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We introduce a so-called "Mean-Path-Defined Yule-Nielsen" (MPD-YN) model for predicting the color of halftone prints in reflectance or transmittance modes, inspired of the Yule-Nielsen modified Spectral Neugebauer model, where the empirical n value is replaced with a spectral parameter different for each halftone, directly calculated thanks to a closed-form formula, function of the measured spectral reflectances (or accordingly transmittances) of fulltone calibration patches and the surface coverages of the Neugebauer primaries in the halftone. This parameter is based on the average number of internal reflections undergone by light between two half-layers of the print, whose expression derives from a flux transfer model between the two half-layers. According to the tests carried out in this study with paper printed in inkjet, the predictive performances of the MPD-YN model are rather good and very close to those obtained with the Yule-Nielsen model.

INTRODUCTION

Spectral prediction models are key tools for fast and accurate color management in printing. They are also indispensable for designing advanced printing features such as those where the print displays different images according to the viewing conditions. Such multi-view effects can be obtained by using metallic inks [START_REF] Babaei | Yule-Nielsen based multi-angle reflectance prediction of metallic halftones[END_REF] or a specular support [START_REF] Pjanic | Specular color imaging on a metallic substrate[END_REF] and observing the print in or out of the specular reflection direction. They can also be obtained by double-side printing with classical inks and supports, by observing one face in reflection mode or both faces simultaneously in transmission mode [START_REF] Hébert | Color and spectral mixing in printed surfaces[END_REF][START_REF] Mazauric | Fast-calibration reflectancetransmittance model to compute multiview recto-verso prints[END_REF][START_REF] Dalloz | How to design a rectoverso print displaying different images in various everyday-life lighting conditions[END_REF]. For these printing configurations, color management based on digital methods like ICC profile is almost impossible because the number of needed sample measurements, often beyond one thousand for singlemode observation, exponentially increases with the number of observation modes. The calibration time of the printing system thus becomes inacceptable, whereas a few tens of measurements often suffice to calibrate a prediction model, thus allowing the prediction of all reproducible colors in the different modes.

Inside a diffusing medium printed in halftone, the light propagates laterally from one ink dot to other ones by multiple internal reflections before exiting the print, which makes the reflectance of the halftone darker than it would be in absence of these internal reflections. This phenomenon is often called Yule-Nielsen effect, or "optical dot gain". Even though it has been established that this phenomenon is more or less pronounced according to the point spread function of the support and the halftone screen frequency [START_REF] Rogers | The Point Spread Function and Optical Dot Gain[END_REF], no simple model has been able yet to provide precise relationship between the phenomenon and these parameters. However, despite its simplicity, the Yule-Nielsen modified Neugebauer equation (or simply Yule-Nielsen equation) [START_REF] Yule | The penetration of light into paper and its effect on halftone reproduction[END_REF][START_REF] Viggiano | The color of halftone tints[END_REF] allows accurate predictions of the spectral reflectance of halftone prints on various diffusing or transparent supports. The optical dot gain is modeled by an empirical n parameter fitted from a few tens of halftones used for the calibration of the model. This model belongs, together with the spectral Neugebauer model, to the category of "surface models" as defined in Ref. [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF]. They do not offer the possibility of varying the measurement geometry, or the ink layer thickness, which must be identical for the calibration and the prediction.

Another category of spectral reflectance prediction models for prints is the "phenomenological models". They are more complex since they intend to describe explicitly the optical dot gain thanks to flux transfers between the layers of the print, taking into account physical considerations such as the change of refractive index between air and the diffusing medium, or the lighting and observation geometries: this is the case of the Clapper-Yule model [START_REF] Clapper | The effect of multiple internal reflections on the densities of halftones prints on paper[END_REF] or the Duplex Primary Reflectance-Transmittance model [START_REF] Mazauric | Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints[END_REF], which take into account the multiple reflections of light when it propagates between the interface and the support through the ink layers.

The present study merges the two approaches since we propose a surface model similar to the Yule-Nielsen model, but without fitted n parameter. This latter is replaced with a spectral parameter different for each halftone, corresponding to the average number of internal reflections between two sublayers of the print (the upper and the lower half layers), which depends on the spectral reflectances and transmittances of the primaries, thereby on their absorbance, and their respective surface coverages. Our model, called "Mean-Path-Defined Yule-Nielsen" (MPD-YN), maintains the famous Yule-Nielsen equation, appreciable for its simplicity, while removing the determination step for the n value. In contrast with the Yule-Nielsen model, however, the spectral transmittance of the unprinted support needs to be measured. This model is part of a series of studies whose objective is to predict both reflectance and transmittance of single-side and duplex prints, by targeting as good accuracy as the numerous reflectance prediction models for single-side prints, and by trying to increase as little as possible the number of color patches to be printed for calibration of the reflectance and transmittance model in comparison to those needed by reflectance only-models (e.g., 44 patches in Ref. [START_REF] Hersch | Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions[END_REF]). In the case of duplex prints, the process of minimizing the number of calibration patches is crucial because the number of duplex color pairs to predict is the square of the number of single-side colors that the reflectance models usually have to predict.

