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Introduction 
Here we introduce the SAS macro DiD_CT written for estimation and inference in differences-in-
differences applications with only a few treated groups following Conley and Taber’s (2011) 
methodology.  
Conley and Taber (2011) show that the point estimator of the treatment effect is not consistent when 
the number of treatment groups is small, even for a large number of control groups. However, it is still 
possible to conduct inference about treatment effect using information in the error term from the 
control groups.  
The SAS macro DiD_CT considers both group×time and individual-level data. It mixes SAS 
procedures and lines of code written with SAS/IML. The complete code is available at 
http://cemoi.univ-reunion.fr/econometrie-avec-r-et-sas/. 
 
Differences-in-differences estimates with the SAS macro DiD_CT 
For group×time level data, the model is: 

௚௧ݕ = ௚௧݀ߙ + ௚ܺ௧ߚ + ௚ߠ + ௧ߛ + ௚௧ߟ , (1) 
where ݀௚௧ is the policy variable, ௚ܺ௧ a vector of regressors, ߠ௚ a time-invariant fixed effect for group 
g, ߛ௧  a fixed time effect that is common across all groups but varies across time ݐ = 1, … , ܶ, and ߟ௚௧a 
group-by-time error term.  
For individual-level data, the model specification is: 

௜௚௧ݕ = ௚௧݀ߙ + ௚ܺ௧ߚ + ܼ௜ߜ + ௚ߠ + ௧ߛ + ௚௧ߟ + ௜ߝ , 
whereܼ௜ is a vector of individual-specific regressors and ߝ௜ another error term. Note that because the 
policy variable ݀௚௧  is only observed at the group×time level, it is common first to aggregate the 
individual-level data to the group×time level and then to OLS regress the model: 

෤௚௧ݕ = ௚௧݀ߙ + ௚ܺ௧ߚ + ௚ߠ + ௧ߛ + ௚௧ߟ , (2) 
where ݕ෤௚௧ is the average of the outcome variable y in group g and time period t after partialling out 
individual-specific covariates. To compute ݕ෤௚௧ , DiD_CT uses a two-step approach advocated by 
Hansen (2007), Conley and Taber (2011), and Cameron and Miller (2015). First, DiD_CT runs the 
OLS regression of the dependent variable ݕ௜௚௧ on all group-by-time dummies and individual-specific 
covariatesܼ௜ , with no constant. Second, ݕ෤௚௧ equals the estimated coefficients of the group-by-time 
dummies. If the model does not include any individual-specific covariates, ݕ෤௚௧ is only the average of 
  .௜௚௧ within the group-time cellݕ
To estimate the treatment effect ߙ and the vector of parameters ߚ, DiD_CT allows the user to directly 
estimate equations (1) and (2) or to additionally partial out the group and time dummies by applying 
the Frisch-Waugh-Lovell theorem. In the latter case, DiD_CT regresses ݕ௚௧  ෤௚௧, ݀௚௧, and ௚ܺ௧ on theݕ ,
group and year dummies, with no constant. Then ߙ and ߚ are estimated by regressing the residuals of 
  .෤௚௧ on the residuals of ݀௚௧ and ௚ܺ௧, with no constantݕ
 
Inference with the SAS macro DiD_CT2  
DiD_CT tests the null hypothesis of the no treatment effect ߙ = 0. To make the inference valid, the 
approach of Conley and Taber (2011) is to use ߙො as a test statistic and construct an acceptance region 
from a distribution of simulated values for the test statistic under the null. The null hypothesis is 
rejected if ߙො falls outside the acceptance region. 
Conley and Taber (2011) consider two such empirical distributions ߁෠(ݓ) and ߁෠∗(ݓ). Both are based 
on a ratio of  cross products of deviations from the mean of the policy variable from treatment groups 
with residuals to the sum of squared deviations from the mean of the policy variable from treatment 
groups. Let ଴ܰ  and ଵܰ  be the number of control and treatment groups, respectively. Let ߟ෤௖  be the 
vector of constrained residuals from the constrained estimation of equation (1) under the null 
hypothesis of no treatment effect. Let ߟ෤௟

௖ be the vector of constrained residuals from control group l. 
The basic building block of ߁෠(ݓ) is the following ratio: 
                                                             
2We refer the reader to Conley and Taber (2011) for a clear and comprehensive presentation of the methodology 
at stake. 



