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We introduce a so-called "Mean-Path-Defined Yule-Nielsen" (MPD-YN) model for predicting the color
of halftone prints in reflectance or transmittance modes, inspired of the Yule-Nielsen modified Spec-
tral Neugebauer model, where the empirical n value is replaced with a spectral parameter different for
each halftone, directly calculated thanks to a closed-form formula, function of the measured spectral re-
flectances (or accordingly transmittances) of fulltone calibration patches and the surface coverages of the
Neugebauer primaries in the halftone. This parameter is based on the average number of internal re-
flections undergone by light between two half-layers of the print, whose expression derives from a flux
transfer model between the two half-layers. According to the tests carried out in this study with paper
printed in inkjet, the predictive performances of the MPD-YN model are rather good and very close to
those obtained with the Yule-Nielsen model. © 2018 Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics, (120.5700) Reflection, (120.7000) Transmission, (230.4170) Multilayers, (100.2810)
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1. INTRODUCTION

Spectral prediction models are key tools for fast and accurate
color management in printing. They are also indispensable
for designing advanced printing features such as those where
the print displays different images according to the viewing
conditions. Such multi-view effects can be obtained by using
metallic inks [1] or a specular support [2] and observing the
print in or out of the specular reflection direction. They can
also be obtained by double-side printing with classical inks and
supports, by observing one face in reflection mode or both faces
simultaneously in transmission mode [3–5]. For these printing
configurations, color management based on digital methods like
ICC profile is almost impossible because the number of needed
sample measurements, often beyond one thousand for single-
mode observation, exponentially increases with the number of
observation modes. The calibration time of the printing system
thus becomes inacceptable, whereas a few tens of measurements
often suffice to calibrate a prediction model, thus allowing the
prediction of all reproducible colors in the different modes.

Inside a diffusing medium printed in halftone, the light prop-
agates laterally from one ink dot to other ones by multiple in-
ternal reflections before exiting the print, which makes the re-
flectance of the halftone darker than it would be in absence of
these internal reflections. This phenomenon is often called Yule-

Nielsen effect, or "optical dot gain". Even though it has been
established that this phenomenon is more or less pronounced
according to the point spread function of the support and the
halftone screen frequency [6], no simple model has been able
yet to provide precise relationship between the phenomenon
and these parameters. However, despite its simplicity, the Yule-
Nielsen modified Neugebauer equation (or simply Yule-Nielsen
equation) [7, 8] allows accurate predictions of the spectral re-
flectance of halftone prints on various diffusing or transparent
supports. The optical dot gain is modeled by an empirical n
parameter fitted from a few tens of halftones used for the cal-
ibration of the model. This model belongs, together with the
spectral Neugebauer model, to the category of "surface models"
as defined in Ref. [9]. They do not offer the possibility of varying
the measurement geometry, or the ink layer thickness, which
must be identical for the calibration and the prediction.

Another category of spectral reflectance prediction models
for prints is the "phenomenological models". They are more
complex since they intend to describe explicitly the optical dot
gain thanks to flux transfers between the layers of the print,
taking into account physical considerations such as the change
of refractive index between air and the diffusing medium, or
the lighting and observation geometries: this is the case of the
Clapper-Yule model [10] or the Duplex Primary Reflectance-
Transmittance model [11], which take into account the multiple
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reflections of light when it propagates between the interface and
the support through the ink layers.

The present study merges the two approaches since we pro-
pose a surface model similar to the Yule-Nielsen model, but
without fitted n parameter. This latter is replaced with a spec-
tral parameter different for each halftone, corresponding to the
average number of internal reflections between two sublayers of
the print (the upper and the lower half layers), which depends
on the spectral reflectances and transmittances of the primaries,
thereby on their absorbance, and their respective surface cov-
erages. Our model, called "Mean-Path-Defined Yule-Nielsen"
(MPD-YN), maintains the famous Yule-Nielsen equation, ap-
preciable for its simplicity, while removing the determination
step for the n value. In contrast with the Yule-Nielsen model,
however, the spectral transmittance of the unprinted support
needs to be measured.

This model is part of a series of studies whose objective is
to predict both reflectance and transmittance of single-side and
duplex prints, by targeting as good accuracy as the numerous
reflectance prediction models for single-side prints, and by try-
ing to increase as little as possible the number of color patches
to be printed for calibration of the reflectance and transmittance
model in comparison to those needed by reflectance only-models
(e.g., 44 patches in Ref. [13]). In the case of duplex prints, the
process of minimizing the number of calibration patches is cru-
cial because the number of duplex color pairs to predict is the
square of the number of single-side colors that the reflectance
models usually have to predict.

Before presenting the MPD-YN model, we first recall in Sec-
tion 2 the Yule-Nielsen model and we discuss its advantages
and limitations. The MPD-YN model relies on a flux transfer
approach and the subdivision of the print into two half-layers.
The matrix formalism associated with the flux transfer model,
introduced in Refs. [11] and [12], is recalled in Section 3 and
used to calculate the average number of internal reflections be-
tween two layers. The MPD-YN model is presented in detail in
Section 4 for reflectance predictions and in Section 5 for trans-
mittance predictions. Its extension to duplex halftone prints is
presented in Section 6. The method for assessing the mechanical
dot gain in halftone print is described in Section 7: this method,
proposed by Hersch and Crété [13], relies on ink spreading func-
tions giving the correspondence between nominal and effective
surface coverages and taking into account the fact that an ink
may spread differently on the paper or on top of another ink. An
experimental verification of the model is presented in Section 8
and our conclusions are finally drawn in Section 9.

2. YULE-NIELSEN MODEL

Let us consider a CMY halftone color printed on a diffusing
medium. It can be seen as a mosaic of the height Neugebauer pri-
maries, obtained when superposing cyan, magenta and yellow
halftone screens: white (surface with no ink, labelled i = 1), cyan,
magenta, yellow, red (magenta + yellow), green (cyan + yellow),
blue (cyan + magenta) and black (cyan + magenta + yellow). We
denote as ai (i = 1, ..., 8) the surface coverages of the Neuge-
bauer primaries. They are obtained from the surface coverages
of the cyan, magenta and yellow inks using Demichel’s equa-
tions [14] valid for most types of typical stochastic halftoning
techniques or cluster dot halftoning when the halftone screens
of the different channels have appropriate orientations [9]:

a1 = (1− c)(1−m)(1− y)

a2 = c(1−m)(1− y)

a3 = (1− c)m(1− y)

a4 = (1− c)(1−m)y

a5 = (1− c)my

a6 = c(1−m)y

a7 = cm(1− y)

a8 = cmy

(1)

Within a halftone print, light propagates laterally from one
area to another one before exiting the medium, thus meeting
various primaries, a phenomenon called "optical dot gain" or
Yule-Nielsen effect [7, 8]. This phenomenon is modeled empir-
ically by the introduction in the Neugebauer formula of a free
parameter n, yielding the Yule-Nielsen modified Neugebauer
reflectance formula:

R (λ) =

[
8

∑
i=1

aiRi (λ)
1/n

]n

(2)

where Ri are the reflectance factors of the solid Neugebauer
primaries. The parameter n is fitted in order to minimize the
mean square deviation between measured and predicted spectra
of calibration samples. A version of the Yule-Nielsen model
transposed to the transmission factor has been proposed in Ref.
[15] with similar performence as for reflectance predictions, for
both single-sided prints and duplex prints.

