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Abstract—Democratization of 3D sensor devices makes 3D
maps building easier especially in long term mapping and
autonomous navigation. In this paper we present a new method
for summarizing a 3D map (dense cloud of 3D points). This
method aims to extract a summary map facilitating the use of this
map by navigation systems with limited resources (smartphones,
cars, robots...). This Vision-based summarizing process is applied
in a fully automatic way using the photometric, geometric and
semantic information of the studied environment.

I. INTRODUCTION

Last years, the introduction of High-Definition (HD) and
semantic maps has made a great participation in the large
commercial success of navigation and mapping products and
also in the enhancement of data fusion based localization
algorithms. Several digital map suppliers like TomTom and
HERE are now providing HD maps with higher navigation
accuracy, especially in challenging urban environments. On the
one hand, these HD maps provide more detailed representation
of the environment even within large-scale 3D point cloud
data. On the other hand, they require a high processing
capacity with severe time constraints as well as a large storage
requirement. Hence the need to find a new method to sum-
marize these maps in order to reduce the required resources
(computation / memory) to run the intelligent transportation
systems while preserving the essential navigation information
(saliency pixels, important nodes, etc.).

II. PREVIOUS WORKS
In some navigation tasks, setting a full-size map on a mobile

device (car, robot, etc.) poses several difficulties. Appearance-
based navigation methods are based on global features like
color, histogram or local features like points. To simplify the
process of appearance-based navigation, a selection process is
applied to select the key/reference features in the environment.
In the visual memory approach a set of relevant and distinctive
areas (images) are acquired and used during navigation by
comparing it to the current position. This approach could serve
to produce a compact summary of a map [9], [15], [16]. In
the work of Cobzas [3], an example of panoramic memory of
images is created by combining the acquired images with the
depth information extracted from a laser scanner. In this image
database, only the essential information to the navigation
process will be retained [2]. This allows to obtain homoge-
neous results with the same properties (precision, convergence,

robustness,. . . ) as the original global map. In order to build this
image database, some techniques have been developed in order
to guarantee the maximum efficiency in the choice of useful
information. A spherical representation has been proposed by
M. Meilland et al. [5], [13], [14]. This spherical representation
is build by merging different images acquired by a set of
cameras with the depth information extracted from a laser
scanner. In this representation, all the information necessary
for localization is present and compacted in a single sphere,
thus avoiding the mapping of areas unnecessary to navigation
[14]. We build upon this idea in this paper, as this approach
is promising. Methods based on Bag of Words (BoW) are
widely used for localization. BoW methods can efficiently
represent a huge amount of data using the occurrences of
several visual vocabulary. By applying hierarchical dictionary
to the visual navigation problem [19], BoW methods proved
a high scalability and accuracy in vision-based localization
and mapping processes. The huge number of 3D points in
HD maps makes point cloud compression algorithms essential
for efficient storage and transmission. Over the past decade,
several compression approaches have been proposed in lit-
erature. Some of them employ special data structures such
as octree [4] [6] for progressive encoding of point clouds.
Schnabel et al. [17] propose a prediction scheme to achieve the
compression using the octree approach. A novel compression
method has been proposed in [10] to code only the spatial
and temporal differences within an octree structure. Jae-Kyun
et al. [1] proposed a geometry compression algorithm for large
scale point cloud to encode radial distances in a range image.
Several approaches based on feature selection to summarize
a map for localization purposes were presented in [23], [24],
[25]. The authors propose a few scoring functions to order the
map landmarks according to their utility or to the observation
statistics while guaranteeing a maximum coverage of the
scene. An approach to map reduction was proposed in [26].
It aims to select only the places that are particularly suitable
for localization using the location utility metric.

The remainder of this paper is organized as follows. First,
we present an overview of our system. Next, we describe
precisely our method for map summarization. Before conclud-
ing our work in the last section, experiments and results are
presented for a small point cloud and then for a large-scale
labelled point cloud.



Fig. 1: Summarizing Large Scale 3D Point Cloud

III. OUR SOLUTION

Our work aims to perform several navigation tasks using
only a map summary of the environment. This map should
be not only compact but also coherent with the perception of
the agent. To provide this map summary, we propose a new
method dealing with large-scale 3D point clouds. The output
of our summarizing method is a set of interconnected spherical
images. Our main contributions are:

∙ We introduce the concept of ViewPoint Entropy, which
is a measure of viewpoint's informativeness based on
geometric, photometric and semantic characteristics. The
ViewPoint Entropy is used to facilitate best viewpoint
selection.