∑ (݀௚௧ − ݀̅௚)ߟ෤௟௧
௖்

௧ୀଵ

∑ ∑ ൫݀௚௧ − ݀̅௚൯
ଶ்

௧ୀଵ
ேభ
௚ୀଵ

. 

For each treatment group g, there are ଴ܰ ratios of the kind. Let ௚ܵ be the set that contains these ଴ܰ 
ratios for g=1,..., ଵܰ. Now, select one ratio from each set ௚ܵ and add them to obtain one particular 
element of ߁෠(ݓ) . As there are ଴ܰ

ேభ  possible combinations to attain this particular sum, the 
distribution ߁෠(ݓ) contains ଴ܰ

ேభ  elements. This number tends quickly to infinity even for moderate 
values of ଴ܰ and ଵܰ. 
To avoid this problem, DiD_CT allows the user to specify the maximum number of combinations used 
to approximate the distribution ߁෠(ݓ). Let maxcomb be this number. Then DiD_CT randomly draws K 
ratios without replacement from each set ௚ܵ such that ܭேభ =  .ܾ݉݋ܿݔܽ݉
To obtain the empirical distribution ߁෠∗(ݓ), the residuals under the null hypothesis for the treatment 
groups are used along with the residuals from controls to form ଴ܰ + ଵܰ  vectors of residuals of 
dimension T. Let ߟ෤௟ be the vector of residuals under the null for group l=1,..., ଵܰ + ଴ܰ.Then ଵܰ of 
these vectors are randomly taken without replacement to form the particular ratio: 
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As there are (ேబାேభ)!
ேబ!ேభ!

 different possibilities to choose ଵܰ elements without replacement from a set with 

ଵܰ + ଴ܰ elements, the empirical distribution ߁෠∗(ݓ) includes (ேబାேభ)!
ேబ!ேభ!

 ratios. DiD_CT allows the user 
to randomly draw maxcomb of these elements to approximate the distribution ߁෠∗(ݓ). 
DiD_CT provides two estimators for ߁෠∗(ݓ).  The first is labelled ߁෠௖∗(ݓ) ; it uses the constrained 
residuals ߟ෤௖ for ߟ෤. The second is ߁෠௨∗(ݓ); it uses the unconstrained residuals ߟ෤௨ from the estimation of 
equation (1) for the controls and forms residuals under the null hypothesis for the treatment groups as 
෤௚௧ߟ = ෤௚௧ߟ

௨ +  .ො݀௚௧ߙ
For each of the three distributions ߁෠(ݓ), ߁෠௖∗(ݓ), and ߁෠௨∗(ݓ), DiD_CT supplies the lower and upper 
bounds for the 90%, 95%, and 99% acceptance regions. At the 5% level, for instance, and using ߁෠(ݓ), 
the lower and upper bounds are defined as L. bound= ෠ିଵ(0.05)߁  and U. bound= ෠ିଵ(0.95)߁ , 
respectively. Reject the null if ߙො falls outside the acceptance region. 
 
Syntax of the SAS macro DiD_CT 
The syntax is: 
%DiD_CT(data=,depvar=,regtreat=,reg=,regind=,groupid=,timeid=,parout=,maxcomb=). 
 
data specifies the input data set. depvar is the outcome variable. regtreat is the policy variable. reg 
specifies the list of regressors ௚ܺ௧; this list can be empty. regind specifies the list of regressors ܼ௜; this 
list can be empty. groupid specifies the variable that identifies the group for each observation; it 
cannot be empty. timeid is the variable that identifies the time period for each observation in the input 
data; it cannot be empty. All variables in depvar, regtreat, reg,and regind must be numeric. 
The parameter parout is used to additionally partial out the group and time dummies. This is the 
default option if parout is not specified by the user. If parout =no or parout =none (or whatever 
character/value except a blank), the direct estimation of equation (1) is provided.  
The parameter maxcomb specifies the maximum number of combinations used to simulate the 
distributions ߁෠(ݓ) , (ݓ)∗෠௖߁ , and ߁෠௨∗(ݓ) . maxcomb is non-binding if the number of all possible 
combinations is less than maxcomb; it cannot be empty.  
 