In absence of scattering within the printing support (very
specular substrates), the n value is theoretically equal to (or very
close to) 1. However, we experimentally observe that its optimal
value, fitted in order to obtain the best agreement between mea-
sured and predicted spectral reflectances for a set of patches, is
rather close to 2 for transparent films because of the slight light
scattering by the inks [16]. When the scattering in the support
increases, the n value generally increases too (the Yule-Nielsen
effect is stronger): it can reach 10 for certain paper prints [9],
and can even tend asymptotically to infinity [3]. It can also take
negative values, especially when the ink penetrates deeply into
the paper [17–19]. When the halftone screen frequency increases,
an increase of the n value is often observed [20], which can be
explained by the fact that the ink dots are smaller and closer to
each other, or equivalently by the fact that the halftone screen
period decreases in respect to the average distance of lateral
propagation of light within the support, which can be deduced
from the point spread function of the support itself [9].

The Yule-Nielsen model is simple and efficient, but the in-
troduction of the fitted n parameter to empirically model the
optical dot gain does not really find simple interpretation. Vari-
ous attempts to find a physical justification have been proposed.
Some authors have modeled the transition probabilities between
primaries [21–23], other ones have modeled the light reflection
by the print using the convolution of a spectral transmission sur-
face function associated with the ink layer and the point spread
function describing the scattering of light in paper substrates
[24]. In Refs. [6, 25, 26] Rogers used this convolution approach to
derive, from the radiative transfer theory, the Yule-Nielsen equa-
tion with a value of n approaching 2 as the substrate becomes a
perfect diffuser, which is in contradiction with the experimen-
tally observed values. This theoretical model, which is also very
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elegant, is rather difficult to implement because it needs high
computation times and also requires to take into account the
actual shape of the ink dots.

Finally, the Yule-Nielsen model assumes that the fitted n pa-
rameter is independent of the wavelength and the Neugebauer
primaries, whatever their absorbance are. However, when light
encounters a very absorbing primary, it is strongly attenuated
and its average path is consequently shortened; average light
paths therefore depends on the spectral absorbance of the pri-
maries. We propose in this work to review the Yule-Nielsen
model in which the n parameter is a spectral quantity calculated
from the measured spectra for a selection of calibration sam-
ples and no longer a fitted parameter minimizing the distance
between predicted and measured spectra.

3. FLUX TRANSFERS AND AVERAGE NUMBER OF IN-
TERNAL REFLECTIONS

The purpose of this section is to recall the bases of the discrete
two-flux model and its matrix formalism, applied to a stack of
two layers, from which we can then calculate the mean free path
of light, in the form of an average number of internal reflections
between the two layers.

A flux transfer model is particularly adapted to the layered
structure of printed supports. When the printing support is
strongly scattering, like paper or white polymer, we can use
a two-flux model. The model presented in Ref. [11] applies
with a stack of layers of strongly diffusing materials and the
interfaces between them. Each component, layer or interface, is
characterized by four transfer factors: the front-side reflectance r,
the back-side reflectance r′, the forward transmittance t and the
backward transmittance t′. The component is said to be symmet-
rical when r = r′, and t = t′. All fluxes and transfer factors may
also depend upon wavelength. When two components are on
top of each other, inter-reflections of light occur between them,
thus producing mutual exchanges between the fluxes propagat-
ing forwards (denoted as ik in Fig. 1) and backwards (denoted
as jk). These exchanges can be easily described by using flux
transfer matrices. For each component k = 1 or 2, assuming
tk 6= 0, the relations between forward and backward fluxes is
described by the following matrix equation: ik−1

jk−1

 =
1
tk

 1 −r′k
rk tkt′k − rkr′k

 ik

jk

 (3)

where the matrix is the transfer matrix attached to the compo-
nent k, denoted as Mk:

Mk =
1
tk

 1 −r′k
rk tkt′k − rkr′k

 (4)

Grouping components 1 and 2 together, Eq. (3) can be re-
peated twice. One obtains: i0

j0

 = M1

 i1

j1

 = M1M2

 i2

j2

 = M

 i2

j2

 (5)

where M, product of the transfer matrices of the individual
components, is the transfer matrix representing the two layers
together, similarly defined as Eq. (4) in terms of its transfer
factors R, T, R′ and T′. The multiplicative property of transfer
matrices is true for any number of components, and the left-
to-right position of the matrices in the product reproduces the

front-to-back position of the corresponding components. Every
transfer matrix has the structure displayed in Eq. (4) and from
a given transfer matrix M = (mij), provided m11 6= 0, one
retrieves the transfer factors in the following way:

R = m21/m11 (6)

T = 1/m11 (7)

R′ = −m12/m11 (8)

T′ = det M/m11 = m22 −m21m12/m11 (9)

Applying formulas (6) to (9) to the matrix M1M2 [see Eq. (5)]
representing the stack of layers displayed in Fig. 1 yields:

R = r1 +
t1t′1r2

1− r′1r2
(10)

T =
t1t2

1− r′1r2
(11)

R′ = r′2 +
t2t′2r′1

1− r′1r2
(12)

T′ =
t′1t′2

1− r′1r2
(13)

Component 2

Component 1

i0

r1

r'1

t1 t'1

t2

r2

r'2

t'2

j0

i1 j1

i2 j2

Front side

Back side

Fig. 1. Flux transfers between two planar components (arrows
do not render orientation of light).

Another way of obtaining formulas (10) to (13) is the method
used by Kubelka, who, in his study of non-symmetric diffusing
media [27], considered all possible paths of light following mul-
tiple reflections between the two layers (see Fig. 2). Let us detail
the calculations allowing to obtain the equation of the front-side
reflectance given by Eq. (10). We consider light that is internally
reflected a number of times before leaving the interface between
the two layers. Light can be internally reflected one time and
exit, three times and exit, ... 2k + 1-times and exit. At the first
internal reflection, light is attenuated by r2. At the thirth inter-
nal reflections, light is further attenuated by r′1r2, and finally, at
the 2k + 1 th internal reflection, light is attenuated by r2(r′1r2)

k .
The sum of all the possible paths for light leads to convergent
geometric series:

R = r1 + t1t′1
∞

∑
k=0

r2
(
r′1r2

)k
= r1 +

t1t′1r2

1− r′1r2
(14)

We observe that before being reflected, a light ray undergoes
an odd number of internal reflections between the two layers: k
reflections on the inner face of layer 1 and k + 1 reflections on
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the upper face of layer 2, which therefore makes 2k + 1 internal
reflections and a global factor r

′k
1 rk+1

2 . It is thus possible to de-
duce the average number of internal reflections undergone by
light component before exiting the medium at the upper side.
This number, denoted nR, is the average of the odd numbers
2k + 1, with k ∈N, weighted by r

′k
1 rk+1

2 , which is the probability
for light to undergo an odd number of internal reflections. Thus
one can write:

nR =
1× r2 + 3× r′1r2

2 + 5× r
′2
1 r3

2 + ... + (2k + 1)× r
′k
1 rk+1

2 + ...

r2 + r′1r2
2 + r′21 r3

2 + ... + r′k1 rk+1
2 + ...