∙ Using ViewPoint Entropy, we formulate map summariz-
ing process as an optimization problem.

∙ We propose a new representation of summarized localiza-
tion map using augmented and labelled spherical images.

∙ We introduce a novel partitioning step in our scalable
summarizing algorithm to allow large-scale point clouds
handling.

In Fig. 1, we present the main steps of our algorithm to find
the optimal set of spheres.

A. Cloud Splitting

To treat a large-scale 3D point cloud, we choosed to apply
”Divide and Conquer” method. This algorithmic technique
consists in:

∙ Divide : split an initial problem into sub-problems.
∙ Conquer : solve sub-problems recursively or directly if

they are small enough.
∙ Combine : merge the solutions of the sub-problems to

find the global solution of the initial problem.
In our case, we might manipulate a very large 3D cloud with
high density of information representing a large part of an
urban environment. This method is therefore the best-suited to
our needs. The first step of our algorithm consists in splitting
the large 3D cloud from the beginning into several subsets
to determine the optimum position of the sphere representing

Fig. 2: Splitting Large-scale point cloud

each small region (subset). To do this, we have proposed
a splitting method. This technique allows us to split the
input cloud into several cells using a discrete set of points
called ”germs”. These germs are the centers of the cells. To
adequately split the input cloud, the centers must cover all
the navigable areas in the cloud (zones of circulation for cars,
bikes and pedestrians). To find the best set of centers, we
randomly select several points from the cloud. A new point
is added to the set of germs if it is far enough (about 3 or 4
meters in our case) from every one of them and it belongs to
the navigable areas. This process will be repeated until there
are no more points respecting the criteria of a germ. Fig. 2
shows an example of splitting a 3D point cloud.

B. Salient Points Detection

In our final representation of the large-scale 3D point cloud,
the salient areas must be represented in a very efficient way. To
select these areas, we use the concept of visual saliency very
commonly used these last years. There are many algorithms
used for the detection of 3D visual saliency in a scene. Here,
we consider three possible approaches dealing with saliency in
3D point cloud. They are based on the distinction between the
regions in a scene. These methods are distinguished with the
type of input information (geometric and photometic) used
to extract salient points. The first method was proposed in
[18]. This method uses a 3D point descriptor called Fast
Point Feature Histogram (FPFH) (Geometric-based saliency)
to characterize the geometry of the neighborhood of a point. A
point is considered as distinct if its descriptor is dissimilar to
all the other descriptors of points in the cloud. This operation
is carried out on two levels with different neighborhood sizes.
First, a low-level distinctness 𝐷𝑙𝑜𝑤 is computed to detect the
small features. Then, a value of association 𝐴𝑙𝑜𝑤 is calculated
to detect salient points in the neighborhood of the most distinct
points. Next, a high-level distinctness 𝐷ℎ𝑖𝑔ℎ is computed to
select the large features. The final saliency map is calculated
for each 3D point 𝑝𝑖 as follows:

𝑆(𝑝𝑖) =
1

2
(𝐷𝑙𝑜𝑤 +𝐴𝑙𝑜𝑤) +

1

2
𝐷ℎ𝑖𝑔ℎ (1)

However, this method uses only the geometry of the scene
without any other type of information such as colors. A
new algorithm for detecting saliency in 3D point cloud was
presented in a recent work [20] (Supervoxel-based saliency).
This algorithm consists in exploiting the geometric features
and the color characteristics together to estimate the saliency



Fig. 3: Database (ground-truth) -a- manual segmentation -b-
sphere positioning

in a cloud of colored points. All the 3D points are grouped
in several supervoxels and then a measure of saliency for
each set is calculated using the geometrical and photometric
characteristics of its neighbors. This process is applied on
several levels. Based on the center-surround contrast, a mea-
sure of the distinctness is computed for every cluster using its
feature compared to each surrounding adjacent cluster's one.
The feature contrast 𝜌𝑖 of a given cluster C at a given level i
is calculated as follows:

