes were fabricated by dissolving the dye powder in methanol at a

concentration of 1% g/ml and then sonicating for 5 minutes, until a clear solution was obtained.
Thin films were deposited on indium tin oxide (ITO) covered glass substrate by spin coating. To
obtain uniform films, a set of different speeds, 1000, 2000, 3000, and 4000 revolutions per minute
(RPM), of the spin-coater were tested. After deposition, the films were annealed on a hot plate for
10 minutes at 90 ◦C. In our experiments we used 1 mm thick glass substrates coated with a 30 nm
ITO layer typically used in the fabrication of liquid crystal cells. The choice of an ITO/glass
substrate was due to the observation that a uniform, smooth film could be achieved by the spin
coating on this substrate, most likely due to the good wetting properties of the ITO [27] to the dye
solution. Single crystal silicon was also investigated as a substrate due to its high refractive index,
as compared to glass and azo dyes, which could potentially lead to more accurate ellipsometric
measurements. However, we found it difficult to obtain uniform thin films on silicon due to its
poor wetting properties [27].

The complex refractive indices of the PAAD films were determined using ellipsometry [28,29]
(J. A.WoollamM2000DI and a Horiba Scientific UVISELHR460 ellipsometer).Wemeasured the
polarization state of the light reflected by coated and uncoated substrates. The measured behavior
was fitted with models of the optical properties of the PAAD layer. In order to independently check
the fitting procedure, we separately measured the thickness and the optical absorption of the films.
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Fig. 2. A 514.5 nm Ar+ laser was used for writing the gratings and a He-Ne laser at 632.8 nm
was used for monitoring the diffraction efficiency (η). The laser powers are measured at the
surface of the sample.

The thickness (and its uniformity across the surface) was determined by surface profilometry
(KLA Tencor P-16 Stylus Profiler) in different locations of the same sample. Absorbance was
determined using a UV/VIS/NIR JASCO spectrometer by comparing measurements before and
after spin coating.
The photo-induced response (refractive index change) of thin PAAD films was investigated

by monitoring the diffraction from phase gratings recorded in the films by interferometric
illumination. A periodic intensity pattern was created by the interference of two mutually coherent
Ar+ laser beams at 514.5 nm, a wavelength strongly absorbed by the PAAD films, using a
Michelson interferometric arrangement [30], as shown in Fig. 2.
The angle between the recording beams was 30◦, corresponding to a grating period of 1 µm.

The measurements presented below are for the case of the pump beams having linear polarization
and perpendicular to the plane of incidence, which creates an interference pattern with the
maximal contrast of the fringes. For consistency, we also explored the other configuration and
recorded a grating with the recording beams being polarized parallel to the plane of incidence.
The total recording laser power was 10 mW. The formation of photo-induced grating was probed
in real time by a HeNe laser beam (at 632.8 nm) with a power of 1.4 mW, and incident at the
corresponding Bragg angle for this wavelength, which is 18.5◦. The choice of a HeNe laser as
a probe is due to the low absorption of the PAAD films at 632.8 nm ensuring that the probe
light will have a negligible effect on the photo-induced grating. The diffraction efficiency, η,
was measured for two polarizations of the probe beam, parallel (η‖) and perpendicular (η⊥)
to the plane of incidence. It was calculated by dividing the power of the first order diffracted
beam by the power of the incident beam. The measurement of the diffracted beam power was
performed after the grating recording had reached saturation and with the recording beams turned
off. The interference patterns that were recorded in the film erased by uniform illumination of the
recording area using just one of the recording beams at 5 mW power.

Finally, AFM maps were acquired [31] by a MultiMode Nanoscope V AFM (Veeco Metrology
Group) in contact mode using commercial Al coated Si tips (Budget sensors, Tap300Al-G) with
125 µm long cantilevers, resonant frequency of 300 kHz and force constant of 40 N/m.
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Table 1. Average thicknesses of films made of the three different materials (22D, 22N
and 22E), spin coated at different speeds measured using a profilometer. The errors were
calculated by taking the standard deviation of measurements at different locations across
each sample.

Sample 1000 RPM 2000 RPM 3000 RPM 4000 RPM
22D 150 ± 50 nm 35 ± 15 nm 20 ± 10 nm 15 ± 10 nm
22N 90 ± 10 nm 70 ± 10 nm 25 ± 5 nm 15 ± 5 nm
22E 65 ± 20 nm 35 ± 20 nm 45 ± 20 nm 45 ± 20 nm

n k

Fig. 3. Complex refractive index, n + ik, of 22D on ITO/glass substrate determined by
ellipsometry. The same absorption peaks were observed with absorption spectroscopy at
375 nm and 460 nm.