(15)
Then, by denoting q = r′1r2, Eq. (15) can be written:

nR =
r2 ∑∞

k=0 (2k + 1) qk

r2 ∑∞
k=0 qk (16)

which yields

nR = 1 + 2q
∑∞

k=1 kqk−1

∑∞
k=0 qk (17)

The lower term of the fraction of Eq. (17) is the geometric serie
with the common ratio q; its limit is 1/(1− q). The upper term
is the first derivative of the geometric serie with the common
ratio q, it converges to the derivative of the geometric serie, i.e.
1/(1− q)2. Finally, one obtains:

nR = 1 +
2q

1− q
=

1 + q
1− q

=
1 + r′1r2

1− r′1r2
(18)

The average number of reflections nR is the number of reflec-
tions that would yield the same attenuation of light as in the
present case, if at each reflection cycle, the attenuation of light
would be only r′1r2. This means that we transform the "multi-
ple internal reflections" into a series of serial attenuation filters
having each an attenuation of r′1r2 and ask how many of these
filters we need to obtain the same attenuation of light as with
two layer having an infinite number of internal reflections.

Likewise, the average number of internal reflections under-
gone by light before exiting the medium on the back side is:

nT = nR − 1 =
2r′1r2

1− r′1r2
(19)

r1
t'1

t1t2

t1t'1r2(r'1r2)
k

t2t2r'1r2 t1t2(r'1r2)
k
t1t2(r'1r2)

k+1

r'1

t1

r2
t'2

r'2

t2

r1 t1t'1r2 t1t'1r'1r2
2

layer 1

layer 2

Fig. 2. Reflections and transmissions between two diffusing
layers.

4. MEAN-PATH-DEFINED YULE-NIELSEN (MPD-YN)
MODEL IN REFLECTANCE MODE

Let us come back to the Yule-Nielsen model, by starting with
the physical interpretation of this model that we introduced
in Ref. [3]. We noticed that the Yule-Nielsen equation can be
formally derived by modelling the reflectance of the halftone
print as the result of the reflection by the support and n events
of spectral filtering due to the Neugebauer primaries in respect
to their respective surface coverage, these filtering events being
separated by n scattering events that make light moving from
one primary to any other primary. This interpretation implicitly
assumes that this number of scattering events, the same for all
primaries and all wavelengths of light, correlates with the lateral
propagation of light into the print, which is admitted to be at
the origin of the Yule-Nielsen effect. We now refine this inter-
pretation by considering that the number of scattering events,
thereby the n value, may depend upon wavelength and primary,
because absorption decreases the extinction free mean path of
light, therefore the lateral propagation of light. This idea extends
the one introduced by Ino and Berns in Ref. [29] and Rossier and
Hersch in Ref. [30] where different (wavelength-independent)
n values were attributed to the different inks, fitted from the
measured spectral reflectances of halftone patches. In our ap-
proach, one spectral n value will be attributed to each primary,
computed thanks to close form formulas, and representing an
average number of backscattering events in the print. In the
equations hereinafter, all reflectances and n values are spectral
parameters, even though the dependence upon wavelength is
not specified in order to keep the equations easier to read.

Let us now introduce the model, by considering first a solid
primary (surface coverage 1). Even though the Yule-Nielsen
effect is not visible with this solid primary, there is lateral light
propagation in it, that can be represented by ni back-scattering
events in average. Each back-scattering event concerns a fraction
r of light. After the ni scattering events, the final reflectance
(which has been previously measured) is Ri (Fig. 3-a and 3-b):

rni = Ri (20)

It follows from Eq. (20) that

r = R1/ni
i (21)

therefore that the fraction of light concerned by each scattering
event in this primary is R1/ni

i .
If we extend this line of reasonning to a halftone color of one

ink, therefore containing two primaries (Fig. 3-c): the unprinted
support labeled 1, and the ink labeled i, with respective surface
coverages a1 and ai = 1− a1, we must consider the fact that
back-scattering events occur in the two primaries. We assume
that each backscattering event has a probability a1 to occur in
primary 1, and a probability ai to occur in primary i; the average
fraction of light concerned is

r = a1R1/n1
1 + aiR

1/ni
i (22)

Since we have n backscattering events distributed in pri-
maries 1 and i according to the respective probabilities a1 and ai,
the total number of backscattering events is, in average,

n = a1n1 + aini (23)

It comes after Eqs. (22) and (23) that the reflectance of the
halftone patch is
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R = rn =
[

a1R1/n1
1 + aiR

1/ni
i

]a1n1+aini
(24)

(a) Unprinted paper 

R1

(b) Paper printed on one side 

with solid primary i

Ri

(c) Paper printed on one side 

with halftone primary i

R

n1 internal reflections ni internal reflections n internal reflections

Fig. 3. Internal reflections undergone by light before being
reflected in the case of (a) an unprinted paper, (b) a printed
paper with a solid primary layer and (c) a halftone print.

The average numbers of internal reflections n1 and ni are
calculated according to the method described in Section 3, from
the reflectance and transmittance of half-layers that we propose
to determine now.

Regarding the unprinted paper, it is considered as a sym-
metrical diffusing layer whose transfer factors R1 and T1 are
measured. The unprinted paper sheet is then represented by the
following transfer matrix:

M11 =
1
T1

 1 −R1

R1 T2
1 − R2

1

 (25)

We suppose now that the sheet of paper is the superposition
of two identical symmetrical half-layers having both half the
thickness of the sheet, and whose transfer matrix A11 satisfies
the relation (see Fig. 4-a):

A2
11 = M11 (26)

Note that the number of sublayers could be 3 or more but
there is no analytical formula giving the average number of
internal reflections for more than 2 sublayers, and the advantage
of the model (i.e. the fact that it is based on analytical formulas)
vanishes.