𝜌𝑖(𝐶) = 𝜃𝜌𝑔𝑒𝑜(𝐶) + (1− 𝜃)𝜌𝑐𝑜𝑙𝑜𝑟(𝐶) (2)

Where 𝜌𝑔𝑒𝑜 and 𝜌𝑐𝑜𝑙𝑜𝑟 denote the normalized geometric and
color feature contrast of the cluster C, and 𝜃 is a weighting pa-
rameter which is empirically set to 0.5 in [20]. Another method
has been proposed in the work of Leroy [11] (Supervoxels-
rarity) based only on supervoxels rarity. For each supervoxel 𝑣
a measure of rarity 𝑆𝑖(𝑣) is calculated using only photometric
characteristics (3).

𝑆𝑖(𝑣) = −𝑙𝑜𝑔(𝑃𝑖/𝑁) (3)

At each color component 𝑖, a self-information of the occur-
rence probabilities of the supervoxel 𝑃𝑖 is obtained and 𝑁 is
the number of supervoxels. To evaluate the level of saliency
captured by these methods, we have proposed to calculate a
criterion called in the literature: 𝐹𝛽 [12] . This criterion allows
to characterize the relevance of the information returned by
each method. This measure is calculated as follows:

𝐹𝛽 =
(1 + 𝛽2) * (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 )
(6)

∙ True Positive (TP): number of points reasonably classified
as relevant for localization

∙ False Positive (FP): number of points wrongly classified
as relevant for localization

∙ False Negative (FN): number of points wrongly classified
as irrelevant for localization

𝐹𝛽 score is the weighted harmonic mean of precision and
recall and reaches its best value at 1 and worst score at 0.

Fig. 4: Result of salient points detection according to the four
3D saliency extraction methods. -a- Geometric method [18]
-b- Geometric and Photometric method [20] -c- Photometric
method [11] -d- Harris3D [7]

Methods 𝐹𝛽

Supervoxel-based saliency (𝜃 = 0.7) [20] 0.7401
Geometric-based saliency [18] 0.7234
Supervoxel-based saliency (𝜃 = 0.5) [20] 0.6696
Supervoxels-rarity [11] 0.5363
Harris3D [7] 0.4536

TABLE I: Results of salient points detection

Recall and precision are equally important if 𝛽 is set to 1.
𝛽 < 1 lends more weight to precision, while 𝛽 > 1 favors
recall. To contrast the approach of using the maximum recall
of points (no discrimination) we decided that precision should
be given much more priority over recall. In our work, 𝛽 is set
to 0.5 because it is one of the most common values assigned
to 𝛽 (recall is half as important as precision).

C. Sphere Positioning

After completing the decomposition of the initial problem
(large size) into a set of sub-problems (small size), we search
for the optimal position of the sphere in a 3D cloud using
optimization methods. This problem is known as Optimal
point of view selection. In this type of problem, we aim to
determine the best possible location of the Viewpoint in order
to maximize the amount of information given by this sphere
center. In the next part, we consider the map-summarizing
process as an optimization problem.

1) Problem Modeling: Our goal is to determine the best
viewpoint allowing the capture of a maximum amount of
salient points in the environment. This viewpoint will be
represented by a spherical image. To find the optimal position
of our sphere, we define a criterion called ”Viewpoint En-
tropy”. The output of the entropy optimization process is a 3D
position (𝑋𝑜, 𝑌𝑜, 𝑍𝑜) of the optimal sphere center. To select
the most salient point for localization purpose, we propose to



 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0  2  4  6  8  10  12  14  16  18  20

V
ie

w
Po

in
t 

E
n
tr

o
p

y

Sampling step (10-5)

ViewPoint Entropy wrt Sampling step

Fig. 5: Entropy value of a given dataset related to the sampling
step

use photometric, geometric and semantic information of the
studied environment. This criterion is defined below.