3. Experimental results

The thickness of different PAAD layers and their uniformity depending on the speed of spin-
coating are presented in Tab. 1. The films of 22N and 22D dyes appeared to produce more
uniform films and their thickness variation across the film and surface roughness was lower in
comparison with 22E. The AFM depth measurements have an error of approximately 1 nm, much
smaller than the surface roughness of the material. Therefore, the error bars reported in Tab. 1
are a measure of the film non-uniformity rather than the measurement resolution.

Surface profilometry revealed thickness variations that depended on the material and the spin
coating rotation speed. As a rule of thumb, increasing the rotation speed made the samples
thinner and more uniform. At high spin speed, a layer thickness down to 15-20 nm was easily
achievable for the 22D and 22N compounds, with small deviations across the sample. The 22E
films were more rough and not entirely uniform even at 3000 and 4000 RPM. The measured
surface roughness is included as error in Tab. 1.
In the remaining part of this study, we used the thinnest and most uniform PAAD samples

produced at 4000 RPM. For these samples, the profilometer estimates of the layer thickness were
independently verified by the ellipsometry measurements.
Figure 3 shows the result of the complex refractive index measurements of the PAAD 22D

films in the spectral range from 300 to 1400 nm determined by ellipsometry. The ellipsometry
data in the spectral region between 800 - 1400 nm were fitted using a Cauchy model [32] in
order to evaluate the thicknesses of the thin films. The complex refractive index n + ik of the
PAAD films were evaluated using Lorentz oscillator [33] and B-spline [32] models, which have
been widely applied for the calculation of refractive indices. The B-spline model was applied
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for all three samples. For the 22D, the results were also confirmed with the double Lorentz
oscillator model in the whole spectral region; the obtained complex refractive index is shown in
Fig. 3. This model takes an advantage of the two clear absorption peaks of PAADs, that were
also independently confirmed by the absorption measurements. For example, as shown in Fig. 3,
for modeling of the complex refractive index of 22D, the frequency values of the two Lorentz
oscillator resonances were set to 3.3 eV (375 nm) and 2.7 eV (460 nm).

Table 2. Middle column - Absorption peaks of the three different PAAD materials as
determined by spectrometric measurements. Right column - Average refractive index in the
range 800 to 1400 nm determined using ellipsometry.

Sample Absorption
peaks±5 (nm)

Average refrac-
tive index

22D 375 & 460 1.8 ± 0.1
22N 380 & 470 1.6 ± 0.1
22E 375 & 440 1.8 ± 0.1

As shown in Fig. 3, the real part of the refractive index of PAAD 22D, n, increases in the
400 to 500 nm range, where there are also the absorption resonances, and then decreases to an
approximately constant value of 1.7-1.8 from 700 nm onward. We can use the imaginary part of
the refractive index, k, to estimate the wavelength dependent absorption coefficient, α = 4πk/λ,
of the material. The PAAD 22D absorption coefficient reached 200×103 cm−1 at peak absorption,
gradually reducing to 60 and then to 20 and 12 × 103 cm−1 at 500, 600 and 700 nm, respectively.
A similar dependence was observed in the other PAAD materials investigated, namely 22N and
22E. Their average refractive index was smaller than for 22D, but strong absorption peaks were
also present near 400 nm. The average refractive index for all the films in the wavelength range
between 600 nm and 1200 nm is presented in Tab. 2. As shown in Tab. 2, PAAD has a relatively
high refractive index in this wavelength range, in particular for 22D and 22N, where its values
reach 1.8.
The average refractive indices have been calculated using a range of ellipsometric fits that

were then verified using our profilometry and absorption measurements. The refractive index of
azobenzene dyes, as determined by other groups [34], was nazo=1.77, a value that agrees well
with our measurements.

As discussed in the introduction, the light induced changes in azobenzene can be exploited to
record polarization patterns. We used this effect to write diffraction phase gratings, using the
set-up shown in Fig. 2.
The recording dynamic of the photo-induced diffraction gratings have been measured using

the experimental arrangement that was described earlier. The temporal response of PAAD 22D,
22E, and 22N films is shown in Fig. 4. The dynamics of the 22N film is considerably slower than
the other two dyes. We have fitted the curves in Fig. 4 using exponentials: the time constants are
approximately 5, 4 and 120 s for PAAD 22D, 22E and 22N respectively.

Table 3. Diffraction efficiency of three different PAAD dyes for linear polarization of the
probe beam perpendicular (third column) or parallel (fourth column) to the plane of incidence.
The second column lists the film thickness for the samples used for these measurements,
while the last two columns list the birefringence parameter estimated using equation (1).