We denote as ρ1 and τ1 the transfer factors associated with
the matrix A11, i.e. the transfer factors of a half-layer:

A11 =
1
τ1

 1 −ρ1

ρ1 τ2
1 − ρ2

1

 = M1/2
11 (27)

The transfer factors ρ1 and τ1 of the half-layer are obtained
by applying Eqs. (6) and (7), respectively, to matrix M1/2

11 . Note
that since the half-layer is symmetrical, similar values for ρ1
and τ1 would be given by formulas (8) and (9). From Eq. (??) in
which ρ′1 = ρ2 = ρ1, we obtain the average number of reflections
between the two identical half-layers:

n1 =
1 + ρ2

1
1− ρ2

1
(28)

At this step of the line of reasonning, ρ1 and τ1, and thus
n1, are just numerical values but it is more interesting that the
latter are closed-form expressions as functions of the measured
transfer factors R1 and T1 of the unprinted paper. For this, it
is necessary to develop formulas (6) to (9) applied to matrix
M1/2

11 [see Eq. (27)]. But these developments require many
calculations which involves the diagonalization of the matrix

M11. Therefore, we propose to present, in the following, an
equivalent but simpler method based on the inversion of the
Kubelka formulas leading to the average number of internal
reflections n1 as a simple closed-form expression in terms of R1
and T1.

The Kubelka formulas (10) and (11) applied to the superposi-
tion of the two identical symmetrical half-layers give:

R1 = ρ1 +
ρ1τ2

1
1− ρ2

1
(29)

and

T1 =
τ2

1
1− ρ2

1
(30)

We deduce the reflectance ρ1 and the tansmittance τ1 of one
half-layer by inversing Eqs. (29) and (30):

ρ1 =
R1

1 + T1
(31)

τ1 =

√
T1

[
(1 + T1)

2 − R2
1

]
1 + T1

(32)

Finally, according to Eqs. (28) and (31), the average num-
ber of internal reflections expressed in terms of the measured
reflectance and transmittance of the unprinted paper is:

n1 = 1 +
2R2

1

(1 + T1)
2 − R2

1

(33)

The average number of internal reflections ni in the sheet
printed with the solid primary i is computed in the same way.
The transfer factors of the print, denoted as Ri, R′i , Ti and T′i , are
measured. It is then possible to build the corresponding transfer
matrix:

Mi1 =
1
Ti

 1 −R′i
Ri TiT′i − RiR′i

 (34)

It is assumed that the print is the superposition of a non-
symmetric diffusing half-layer with the solid primary i, whose
transfer matrix is denoted Ai1, and of the symmetric unprinted
half-layer, whose transfer matrix remains A11 = M1/2

11 (see Fig.
4-b). Hence, we have:

Mi1 = Ai1.A11 (35)

The transfer factors associated with Ai1 are denoted as ρi, ρ′i ,
τi and τ′i :

Ai1 =
1
τi

 1 −ρ′i

ρi τiτ
′
i − ρiρ

′
i

 = Mi1.A−1
11 (36)

The transfer factors ρi, τi, ρ′i and τ′i of the non-symmetric half-
layer with the solid primary i are obtained by applying Eqs. (6)
to (9), respectively, to matrix Mi1.A−1

11 . The average number of
internal reflections ni between the printed and unprinted half-
layers is obtained by applying Eq. (18) in which r′1 is replaced
with ρ′i and r2 with ρ1:

ni =
1 + ρ′iρ1

1− ρ′iρ1
(37)
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It is also possible to obtain ni as a closed-form expression in
terms of the transfer factors R1 et T1 of the unprinted paper, and
the back-side reflectance R′i of the paper with the solid primary
i. For this, we use the Kubelka formula (12) applied to the
superposition of the printed and unprinted half-layers:

R′i = ρ1 +
ρ′iτ

2
1

1− ρ1ρ′i
(38)

We deduce the reflectance ρ′i of the printed half-layer by in-
versing Eq. (38):

ρ′i =
R′i − ρ1

τ2
1 + ρ1

(
R′i − ρ1

) (39)

Then, we replace ρ1 and τ1 with their expressions given by
Eqs. (31) and (32), respectively, and obtain:

ρ′i =
(1 + T1)

[
R′i (1 + T1)− R1

]
T1

[
(1 + T1)

2 − R2
1

]
+ R1

[
R′i (1 + T1)− Ri

] (40)

Finally, according to Eqs. (31), (37) and (40), the average num-
ber of internal reflections ni expressed in terms of the measured
reflectance and transmittance of the paper printed with primary
i can be written:

ni = 1 +
2R1

[
R′i (1 + T1)− R1

]
T1

[
(1 + T1)

2 − R2
1

] (41)

We recall that the transfer factors R1, R′i and T1, thereby pa-
rameters n1 and ni, depend on wavelength. We notice that ni
depends only on the reflectance R1 and the transmittance T1 of
the paper as well as on the back-side reflectance of the primaries
R′i which is the measured reflectance of the unprinted side of
the paper, the other side being printed with fulltone primary i.
One also remarks that the use of transfer matrices is not neces-
sary to justify the formulas of the MPD-YN model since these
latter have been deduced from the Kubelka formulas [see Eqs.
(29), (30) and (38)] and their inversion [see Eqs. (31), (32) and
(39)]. However, we will see in Section 6 that the transfer matrix
approach will be very useful for the predictions of recto-verso
halftone color prints.

In the case of an opaque paper, the influence of the solid
primary ink layer on the back-side reflectance R′i is quite neglige-
able. This latter is therefore similar to the reflectance R1 of the
unprinted paper. It follows that the average numbers of internal
reflections ni are identical for all the primaries and equal to n1.
Thus, according to (23) and (24), the reflectance factor of the
halftone print can be written:

R =
[
(1− ai) R1/n1

1 + aiR
1/n1
i

]n1
(42)

where n1 is given by Eq. (33).
We retrieve the formula of the Yule-Nielsen model where the

n parameter here is a spectral parameter calculated from the
measured transfer factors R1 and T1 of the unprinted paper. In
this case, the calibration of the MPD-YN model for reflectance
predictions requires the same number of measurements as for
the Yule-Nielsen model, namely the front-side reflectance fac-
tors Ri of all the solid Neugebauer primaries, to which is added
the measurement of the transmittance T1 of the unprinted pa-
per, necessary to calculate the number of internal reflections n1
according to Eq. (33).

M11
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(b) Paper printed on one side

      with solid primary  i
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Fig. 4. Separation of the print, (a) without ink and (b) with
solid primary, into two half-layers.
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Fig. 5. a) Spectral values of the average number of internal
reflections within a symmetrical paper sheet being either un-
printed (black solid line), printed with a solid magenta ink
layer (magenta solid line) or printed with a 0.5 surface cover-
age halftone of magenta ink (magenta dashed line); (b) Spec-
tral reflectances of the 0.5 surface coverage halftone of ma-
genta ink as measured and predicted by Eq. (24).



Research Article Journal of the Optical Society of America A 7

400 450 500 550 600 650 700 750

λ (nm)

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

A
ve
ra
g
e
n
u
m
b
er

o
f
in
te
rn
a
l
re
fl
ec
ti
o
n
s

white (no ink)

cyan

magenta

yellow

red

green

blue

black

Fig. 6. Spectral values of the average numbers of internal re-
flections within a symmetrical paper sheet printed with each
of the eight solid Neugebauer primaries.