Entropy Calculation
We consider {𝑃𝑖(𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑅𝑖, 𝐺𝑖, 𝐵𝑖, 𝐿𝑖), 𝑖 = 1..𝑁} as

a finite set of N 3D points with their cartesian coordinates,
their labels 𝐿𝑖 and their colors (𝑅𝑖, 𝐺𝑖, 𝐵𝑖), and a point
𝐶(𝑋𝑐, 𝑌𝑐, 𝑍𝑐) as the center of our sphere. The idea is to
project all points of the cloud onto the sphere. For each point
𝑃𝑖, the coordinates (𝑋,𝑌, 𝑍) of the projected point on the
sphere are:(︃
𝑋𝑐+𝑅(𝑋𝑖 −𝑋𝑐)

‖𝑃𝐶‖
,
𝑌 𝑐+𝑅(𝑌𝑖 − 𝑌 𝑐)

‖𝑃𝐶‖
,
𝑍𝑐+𝑅(𝑍𝑖 − 𝑍𝑐)

‖𝑃𝐶‖

)︃
(7)

Subsequently, we make the conversion into spherical coordi-
nates:

(𝜑, 𝜃) =

{︃
arccos(𝑍/𝜌)

arctan(𝑌/𝑋)
(8)

R is the radius of the sphere (set to 1 in our work). The next
step is to sample these projected points to have a homogeneous
points ditribution on all the spheres. To do this, we use
constant angle sampling. In the real-time implementation of
on-line localization algorithms, this type of sampling methods
was used in order to favor the calculation time [13]. This
method consists in sampling the projected points on the sphere:
𝑃𝑠=(𝜃,𝜑), with angles 𝜃 ∈ [−𝜋, 𝜋] and 𝜑 ∈ [0, 𝜋], using the
sampling steps 𝜕𝜃 et 𝜕𝜑

𝜕𝜃 =
2𝜋

𝑚
, 𝜕𝜑 =

𝜋

𝑛
(9)

In this equation m denotes the number of samples in latitude
and n the number of samples in longitude. We conducted
a small study of the influence of the sampling step on the
entropy value, regardless of other factors, on a given test
dataset containing 60,000 3D points and representing an urban
environment. The results are shown on Fig. 5. It appears
that it decreases strongly for values above 15 x 10−5 𝑟𝑎𝑑.
However, smaller values will increase the data volume thus
we recommend staying with that value.

To obtain the corresponding intensity for each projected
pixel, an interpolation is applied using the intensity of the
nearest neighbor. We propose to define two levels of saliency

in a 3D point cloud. The low-level saliency 𝑆𝑙𝑜𝑤 is based on
low-level characteristics (photometric and geometric) of a 3D
point. The high-level saliency 𝑆ℎ𝑖𝑔ℎ is based on the semantic
information of each 3D point. To compute 𝑆𝑙𝑜𝑤 values we
use the Supervoxel-based saliency method described in the
previous section which allows the combination of photometric
and geometric information. We have chosen this method
because it ensures a compromise between the calculation time
and the selection of the most salient points useful for the
localization. To compute 𝑆ℎ𝑖𝑔ℎ values, we use the semantic
Labels for each point. Using these two types of saliency,
we calculate the number of points of interest on the sphere
according to their relevance. Therefore, we have four possible
combinations as following.

∙ 𝑛00: number of non relevant points semantically, photo-
metrically and geometrically.

∙ 𝑛10: number of points relevant only photometrically and
geometrically.

∙ 𝑛01: number of points relevant only semantically.
∙ 𝑛11: number of points relevant semantically, photometri-

cally and geometrically.
The entropy of a sphere will be characterized by the entropy
of its center P. The entropy is given by the algorithm 15:

Algorithm 1 Entropy

Input : {𝑃𝑗(𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗 , 𝑆
𝑙𝑜𝑤
𝑗 , 𝑆ℎ𝑖𝑔ℎ

𝑗 ) ∈ S, 𝑗 = 1..𝑀} ◁ 𝑀 is
the number of projected points on the sphere 𝑆 of center 𝐶
Output : 𝜉(𝐶) ∈ [0..1]

1: procedure 𝜉(𝐶) ◁ The entropy of the center 𝐶
2: 𝜉(𝐶)← 0
3: 𝑗 ← 1
4: 𝑛00 ← 0, 𝑛01 ← 0, 𝑛10 ← 0, 𝑛11 ← 0
5: for 𝑗 = 1 to 𝑀 do
6: if ((𝑆𝑙𝑜𝑤