Before presenting the MPD-YN model, we first recall in Section 2 the Yule-Nielsen model and we discuss its advantages and limitations. The MPD-YN model relies on a flux transfer approach and the subdivision of the print into two half-layers. The matrix formalism associated with the flux transfer model, introduced in Refs. [START_REF] Mazauric | Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints[END_REF] and [START_REF] Hébert | Two-flux and multiflux matrix models for colored surfaces[END_REF], is recalled in Section 3 and used to calculate the average number of internal reflections between two layers. The MPD-YN model is presented in detail in Section 4 for reflectance predictions and in Section 5 for transmittance predictions. Its extension to duplex halftone prints is presented in Section 6. The method for assessing the mechanical dot gain in halftone print is described in Section 7: this method, proposed by Hersch and Crété [START_REF] Hersch | Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions[END_REF], relies on ink spreading functions giving the correspondence between nominal and effective surface coverages and taking into account the fact that an ink may spread differently on the paper or on top of another ink. An experimental verification of the model is presented in Section 8 and our conclusions are finally drawn in Section 9.

YULE-NIELSEN MODEL

Let us consider a CMY halftone color printed on a diffusing medium. It can be seen as a mosaic of the height Neugebauer primaries, obtained when superposing cyan, magenta and yellow halftone screens: white (surface with no ink, labelled i = 1), cyan, magenta, yellow, red (magenta + yellow), green (cyan + yellow), blue (cyan + magenta) and black (cyan + magenta + yellow). We denote as a i (i = 1, ..., 8) the surface coverages of the Neugebauer primaries. They are obtained from the surface coverages of the cyan, magenta and yellow inks using Demichel's equations [START_REF] Demichel | [END_REF] valid for most types of typical stochastic halftoning techniques or cluster dot halftoning when the halftone screens of the different channels have appropriate orientations [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF]:

a 1 = (1 -c)(1 -m)(1 -y) a 2 = c(1 -m)(1 -y) a 3 = (1 -c)m(1 -y) a 4 = (1 -c)(1 -m)y a 5 = (1 -c)my a 6 = c(1 -m)y a 7 = cm(1 -y) a 8 = cmy (1)
Within a halftone print, light propagates laterally from one area to another one before exiting the medium, thus meeting various primaries, a phenomenon called "optical dot gain" or Yule-Nielsen effect [START_REF] Yule | The penetration of light into paper and its effect on halftone reproduction[END_REF][START_REF] Viggiano | The color of halftone tints[END_REF]. This phenomenon is modeled empirically by the introduction in the Neugebauer formula of a free parameter n, yielding the Yule-Nielsen modified Neugebauer reflectance formula:

R (λ) = 8 ∑ i=1 a i R i (λ) 1/n n (2)
where R i are the reflectance factors of the solid Neugebauer primaries. The parameter n is fitted in order to minimize the mean square deviation between measured and predicted spectra of calibration samples. A version of the Yule-Nielsen model transposed to the transmission factor has been proposed in Ref. [START_REF] Hébert | Yule-Nielsen based recto-verso color halftone transmittance prediction model[END_REF] with similar performence as for reflectance predictions, for both single-sided prints and duplex prints.

In absence of scattering within the printing support (very specular substrates), the n value is theoretically equal to (or very close to) 1. However, we experimentally observe that its optimal value, fitted in order to obtain the best agreement between measured and predicted spectral reflectances for a set of patches, is rather close to 2 for transparent films because of the slight light scattering by the inks [START_REF] Machizaud | Spectral reflectance and transmitance prediction model for stacked of transparency and paper both printed with halftone colors[END_REF]. When the scattering in the support increases, the n value generally increases too (the Yule-Nielsen effect is stronger): it can reach 10 for certain paper prints [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF], and can even tend asymptotically to infinity [START_REF] Hébert | Color and spectral mixing in printed surfaces[END_REF]. It can also take negative values, especially when the ink penetrates deeply into the paper [START_REF] Lewandowski | Applying the Yule-Nielsen equation with negative n[END_REF][START_REF] Viggiano | Physical significance of negative Yule-Nielsen nvalue[END_REF][START_REF] Viggiano | Ink penetration, isomorphic colorant mixing and negative values of Yule-Nielsen n[END_REF]. When the halftone screen frequency increases, an increase of the n value is often observed [START_REF] Hébert | Analysing halftoning dot blurring by extended spectral prediction models[END_REF], which can be explained by the fact that the ink dots are smaller and closer to each other, or equivalently by the fact that the halftone screen period decreases in respect to the average distance of lateral propagation of light within the support, which can be deduced from the point spread function of the support itself [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF].