In order to visualize the spectral values taken by the aver-
age numbers of internal reflections in the case of real prints, we
printed a halftone of magenta ink with a nominal surface cov-
erage of 0.5 on symmetrical, supercalendered, nonfluorescent
paper APCO. Figure 5-a represents the average number of inter-
nal reflections undergone by light within the blank support (n1),
within the solid magenta print (n3) and within the halftone print
(n). The average number values, calculated using the formula
(18), are around 4. Their variation according to the wavelength
of light is noticeable, but similar variations are observed from
one sample to another one. The solid curve, associated with the
solid ink, is located beneath the dashed curve, associated with
the halftone: we logically deduce that the light is less reflected
as the ink layer is more absorbing. Figure 6 represents the av-
erage number of internal reflections undergone by light within
APCO paper printed with each of the eight solid Neugebauer
primaries.

The spectral reflectance of the halftone print is calculated (see
Fig. 5-b) using Eq. (24). The root mean square deviation rms
and the CIELAB ∆E94 color difference between the predicted
and measured spectra are respectively 0.004 and 0.30. With the
Yule-Nielsen model, these values are equal to 0.003 and 0.17
respectively, with a fitted value n = 2.6 and an effective surface
coverage a3 = 0.54. In this example, the predictions are good
whatever the model is: in both cases the color difference is clearly
lower than 1. However, we notice the advantage of the MPD-YN
model for which the terms n1 and n3 are calculated thanks to
Eqs. (33) and (41) respectively, in contrast with the parameter n
of the Yule-Nielsen model which is fitted so as to minimize the
differences between predicted and measured spectra.

The MPD-YN model is not limited to predictions for single-
ink halftone colors: Eq. (24) can be generalized to halftone prints
involving the eight Neugebauer primaries with any coverage ai;
in this case the front-side reflectance factors is written:

R =

[
8

∑
i=1

aiR
1/ni
i

]n

(43)

with

8

∑
i=1

ai = 1, (44)

n =
8

∑
i=1

aini (45)

and ni is given by Eq. (41).
Even if the back-side reflectance, R′ (on the unprinted side)

is not interesting in the case of a single-sided halftone print, it
can also be predicted thanks to the following formulas:

R′ =

[
8

∑
i=1

aiR
′1/ni
i

]n

(46)

where R′i is the back-side reflectance measured on the single-
sided print with the solid Neugebauer primary i; the spectral
terms ni and n are given by the formulas (41) and (45) respec-
tively.

5. MPD-YN MODEL IN TRANSMITTANCE MODE

Regarding the transmittance of the print, the average number
of internal reflections is equal to the one calculated for the re-
flectance, minus 1 (see Fig. 7). By following similar line of
reasonning as for the reflectance, we can express the transmit-
tance Tj (j = 1 in the case of paper without ink or j = i in the
case of a solid primary i) as the result of nj − 1 events of factor

T
1/(nj−1)
j :

Tj =

(
T

1/(nj−1)
j

)nj−1
(47)

The transmittance T of the halftone print considered above
results from n′ successive attenuations of the light, each of factor
t, such as:

T = tn′ (48)

with

t = (1− ai) T1/(n1−1)
1 + aiT

1/(ni−1)
i (49)

and

n′ = (1− ai) (n1 − 1) + ai (ni − 1) (50)

where n1 and ni are given by Eqs. (33) and (41) respectively. We
thus obtain:

T =
[
(1− ai) T1/(n1−1)

1 + aiT
1/(ni−1)
i

](1−ai)n1+aini−1
(51)

Like the reflectance model, Eq. (51) can be generalized to
halftone prints involving the eight Neugebauer primaries with
any coverage ai; in this case, the forward transmittance factors
is written:

T =

[
8

∑
i=1

aiT
1/(ni−1)
i

]n−1

(52)

where ni and n are given by Eqs. (41) and (45) respectively.
The forward transmittance T′ (identical to the backward

transmittance, more or less measurement error) can also be pre-
dicted thanks to the following Eq.:
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Fig. 7. Internal reflections undergone by light before being
transmitted in the case of (a) an unprinted paper, (b) a printed
paper with a solid primary layer and (c) a halftone print.

T′ =

[
8

∑
i=1

aiT
′1/(ni−1)
i

]n−1

(53)

where T′i is the forward transmittance measured on the single-
sided print with the solid Neugebauer primary i.

6. EXTENSION TO DUPLEX HALFTONE PRINTS

As for the Yule-Nielsen model, extended to double-sided prints
in Ref. [15], we propose a version of the MPD-YN model able
to predict the reflectance and spectral transmittance factors of
prints with halftone colors on their two sides. The prediction
method is in two steps: in the first step, the halftone colors
printed on the recto and verso sides are both considered as
printed on the recto on different areas of the paper sheet, the
verso being unprinted; the transfer factors of these two colors
patches are predicted and a transfer matrix is attached to each
one. In a second step, the two transfer matrices are combined
and we can deduce the transfer factors of the paper printed with
these two colors printed one on the recto side, the other on the
verso side.

Let us present these two steps in detail. In the first step, we
denote as A the color on the front side (recto) and B the one on
the back side (verso). We consider these two colors printed on
the recto side. The transfer factors RA, R′A, TA and T′A of the
color patch A and the ones RB, R′B, TB and T′B of the color patch
B are predicted thanks to the model presented in the previous
section [see Eqs. (43), (45), (46), (52) and (53)]. The transfer
matrix representing the color patch A (see Fig. 8-b) is:

MA =
1

TA

 1 −R′A
RA TAT′A − RAR′A

 (54)

Regarding the color patch B, we now consider that it is
printed on the verso side (the recto being unprinted); it is repre-
sented by the following transfert matrix MB (see Fig. 8-c) where
the front-side and back-side reflectances, and the forward and
backward transmittances, are mutually exchanged compared to
their respective arrangement in MA:

MB =
1

T′B

 1 −RB

R′B TBT′B − RBR′B

 (55)

The spectral measurements of the transfer factors R1 and
T1 of the unprinted paper (see Fig. 8-a) are used to build the
transfer matrix M11 given by Eq. (25).