𝑗 = 0)𝑎𝑛𝑑(𝑆ℎ𝑖𝑔ℎ
𝑗 = 0)) then

7: 𝑛00 ← 𝑛00 + 1
8: else if ((𝑆𝑙𝑜𝑤

𝑗 = 1)𝑎𝑛𝑑(𝑆ℎ𝑖𝑔ℎ
𝑗 = 0)) then

9: 𝑛10 ← 𝑛10 + 1
10: else if ((𝑆𝑙𝑜𝑤

𝑗 = 0)𝑎𝑛𝑑(𝑆ℎ𝑖𝑔ℎ
𝑗 = 1)) then

11: 𝑛01 ← 𝑛01 + 1
12: else
13: 𝑛11 ← 𝑛11 + 1
14: end if
15: end for
16: 𝜉(𝐶)←
17: −𝑛00

𝑀 log 𝑛00

𝑀 − 𝑛01

𝑀 log 𝑛01

𝑀 − 𝑛10

𝑀 log 𝑛10

𝑀 − 𝑛11

𝑀 log 𝑛11

𝑀
18: return 𝜉(𝐶)
19: end procedure

2) Optimization: The Best Viewpoint Selection is an en-
tropy optimization process. This optimal point of view is
the center of our optimal sphere. To maximize the entropy
criterion, we have proposed a genetic algorithm to determine
the maximum of entropy function 𝜉 : 𝑋 → R3, where 𝑋
is the initial population of N 3D points. These points are the
centers of the spheres on a navigable area in the cloud. This



Fig. 6: Result of spheres positioning according to the four
3D saliency extraction methods. -a- Geometric method [18]
-b- Geometric and Photometric method [20] -c- Photometric
method [11] -d- Harris3D [7]

optimization algorithm consists in evaluating the entropy of
each member in the population. Both individuals (parents) with
maximum entropy values are selected. The combination of
two parents in a first iteration allows us to obtain a solution
(child) with a better entropy than these parents. Thanks to
this evolution of the viewpoint selection from one iteration
to another, the algorithm becomes able to converge towards a
solution among the points maximizing the entropy after a few
iterations. The optimization algorithm is defined as follows:

Algorithm 2 Genetic Algorithm
Inputs : Navigable area {𝑃𝑖(𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗) ∈ Z, 𝑖 = 1..𝑁}
Number of iterations 𝑁𝑖𝑡𝑒𝑟 Number of individuals 𝑁𝑖𝑛𝑑𝑖𝑣

Output : Best viewpoint 𝑉 ∈ 𝑍

1: procedure 𝐺𝐴(𝑍)
2: 𝑘 ← 1
3: 𝐼 ←Select 𝑁𝑖𝑛𝑑𝑖𝑣 random points ∈ 𝑍
4: while 𝑘 < 𝑁𝑖𝑡𝑒𝑟 do
5: for each point 𝑝ℎ in 𝐼 do 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(ℎ)← 𝜉(𝑝ℎ)
6: end for
7: 𝑝𝑎𝑟𝑒𝑛𝑡1← 𝑎𝑟𝑔𝑚𝑎𝑥1(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)
8: 𝑝𝑎𝑟𝑒𝑛𝑡2← 𝑎𝑟𝑔𝑚𝑎𝑥2(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)
9: for 𝑙 = 1 to 𝑁𝑖𝑛𝑑𝑖𝑣 do

10: Add 𝜆 * 𝑝𝑎𝑟𝑒𝑛𝑡1 + 𝛼 * 𝑝𝑎𝑟𝑒𝑛𝑡2 To 𝐼
◁ 𝜆 and 𝛼 random numbers ∈ [0..1]

11: end for
12: end while
13: return (𝑎𝑟𝑔𝑚𝑎𝑥(𝑒𝑛𝑡𝑟𝑜𝑝𝑦))
14: end procedure

This algorithm has two parameters: maximum number of
iterations 𝑁𝑖𝑡𝑒𝑟 and initial population size 𝑁𝑖𝑛𝑑𝑖𝑣). To be
able to assign a value to them and maintaining a reasonnable
computing time, we conducted a small study on some sample
dataset of 30 000 points. To find the optimal value of 𝑁𝑖𝑛𝑑𝑖𝑣 ,
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Fig. 7: Entropy and computation time values of a given dataset
related to the population size and the number of iterations