Sample Thickness
[nm]

η⊥ η‖ ∆n⊥ ∆n‖

22D 20 ± 5 3 × 10−6 6.1 × 10−8 1.7 × 10−2 2.4 × 10−3

22N 35 ± 5 3 × 10−5 2.1 × 10−7 3.0 × 10−2 2.5 × 10−3

22E 35 ± 15 1 × 10−6 6.1 × 10−8 5.5 × 10−3 1.3 × 10−3
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Fig. 4. Normalized intensity of the first diffracted order as a function of time for 22D and
22E (left), and 22N (right).

After the grating was recorded, we measured the dependence of the diffraction efficiency, η,
on the relative polarization of the probe to the pump beams. For these measurements we used
samples with film thickness varying from 20 to 70 nm. The saturated values of the diffraction
efficiencies that correspond to different polarizations of the probe beam are presented in Tab. 3
for the thinnest uniform samples that we were able to achieve. The saturated values of the
diffraction efficiencies that correspond to different polarizations of the probe beam are also
presented in this table. The grating in the 22N film showed the highest diffraction efficiency
with η22N estimated as 3 × 10−5, while in samples 22D and 22E, the diffraction efficiency was
an order of magnitude lower (approximately 10−6). Moreover, the diffraction efficiency, rather
unexpectedly, depends strongly of the relative polarization of the pump to the probe beams. The
ratio between diffraction efficiencies in the two polarization states varies from 16 in 22E to above
100 in 22N sample. In all cases the highest value of the diffraction efficiency was observed when
the polarization of the probe beam matched the polarization of the recording beams. We also
repeated the same measurements for gratings recorded with beams polarized parallel to the plane
of incidence. In this case, the highest diffraction was again observed when the probe beam had
the same polarization as the recording beams, and the ratio between diffraction efficiencies for
two orthogonal polarizations of the probe beam was consistent with the previous case.

Such high values of diffraction efficiency from 20 nm thin films indicate that light undergoes a
strong modulation while traversing the laser-recorded diffraction grating in the PAAD layer. In
order to determine the origin of the modulation, namely surface relief and/or refractive index
modulation, AFM imaging of the surfaces was carried out. This failed to show any periodic
surface relief pattern. Moreover, the lack of surface relief pattern justifies the observed diffraction
efficiency dependence on the polarization of the recording beams: the manner of the surface relief
grating should not change simply by rotating the polarization of the recording beams. The absence
of surface relief in the thin films considered here is in contrast with reports on thicker layers [16].
It is, however, consistent with the observation that linearly polarized light is less effective at
producing surface relief in 150 nm-thick layers [17]. A direct comparison between our work and
this last publication is not possible as the polarization of the pump beams used in the two cases
is different. In [17], the pump beams had either co- and contra-circular polarization, or linear
orthogonal polarization, while in our experiments the pump beams were always co-polarized. In
summary, it is therefore likely that for very thin films, as investigated in our study, the lack of
polymer structure and stronger influence of the surface impedes the formation of relief gratings.
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The assumption that illumination creates a refractive index grating can, in principle, explain
this polarization sensitivity: the polarized recording beam induces birefringence in PAAD
materials, causing different refractive index changes in the directions parallel or perpendicular
to its polarization. However, this interpretation is not straightforward, as we discuss in the next
section.

4. Discussion

Following the exclusion of a surface relief grating contributing to the measured diffraction
efficiency, we are forced to associate the observed diffraction purely to a modulation of the
refractive index. The diffraction properties of PAAD layers are normally modeled using Jones
matrices [13, 16, 17]. However, the linear polarization of the recording beams that we have used
produced a very simple polarization grating in which the illuminated regions now have an optical
axis that is perpendicular to the pump beam polarization, i.e. in the plane of incidence, while the
dark regions remain isotropic. In this case, the Jones matrices simplify considerably and we can
consider the PAAD film as an isotropic grating with a refractive index modulation that depends
on the polarization of the incident probe beam. Furthermore, as the film is thin with respect to
the recording wavelength we are firmly in the Raman-Nath regime [35,36], and the diffraction
efficiency is given by [37]

η = J2
1

(
2π∆nd
λ cos(θ)

)
=⇒ ∆n ' λ cos(θ)

πd
√
η. (1)