Note that inference with only a few treatment groups cannot be processed from the empirical 
distributions ߁෠(ݓ) and ߁෠௖∗(ݓ) if the parameters reg and parout are both left empty. It is not possible to 
form residuals under the null hypothesis of no treatment effect in that case. If the model does not 
include any regressor ௚ܺ௧, parout must be completed.  
 
Output results of the SAS macro DiD_CT 



Several tables show the number and percentage of observations per group and time period as the 
distribution of the policy variable per group and time period.  
The estimation results are presented in two different tables. The first exhibits the estimate ߙො of the 
treatment parameter followed by the lower and upper bounds of the corresponding 90%, 95%, and 
99% acceptance regions for the distributions ߁෠(ݓ), ߁෠௖∗(ݓ), and ߁෠௨∗(ݓ). 
The second table presents the estimated parameters ߙො and ߚመ(if any) and their standard errors from 
three different cluster robust variance estimators. The first is the typical cluster robust variance 
estimator. The second (called "Cluster Robust adj1" in the table) uses the correction ேబାேభ

ேబାேభିଵ
ேିଵ
ேି௞

 for 
the typical cluster robust variance estimator, where N is the number of observations and k the number 
of parameters to be estimated. The third (called "Cluster Robust adj2") uses the correction ேబାேభ

ேబାேభିଵ
.  

T-statistics and corresponding p-values then follow.  
 
An example 
We illustrate the use of DiD_CT with data taken from a study of the effect of merit scholarship on 
college attendance as reported by Conley and Taber (2011).  
 
coll=1 if college attendance, 0 otherwise 
merit= 1 if recipient of merit scholarship, 0 otherwise 
male= 1 if male, 0 otherwise 
black= 1 if Black , 0 otherwise 
asian= 1 if Asian, 0 otherwise 
state: state of residence 
year: time period. 
 
The instructions:  
%DiD_CT(data=lib.regmraw,depvar=coll,regtreat=merit,reg=,regind=male black 
 asian,groupid=state,timeid=year, parout=no,maxcomb=9999); 
 
give the following results: 
 
 
                               AGGREGATED DATA: SUMMARY STATISTICS 
 
 
                                 Number of observations       612 
                                 Number of clusters            51 
                                 Number of time periods        12 
 
 
                                        ESTIMATION RESULTS 
 
    INFERENCE FOR TREATMENT EFFECT WITH CONLEY AND TABER'S (2011) SIMULATED ACCEPTANCE REGIONS 
 
 
                  The parameter estimate for the treatment effect is:  0.051209 
 
 
                                Gamma(w)              Gamma*(w)c            Gamma*(w)u 
                               L. Bound  U. Bound  L. Bound  U. Bound  L. Bound  U. Bound 
 
        90% Acceptance region -0.022134 0.0166082 -0.029465 0.0271678 -0.023567 0.0330664 
        95% Acceptance region -0.023687 0.0181432 -0.035221 0.0323397 -0.029322 0.0382383 
        99% Acceptance region -0.025631 0.0201046 -0.045411 0.0424672 -0.039513 0.0483657 
 
         Number of combinations used for the empirical distribution Gamma(w):        1024 
         Number of combinations used for the empirical distributions Gamma*(w):      9999 
 



 
                                        ESTIMATION RESULTS 
 
                       INFERENCE WITH CLUSTER ROBUST COVARIANCE ESTIMATORS 
 
                                         Estimate Std.Error    T.stat   P-value 
 
                   Parameter: MERIT      0.051209         .         .         . 
                   Standard Errors:             .         .         .         . 
                    Cluster robust              . 0.0106101 4.8264485 0.0000135 
                    Cluster robust adj1         . 0.0113045 4.5299474 0.0000368 
                    Cluster robust adj2         . 0.0107157 4.7788962 0.0000159 
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