The second step is the combination of the matrices M11, MA
and MB in order to obtain the transfer matrix of the recto-verso
print with the color A on the recto side and the color B on the

verso side. For this purpose, we decompose each of the three
samples: unprinted paper, color patch A (recto side) and color
patch B (verso side), into two half-layers as shown in Fig. 8.
In the unprinted paper (matrix M11), the two half-layers are
similar and represented by the transfer matrix M1/2

11 . The color
patch A is made of the half-layer with color A (matrix PA to be
determined) on top of an unprinted half-layer (matrix M1/2

11 ).
Since we have

MA = PA.M1/2
11 , (56)

the transfer matrix representing the upper half-layer is therefore

PA = MA.M−1/2
11 . (57)

The color patch B is decomposed into an unprinted half-layer
(matrix M1/2

11 ) on top of an half-layer with color B. The transfer
matrix representing this latter is:

PB = M−1/2
11 .MB. (58)

Finally, if the paper is printed with the color A on the recto
side and the color B on the verso side, we can reasonnably as-
sume that it can be decomposed into the half-layer with the color
A, represented by the matrix PA, on top of the half-layer with
color B, represented by the matrix PB (see Fig. 8-d). Hence, the
transfer matrix of the recto-verso print is given by:

MAB = MA.M−1
11 .MB (59)

The transfer factors RAB, R′AB, TAB and T′AB of the recto-
verso halftone print can be deduced from the formulas (6) to (9)
applied to the matrix MAB. After computation, one obtains:

RAB = RA −
(

R1 − R′B
)

TAT′A
T2

1 −
(

R1 − R′A
) (

R1 − R′B
) (60)

TAB =
T1TAT′B

T2
1 −

(
R1 − R′A

) (
R1 − R′B

) (61)

R′AB = RB −
(

R1 − R′A
)

TBT′B
T2

1 −
(

R1 − R′A
) (

R1 − R′B
) (62)

T′AB =
T1T′ATB

T2
1 −

(
R1 − R′A

) (
R1 − R′B

) (63)

7. CALIBRATION

The calibration of the Mean-Path-Defined Yule-Nielsen model
for recto-verso halftone color prints in reflectance mode needs
the measurements of the front-side reflectances Ri and back-side
reflectances R′i of all the Neugebauer primaries, and the trans-
mittance of the unprinted paper T1. In transmittance mode, the
forward transmittances Ti and backward transmittances T′i of all
Neugebauer primaries must be added. Note that for reflectance
predictions of halftone colors printed on one side of an opaque
paper sheet, the MPD-YN model needs the measurements of
the front-side reflectances Ri for all Neugebauer primaries and
the transmittance of the unprinted paper T1, namely one more
measurement than for the calibration of the Yule-Nielsen model.

Moreover, in the case of halftone prints, it is known that
the problem of dot gain needs additionnal measurements, in
reflectance mode if one wants to predict reflectances, and/or
transmittance mode if one wants to predict transmittances. At
printing time, the inks spread on the substrate in a more or less
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Fig. 8. Modeling a duplex halftone print (d) from two single-
sided halftone prints (b) and (c), and the unprinted paper (a).

pronounced way according to the physicochemical and mechani-
cal properties of the materials. This phenomenon of spreading is
called "mechanical dot gain". The combined effects of optical dot
gain (Yule-Nielsen effect) and mechanical dot gain imply that
actual coverages, called "effective coverages", are different from
the coverages defined in the digital layout, called "nominal cov-
erages". The effective coverages are the input parameters of the
color prediction models but they are difficult to measure inde-
pendently of the models, despite attempts using heavy methods
to implement such as microscopic image analysis coupled with
a model of optical dot gain [28, 31, 32]. An alternative to these
methods is to make an assessment of the effective coverages
using a macroscopic method that combines measurements of
the transfer factors of 36 halftone samples and the use of the
model itself [13]. We propose to present in detail this method.
The general principle of the method is to build correction curves
relating the nominal and effective coverages of cyan, magenta
and yellow inks, taking into account that the spreading of a
given ink can be done in a different way on paper, depending on
whether the latter is non-inked or printed with a solid Neuge-
bauer primary composed with the other two inks. First, a set of
36 halftone color samples, shown in Fig. 9, is printed on one side
of the symmetric paper sheet. These samples correspond to all
the possible combinations of a given ink u of nominal coverage
a equal to 0.25, 0.50 or 0.75, and a solid primary v obtained with
the inks other than u. For example, for cyan ink, the 12 halftone
colors (c−m− j), represented in Table 1, are obtained.

There are also 12 samples for magenta and 12 samples for
yellow. Each of these halftone colors contains two primaries
which correspond to areas where the primary v is alone and
areas where the ink u is superposed on the primary v to obtain
the primary u + v. We denote by x the effective coverage of

the primary u + v. We measure the spectral reflectance R(m)
u/v (λ)

Table 1. List of halftone colors used to estimate the mechani-
cal dot gain of the cyan ink.

cyan/white (0.25− 0− 0) (0.50− 0− 0) (0.75− 0− 0)

cyan/magenta (0.25− 1− 0) (0.50− 1− 0) (0.75− 1− 0)

cyan/yellow (0.25− 0− 1) (0.50− 0− 1) (0.75− 0− 1)

cyan/red (0.25− 1− 1) (0.50− 1− 1) (0.75− 1− 1)

and the spectral transmittance T(m)
u/v (λ) of this halftone color.

We denote by R(x)
u/v (λ) and T(x)

u/v (λ) the theoretical reflectance
and theoretical transmittance associated with this color and
calculated using a color prediction model. The effective coverage
is the value that minimizes the CIELAB ∆E94 color distance
between the measured spectrum and the spectrum predicted by
the considered model when the parameter x varies between 0

and 1. We then obtain a value ã(R)
u/v for the effective coverage in

reflectance mode:

ã(R)
u/v = argmin

0≤x≤1
∆E94

(
R(m)

u/v (λ) , R(x)
u/v (λ)

)
(64)

and generally a different value ã(T)u/v in transmittance mode [11]:

ã(T)u/v = argmin
0≤x≤1

∆E94

(
T(m)

u/v (λ) , T(x)
u/v (λ)

)
(65)
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Fig. 9. Color samples for calibration of halftone color predic-
tion models (the three values at the right of each color squares
are respectively the c, m and y values).

Thus, for each couple ink u, primary v, one obtain three ef-
fective coverages corresponding to the three nominal coverages
0.25, 0.50 and 0.75. By linear interpolation, one creates a function
fu/v, also called ink spreading curve [13], establishing the corre-
spondance between the nominal and effective surface coverages.
More precisely, fu/v (a) gives the effective coverage of the ink
u on the primary v for any nominal coverage a. Considering
the 36 calibration samples, one obtains a set of four spreading
curves for each ink, therefore a total of 12 spreading curves for
one given mode (reflectance or transmittance).