Here J1 is the Bessel function of the first kind of order 1, ∆n is the amplitude of the refractive
index modulation, λ the probe wavelength in vacuum, d the film thickness and θ the probe angle
of incidence. The approximation on the right hand side of equation (1) is excellent for our values
of η.
The two rightmost columns in Tab. 3 list the amplitudes of the refractive index modulations

seen by a probe beam polarized perpendicular (∆n⊥) or parallel (∆n‖) to the plane of incidence
required to produce the measured diffraction efficiencies. The largest of these modulations is
for a probe beam polarized in the direction perpendicular to the plane of incidence (matching
the polarization of the recording beams). What is most significant in these data is that the ratio
∆n⊥/∆n‖ is 4, 7 and 12 in 22E, 22D and 22N PAAD films, respectively. This large difference
in refractive index is not explainable using standard molecular reorientation models for PAAD
layers [7].
In these models, the molecules are assumed to be rod-shaped. When in the isotropic phase,

there is no collective preferred direction among the PAAD molecules. Hence the film is optically
isotropic and has refractive index nI . When there is a collective orientation present, the film
acquires an optical axis parallel to the molecules average orientation and has associated ordinary
and extraordinary refractive indices, no and ne, respectively, proportional to the degree of order
of the molecular axes. As a result, the film now acts as a birefringent medium in the illuminated
regions, with the optical axis laying in the direction perpendicular to the pump beam polarization.
The refractive index modulation in the grating region is obtained by assuming that the dark

regions are in the isotropic phase and that the illuminated regions are partially oriented. If we
assume that the film constrains the molecules to lie in its plane, then the isotropic refractive index
is n(2D)I = (no + ne)/2. The two polarizations of a probe beam coming at a normal incidence
observe the same refractive index amplitude modulation ∆n(2D)‖ = ∆n(2D)⊥ = (no − ne)/2 and,
hence, the same diffraction efficiency. For the tilted incidence, however, a probe beam polarized
in the plane of incidence experiences an effective refractive index in the illuminated region, which
depends on the angle of incidence:

neff(θ) =
none√

n2
o cos2(θ) + n2

e sin2(θ)
. (2)
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Therefore, in general ∆n(2D)‖ is a function of θ, ∆n(2D)‖ (θ) = neff(θ) − n(2D)I . In principle it is
possible, by a careful choice of the angle of incidence θ, to make ∆n(2D)‖ as small as we wish.
However, at the angle of incidence used in the experiment, θ = 18.5◦, ne and no would have to be
at least 1.5n(2D)I and 0.5n(2D)I respectively, in order to produce the experimental ∆n⊥/∆n‖ ratios.
These values are far too large to be acceptable.

Alternatively, we can assume that the film is sufficiently ‘’fluid” that the PAAD molecules
can equally reorient in three dimensions. In this case, the isotropic refractive index is n(3D)I =

(2no + ne)/3. The illumination with the pump beam polarized perpendicular to the plane of
incidence decreases the population of molecules oriented in this direction, introducing a short
optical axis with the refractive index of no. The molecules, though, are still free to orient in any
direction with equal distribution in the plane of incidence. The probe beam polarized parallel to
the plane of incidence would therefore experience an effective refractive index of (no + ne)/2,
which does not depend on the angle of incidence. The amplitudes of refractive index modulation
are then given by

∆n(3D)‖ =
no + ne

2
− n(3D)I =

ne − no
6

,

∆n(3D)⊥ = n(3D)I − no =
ne − no

3
.

(3)

The ratio between the two modulations is 2, independently of the absolute birefringence of the
PAAD molecule assembly. Whereas the 3D model yields the correct trend, the ratio between
∆n(3D)⊥ /∆n(3D)‖ is much smaller than experimentally measured values.
This analysis suggests that the origin of the refractive index modulation cannot be fully

attributed to a molecular reorientation effect. More experiments are needed to understand
this remarkable observation and ascertain its stability and dependence of the film parameters,
furthermore, the interaction of the PAAD films with the substrate surface has to be studied further.
It is possible, for example, that the thinness of the layer modifies the diffusion dynamics in the
Angular Hole Burning model [7] in a polarization dependent manner.

5. Conclusions

In this work three different azobenzene complex dye films, PAAD 22D, 22E and 22N, were
characterized for their main physical and optical properties. Uniform films with thickness from
150 nm down to 15 nm were fabricated on ITO coated glass substrates by using different spin
coating speeds. The complex refractive indices of the PAADs were measured using ellipsometry
and absorption spectroscopy. Furthermore, the profilometry measurements were also carried out
to cross check and confirm the validity of the ellipsometric results. The films had relatively high
refractive index, namely from 1.6 to 1.8. It was shown that even thin films, with thickness below
35 nm, lead to considerable diffraction efficiency with gratings formed through the refractive
index change rather than surface relief. PAAD films show considerable photo-sensitivity, in spite
of limited thickness, and can be attractive for functionalizing surfaces and structures. Previous
reports on thicker films of similar azo-based materials associated diffraction mostly due to
surface relief rather than a refractive index change. Most importantly we have also shown that
the photo-induced refractive index change in PAADs is anisotropic with largest refractive index
modulation in the direction parallel to the polarization of the writing beams. This phenomenon
cannot be attributed to a molecular reorientation effect. This intriguing mechanism of interaction
of thin PAAD films with light will be studied further, in particular by considering the interaction
with the substrate surface and its role in the formation of the gratings.
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