we set 𝑁𝑖𝑡𝑒𝑟 to 5 and we measure the computation time and
the entropy value while varying 𝑁𝑖𝑛𝑑𝑖𝑣 . Results can be seen
on Fig. 7a and show that values of 𝑁𝑖𝑛𝑑𝑖𝑣 above 20 give the
best results. However, higher values also increase computation
time. Similarly, Fig. 7b shows the he entropy value when 𝑁𝑖𝑡𝑒𝑟

varies while fixing 𝑁𝑖𝑛𝑑𝑖𝑣 = 20. It shows that values of 𝑁𝑖𝑡𝑒𝑟

above 15 are sufficient to reach a compromise between the
algorithm convergence and the computation time.

D. Information Fusion

After the splitting and the sphere positioning steps, we
will present, in this section, the last step of our algorithm
allowing the calculation of the similarity between the obtained
spheres. Then, the similar spheres are merged to eliminate the
redundant information. This correlation (similarity) expresses
the variation rate of the photometric, semantic and geometric
information between every two compared spheres. In Meil-
land's work [14], this criterion is calculated using the Median
Absolute Deviation (MAD) which represents the difference
(error) of intensity between the pixels of the two spheres
(compared pixel by pixel). Similarly, we have proposed to
add a measure of semantic similarity 𝑆𝑠𝑒𝑚 between two
spheres. This measure aims to compute the number of similar
pixels having the same label. We have also added a measure
of geometric similarity by computing a histogram using the
geometric descriptor FPFH. By comparing the histograms of
different spheres we have obtained a measure of geometric
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Fig. 9: 3D point cloud Summary

similarity 𝑆𝑔𝑒𝑜𝑚.

𝑆𝑝ℎ𝑜𝑡 = med(|𝑝(𝑥)−med(𝑝(𝑥))|)
𝑆𝑠𝑒𝑚 = med(|𝑠(𝑥)−med(𝑠(𝑥))|)

𝑆𝑔𝑒𝑜𝑚 = med(|𝑔(𝑥)−med(𝑔(𝑥))|)
𝑆 = 𝑚𝑒𝑎𝑛(𝑆𝑝ℎ𝑜𝑡 + 𝑆𝑔𝑒𝑜𝑚 + 𝑆𝑠𝑒𝑚) (10)

In this equations, 𝑝(𝑥), 𝑠(𝑥) and 𝑔(𝑥) are respectively the
vectors containing the photometric, semantic and geometric
errors between the pixels of the two spheres. Theoretically,
two or more spheres are considered similar if the 𝑆 value
is lower than a certain threshold. This is due to the small
distance between the spheres. If two or more spheres are
similar, a merging process is launched. This process consists
in concatenating the two or more corresponding regions to
the compared spheres and then re-applying the optimization
method (Genetic Algorithm) in order to merge the similar
spheres into one representing all the regions.

IV. RESULTS

A. Small 3D Point Cloud

At the beginning, we have tested our algorithm on a first
database containing 60,000 3D points [21]. This point cloud,

developped originally without semantic information, repre-
sents an urban environment and covers around 400 𝑚2. We
have used this dataset to compare the 3D Saliency Extraction
methods and to verify the estimated location of the optimal
sphere. Because of its small size, this dataset is considered as a
sub-part of a larger point cloud. Therefore, it was not necessary
to apply the splitting step. We have chosen to implement and
test the three methods detailed in the second section and the
Harris3D [7] to extract a saliency map. We have compared
the 3 methods, as detailed in the previous section, and also
the method of interest points detector Harris3D known for its
simplicity and efficiency in computer vision applications.

In order to build a ground-truth map before comparing these
methods, we have manually segmented this urban database by
choosing the most salient and useful points for localization.
Among these points, we have selected those belonging to
the building facade (front), the road signs and the ground
marking. This ground-truth allowed the evaluation of the
obtained results. Fig. 4 shows the result obtained by each
method. Table I shows the 𝐹𝛽 values obtained by the four
methods. The two algorithms using geometry to compute the
saliency map had given better results than methods using
only photometry because, in our case, points of interest for
localization are generally more salient geometrically than
photometrically. Fig. 6 shows the result of positioning the
sphere in this scene. These results are obtained using a genetic
algorithm for entropy optimization. We have obtained four
results in the form of a position (x, y, z) of the center of
the sphere summarizing the scene. Fig. 3 shows our ground
truth. The sphere of the ground-truth is computed using the
optimization algorithm (GA) and the ground-truth saliency
map as described above. This sphere is located at equi-distance
of the buildings and we have judged it to be the best point
of view to visualize all the points of interest in this scene.
We have calculated euclidean distance between the resulting
spheres of the four methods and the sphere of the ground-
truth (table I) to determine which one is the closest to the
ground-truth sphere. The results obtained with the methods
using geometry are the closest to the ground truth. We have
obtained a compression ratio around 87%.