Once the spreading curves in reflexion mode (or transmission
mode) have been obtained, it is then possible to predict the
spectral reflectance (respectively, transmittance) of any halftone
color printed with the inks and paper used for the calibration.
More precisely, if we consider a halftone color whose nominal
coverages of cyan, magenta and yellow inks are denoted c0, m0
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and y0 respectively, then the latter are converted to effective
coverages c, m and y by performing a few iterations on the
following three equations:

c = (1−m) (1− y) fc/w (c0) + m (1− y) fc/m (c0) +

(1−m) y fc/y (c0) + my fc/m+y (c0)

m = (1− c) (1− y) fm/w (m0) + c (1− y) fm/c (m0) +

(1− c) y fm/y (m0) + cy fm/c+y (m0)

y = (1− c) (1−m) fy/w (y0) + c (1−m) fy/c (y0) +

(1− c)m fy/m (y0) + cm fy/c+m (y0)

(66)

The effective coverages of the three inks are obtained by
calculating the average of their four spreading curves, weighted
by the coverages of the primaries over which these halftone inks
overlap: for example, the weight associated with the curve of
cyan ink on the red primary (i.e. fc/m+y) is equal to the coverage
of the red primary, that is to say my. At the first iteration, the
initial values to the right of the equations (66) are c = c0, m =
m0 and y = y0, the values of c, m and y obtained on the left
are then plotted in right-hand side of the equations (66) which
give new values of c, m and y, and so on, until the values of
c, m and y stabilize. These last values are then plotted in the
Demichel equations (1) in order to obtain the effective coverages
ai, i = 1, ..., 8 of the eight Neugebauer primaries.

8. PREDICTION ACCURACY

We tested the performance of the Mean-Path-Defined Yule-
Nielsen model for the reflectance prediction of 81 color samples
printed on one side of an APCO paper sheet (symmetrical, super-
calendered and non-fluorescent), the other side being unprinted,
with a classical rotated cluster halftoning at 120 lpi, with ink
densities of 0.72 for cyan, 0.58 for magenta and 0.82 for yellow.
The assessment of the mechanical dot gain was established by
using the optimization formulas (64) and (65) applied to the 36
calibration samples (see Section 7) printed on the same sheet
of paper as the 81 test samples. The reflectance factor of each
sample is measured with the X-rite Color i7 spectrophotometer
with a geometry d:8°. It is assumed that APCO paper is opaque
enough to use Eq. (42) for predicting the spectral reflectance
factors of the 81 color samples, randomly selected, exclusing
the halftone colors used for the calibration of the model. The
transmittance factor T1 of the unprinted paper, involved in the
calculation of the average number of internal reflection n1 [see
Eq. (33)], is measured with a geometry d:0°. The precision of the
predictions is evaluated (see Table 2) by calculating the average
of the root mean square (rms) spectral differences and the aver-
age of the CIELAB ∆E94 color distances, over the 81 test samples,
between predicted and measured spectra. We also write into
brackets the 95th percentile of the CIELAB ∆E94 distances (Q95).
The results obtained with the MPD-YN model are compared
with the ones obtained with the Yule-Nielsen model, whose
ink surface coverages and n value have been calibrated inde-
pendently of the MPD-YN model: the constant n value, fitted
from the 36 calibration samples, was 4.5 for the prediction of
the reflectance factors. Good accuracy have been observed for
both the MPD-YN model and the Yule-Nielsen model: the mean
square deviations are less than one percent and the colorimetric
deviations are less than 1. However, even though equivalent
performances are observed, the drawback with the Yule-Nielsen

model is that the value of the n parameter must be fitted before
allowing predictions. Recall that the MPD-YN model computes
one spectal n value for each halftone color. One example of
spectral n value is displayed in Figure 5, corresponding to the
magenta 50 % halftone patch, printed with the same setup and
materials than the set of halftone colors tested in this experiment.

Table 2. Prediction accuracy of the MPD-YN and Yule-
Nielsen models on 81 halftone colors printed on one side of
an APCO paper sheet with the Canon Pro9500 inkjet printer.

rms− ∆E94 (Q95) ∗

Model Reflectance

MPD-YN 0.006− 0.53 (1.18)

Yule-Nielsen 0.006− 0.49 (1.10)
∗average of rms – average of ∆E94 (95th percentile)

We also tested the performance of the MPD-YN model on 36
different duplex halftone color samples printed on APCO paper
with a classical rotated cluster halftoning at 120 lpi, with ink
densities of 0.60 for cyan, 0.45 for magenta and 0.55 for yellow.
The precision of the predictions is presented in Table 3. The
results obtained with the MPD-YN model are compared with
those obtained with the Yule-Nielsen model with the parameter
n = 2.3 for the predictions of the reflectance factors and n = 1.6
for the predictions of the transmittance factors (these two n-
values, rather low as expected in case of low ink densities [9],
were fitted using the 36 calibration samples). We observe good
accuracy for both the MPD-YN model and the Yule-Nielsen
model: the mean square deviations are less than one percent and
the colorimetric deviations are less than 1.

Finally, we tested the performance of the MPD-YN model
on 78 duplex halftone samples printed on office paper with a
classical rotated cluster halftoning at 150 lpi. The results, shown
in Table 4, are a little bit less accurate than the ones obtained
with APCO paper but they are similar for both MPD-YN and
Yule-Nielsen models with mean square deviations lower than 1.5
percent and colorimetric deviations lower than 1.5 in average.

Table 3. Prediction accuracy of the MPD-YN and Yule-
Nielsen models on 36 duplex halftone colors printed on an
APCO paper sheet with the Canon Pro9500 inkjet printer.

rms− ∆E94 (Q95) ∗

Model Reflectance Transmittance

MPD-YN 0.007− 0.76 (1.58) 0.001− 0.94 (1.49)

Yule-Nielsen 0.007− 0.70 (1.36) 0.002− 0.94 (1.39)
∗average of rms – average of ∆E94 (95th percentile)

9. CONCLUSION

We have introduced a surface model, called MPD-YN model,
allowing the predictions of the spectral reflectances and trans-
mittances of single-sided and duplex halftone prints, and whose
formulation is close to the one of the Yule-Nielsen model. This
model describes the optical dot gain by introducing into the
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Table 4. Prediction accuracy of the MPD-YN and Yule-
Nielsen models on 78 duplex halftone colors printed on an
office paper sheet with the Canon Pro9500 inkjet printer.

rms− ∆E94 (Q95) ∗

Model Reflectance Transmittance

MPD-YN 0.012− 1.27 (2.77) 0.004− 1.17 (2.14)

Yule-Nielsen 0.013− 1.16 (3.11) 0.003− 1.33 (2.05)
∗average of rms – average of ∆E94 (95th percentile)

Neugebauer formula spectral terms related to the concept of av-
erage number of internal reflections between two half-layers.
The advantage of the MPD-YN model is that these terms,
wavelength-dependent and different for each halfone, are calcu-
lated from the measured transfer factors (reflectances, transmit-
tances) of the solid Neugebauer primaries printed on the paper;
they are not free parameters, in contrast with the n parameter
of the Yule-Nielsen model which is fitted during the calibration
phase by minimizing the differences between the predicted and
measured spectra on a certain number of samples. The replace-
ment of the free n parameter by this computed parameter has
been possible thanks to the spectral information carried by the
transmittance of the solid primary patches, measured in addi-
tion to the spectral reflectances. The spectral n parameter in
the MPD-YN model is mainly related to the optical properties
of the paper (scattering and absorption). When the paper is
opaque enough so that the inks printed on the recto-side are not
visible on the verso side, the back-side reflectances of the paper
printed with the solid primaries are similar and the n parame-
ter depends only on the spectral reflectance and transmittance
of the unprinted paper. In the general case, through the back
reflectances of the solid primary patches, the n parameter can
render the effects of the paper’s translucency or the fact that
its optical properties are modified when the inks penetrate into
it. The predictions given by the MPD-YN model are as accu-
rate as the ones given by the Yule-Nielsen model (Yule-Nielsen
modified spectral Neugebauer model).

REFERENCES

1. V. Babaei, R.D. Hersch, Yule-Nielsen based multi-angle reflectance
prediction of metallic halftones, Proc. SPIE 9395, paper 93950H (2015).

2. P. Pjanic, R. D. Hersch, Specular color imaging on a metallic substrate,
Proc. IS&T 21st Color and Imaging Conference, 61–68 (2013).

3. M. Hébert, D. Nébouy, S. Mazauric, Color and spectral mixing in printed
surfaces, LNCS 9016 Computational Color Imaging Workshop, 3–15
(2015).

4. S. Mazauric, T. Fournel, M. Hebert, Fast-calibration reflectance-
transmittance model to compute multiview recto-verso prints, Pro-
ceedings of the 6th International Workshop CCIW, 223–232, Milano
(2017).

5. N. Dalloz, S. Mazauric, T. Fournel, M. Hébert, How to design a recto-
verso print displaying different images in various everyday-life lighting
conditions, IS&T Electronic Imaging Symposium, Materials Appear-
ance, Burlingame (2017).

6. G. L. Rogers, The Point Spread Function and Optical Dot Gain, in
Handbook of Digital Imaging, Vol. 2, Ed. Mickael Kriss, Wiley, pp.
1133—1164 (2015).

7. J.A.C. Yule, W.J. Nielsen, The penetration of light into paper and its
effect on halftone reproduction, Proc. TAGA 3, 65–76 (1951).

8. J. A. S. Viggiano, The color of halftone tints, Proc. TAGA, 647–661
(1985)

9. M. Hébert, R. D. Hersch, Review of spectral reflectance prediction
models for halftone prints: calibration, prediction and performance,
Color Res. Appl., Vol. 40, pp. 383–397, paper 21907 (2015).

10. F. R. Clapper, J. A. C. Yule, The effect of multiple internal reflections on
the densities of halftones prints on paper, J. Opt. Soc. Am. 43, 600–603
(1953).

11. S. Mazauric, M. Hébert, L. Simonot, T. Fournel, Two-flux transfer ma-
trix model for predicting the reflectance and transmittance of duplex
halftone prints, J. Opt. Soc. Am. 31, 2775–2788 (2014).

12. M. Hébert, F. Emmel, Two-flux and multiflux matrix models for colored
surfaces, in Handbook of Digital Imaging, Mickael Kriss Ed., John Wiley
& Sons, pp. 1233–1277 (2015).

13. R. D. Hersch, F. Crété, Improving the Yule-Nielsen modified spectral
Neugebauer model by dot surface coverages depending on the ink
superposition conditions, Proc SPIE 5667, 434–445 (2005).

14. M. E. Demichel, Procédés 26, 17–21 (1924).
15. M. Hébert, R. D. Hersch, Yule-Nielsen based recto-verso color halftone

transmittance prediction model, J. Opt. Soc. Am. A 50, 519–525 (2011).
16. J. Machizaud, M. Hébert, Spectral reflectance and transmitance pre-

diction model for stacked of transparency and paper both printed with
halftone colors, J. Opt. Soc. Am. A 29, 1537–1548 (2012).

17. A. Lewandowski, M. Ludl, G. Byrne, G. Dorffner, Applying the Yule-
Nielsen equation with negative n, J. Opt. Soc. Am. A 23, 1827–1834
(2006).

18. J. A. S. Viggiano, Physical significance of negative Yule-Nielsen n-
value, Proc. ICIS International Congress of Imaging Science, 607–610
(2006).

19. J. A. S. Viggiano, Ink penetration, isomorphic colorant mixing and
negative values of Yule-Nielsen n, Proc. IS & T 18th Color and Imaging
Conference, 285–290 (2010).

20. M. Hébert, R. D. Hersch, Analysing halftoning dot blurring by extended
spectral prediction models, J. Opt. Soc. Am. A 27, 6–12 (2010).

21. J. S. Arney, A probability description of the Yule-Nielsen effect. I : Tone
reproduction and image quality in the graphic arts, J. Im. Sci. Technol.
41, 633–636 (1997).

22. J. S. Arney, A probability description of the Yule-Nielsen effect. II : The
impact of halftone geometry, Recent Progress in Digital Halftoning II,
456–461 (1999).

23. G. Rogers, Optical dot gain : lateral scattering probabilities, J. Imaging
Sci. Technol. 42, 495–500 (1998).

24. F. R. Ruckdeschel, O. G. Hauser, Yule-Nielsen effect in printing : a
physical analysis, Appl. Opt. 17, 3376–3383 (1978).

25. G. L. Rogers, Effect of light scatter on halftone color, J. Opt. Soc. Am.
A 15, 1813—1821 (1998).

26. G. L. Rogers, A Generalized Clapper–Yule Model of Halftone Re-
flectance, Color Res. Appl. 25, 402—407 (2000).

27. P. Kubelka, New contributions to the optics of intensely light-scattering
materials, part II: Non homogeneous layers, J. Opt. Soc. Am. 44, 330–
335 (1954).

28. M. Ukishima, Prediction and evaluation of color halftone print quality
based on microscopic measurement, Ph. D. dissertation, University of
Eastern Finland (2010).

29. K. Ino, R.S. Berns, Building color management modules using linear
optimization II. Prepress system for offset printing, J. Imag. Sci. Tech.,
42, 99 –114 (1998).

30. R. Rossier, R.D. Hersch, Ink-dependent n-factors for the Yule-Nielsen
modified spectral Neugebauer model, Fifth European Conference on
Color in Graphics, Imaging and Vision (CGIV), Joensuu, Finland, June
14-18 (2010).

31. G. M. A. Rahaman, O. Norberg, P. Edström, Microscale halftone color
image analysis: perspective of spectral color prediction modeling. Proc.
SPIE 9015, Paper 901506 (2014).

32. D. Nyström, High Resolution Analysis of Halftone Prints : A Colori-
metric and Multispectral Study, PhD dissertation, Linköping University,
Sweden (2009).


	Introduction
	Yule-Nielsen model
	Flux transfers and average number of internal reflections
	Mean-Path-defined Yule-Nielsen (MPD-YN) model in reflectance mode
	MPD-YN model in transmittance mode
	Extension to duplex halftone prints
	Calibration
	Prediction accuracy
	Conclusion