B. Large-Scale 3D Point Cloud

In the next part of our work, we have applied our method
on a much larger environment. This large-scale point cloud
contains over 40 millions of 3D labelled points [8]. In this
dataset, we have 8 classes of labels (Fig. 10), namely {1:
man-made terrain, 2: natural terrain, 3: high vegetation, 4: low
vegetation, 5: buildings, 6: hard scape, 7: scanning artefacts,
8: cars}. An additional label {0: unlabeled points} marks
points without any semantic value. In our summarizing pro-
cess, points labelled ”buildings”, are considered among the
most salient points for localization. This dataset permitted
the evaluation of our solution's performance by using all
semantic, photometric and geometric characteristics together.
After splitting this large-scale point cloud, we have obtained
72 sub-clouds. To compute the saliency map we have chosen



Fig. 10: Semantic 3D Large-scale point cloud

the second method seeing that it provides a compromise
between the relevance of the result and the time consumption.
The parameter 𝜃 in equation 2 that controls the preference
between geometric and photometric distinctness is assigned to
a value of 0.7. This value has been chosen after a short study
of the influence of the mixing parameter 𝜃 on the entropy
value, on a small 3D Point Cloud described in the previous
section. The results can be seen on Fig. 8 and clearly justify
this value.

The output of this summary process, as shown in the Fig. 9,
is a compact set of spherical images. We have obtained 35
spheres summarizing a point cloud of about 160 𝑚 length. The
mean distance between all the spheres is around 4.5 𝑚. We
have obtained a good compression ratio of this map (93%). To
evaluate our solution, we have computed Recall and Precision
(equations 5 and 6). They are defined as follows :

∙ True Positive (TP): number of relevant points actually
projected on the spheres

∙ False Positive (FP): number of irrelevant points actually
projected on the spheres

∙ True Negative (TN): number of irrelevant and non-
projected points on the spheres

∙ False Negative (FN): number of relevant and non-
projected points on the spheres

We have built our ground truth dataset. For each point in the
cloud, we have attributed a label {0 : irrelevant for localization,
1 : relevant for localization}. Most of the relevant points
belong to buildings thanks to their geometric shapes. As a
result, we have significantly decreased the size of the map.
Nevertheless, we have succeded to keep a maximum number
of salient points (Recall around 60%) with a good level of
precision (greater than 91 %). To improve the recall value,
we could refine the input semantic labels to select the finest
and most useful areas for localization (windows, doors, panels
. . . ). All the spheres are positioned in a way to capture the
maximum possible points belonging to the front facades of
the buildings.

V. CONCLUSIONS

The developped method throughout this project allows us to
summarize efficiently a large-scale point cloud. The summa-
rizing process is based on the extraction of several spherical
view representing sub-clouds of the initial map. This spherical

representation contains semantic, photometric and geometric
information. This new method of summarizing 3D maps will
allow us to facilitate several navigation tasks when applied in
intelligent transportation systems (localization, route planning,
obstacle avoidance, ...) by reducing significantly the calcula-
tion time and the memory size required to the functioning
of the navigation systems. We also believe that using the
semantic information permits the development of a precise
summary map by rejecting unnecessary localization data such
us points belonging to dynamic objects (cars, pedestrians... ).
Thanks to ”divide and conquer” technique, we have proposed
a scalable summarizing algorithm dealing with large-scale
point clouds. Our method outperforms existing systems. It
enables the compressing of a 30,000 points cloud in less than
1 minute compared to 30 minutes as mentioned in [27]. In
our future works, we will aim to provide a multilevel map
in which a special level will be fully dedicated to every
transportation system (trains, cars, bikes, pedestrians...) to
enhance the navigation precision.
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