The Yule-Nielsen model is simple and efficient, but the introduction of the fitted n parameter to empirically model the optical dot gain does not really find simple interpretation. Various attempts to find a physical justification have been proposed. Some authors have modeled the transition probabilities between primaries [START_REF] Arney | A probability description of the Yule-Nielsen effect. I : Tone reproduction and image quality in the graphic arts[END_REF][START_REF] Arney | A probability description of the Yule-Nielsen effect. II : The impact of halftone geometry[END_REF][START_REF] Rogers | Optical dot gain : lateral scattering probabilities[END_REF], other ones have modeled the light reflection by the print using the convolution of a spectral transmission surface function associated with the ink layer and the point spread function describing the scattering of light in paper substrates [START_REF] Ruckdeschel | Yule-Nielsen effect in printing : a physical analysis[END_REF]. In Refs. [START_REF] Rogers | The Point Spread Function and Optical Dot Gain[END_REF][START_REF] Rogers | Effect of light scatter on halftone color[END_REF][START_REF] Rogers | A Generalized Clapper-Yule Model of Halftone Reflectance[END_REF] Rogers used this convolution approach to derive, from the radiative transfer theory, the Yule-Nielsen equation with a value of n approaching 2 as the substrate becomes a perfect diffuser, which is in contradiction with the experimentally observed values. This theoretical model, which is also very elegant, is rather difficult to implement because it needs high computation times and also requires to take into account the actual shape of the ink dots.

Finally, the Yule-Nielsen model assumes that the fitted n parameter is independent of the wavelength and the Neugebauer primaries, whatever their absorbance are. However, when light encounters a very absorbing primary, it is strongly attenuated and its average path is consequently shortened; average light paths therefore depends on the spectral absorbance of the primaries. We propose in this work to review the Yule-Nielsen model in which the n parameter is a spectral quantity calculated from the measured spectra for a selection of calibration samples and no longer a fitted parameter minimizing the distance between predicted and measured spectra.

FLUX TRANSFERS AND AVERAGE NUMBER OF IN-TERNAL REFLECTIONS

The purpose of this section is to recall the bases of the discrete two-flux model and its matrix formalism, applied to a stack of two layers, from which we can then calculate the mean free path of light, in the form of an average number of internal reflections between the two layers.

A flux transfer model is particularly adapted to the layered structure of printed supports. When the printing support is strongly scattering, like paper or white polymer, we can use a two-flux model. The model presented in Ref. [START_REF] Mazauric | Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints[END_REF] applies with a stack of layers of strongly diffusing materials and the interfaces between them. Each component, layer or interface, is characterized by four transfer factors: the front-side reflectance r, the back-side reflectance r , the forward transmittance t and the backward transmittance t . The component is said to be symmetrical when r = r , and t = t . All fluxes and transfer factors may also depend upon wavelength. When two components are on top of each other, inter-reflections of light occur between them, thus producing mutual exchanges between the fluxes propagating forwards (denoted as i k in Fig. 1) and backwards (denoted as j k ). These exchanges can be easily described by using flux transfer matrices. For each component k = 1 or 2, assuming t k = 0, the relations between forward and backward fluxes is described by the following matrix equation:

  i k-1 j k-1   = 1 t k   1 -r k r k t k t k -r k r k     i k j k   (3) 
where the matrix is the transfer matrix attached to the component k, denoted as M k :

M k = 1 t k   1 -r k r k t k t k -r k r k   (4) 
Grouping components 1 and 2 together, Eq. ( 3) can be repeated twice. One obtains:

  i 0 j 0   = M 1   i 1 j 1   = M 1 M 2   i 2 j 2   = M   i 2 j 2   (5)
where M, product of the transfer matrices of the individual components, is the transfer matrix representing the two layers together, similarly defined as Eq. ( 4) in terms of its transfer factors R, T, R and T . The multiplicative property of transfer matrices is true for any number of components, and the leftto-right position of the matrices in the product reproduces the front-to-back position of the corresponding components. Every transfer matrix has the structure displayed in Eq. ( 4) and from a given transfer matrix M = (m ij ), provided m 11 = 0, one retrieves the transfer factors in the following way:

R = m 21 /m 11 (6) 
T = 1/m 11 (7) R = -m 12 /m 11 (8) 
T = det M/m 11 = m 22 -m 21 m 12 /m 11 (9) 
Applying formulas ( 6) to [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF] to the matrix M 1 M 2 [see Eq. ( 5)] representing the stack of layers displayed in Fig. 1 yields:

R = r 1 + t 1 t 1 r 2 1 -r 1 r 2 (10) 
T = t 1 t 2 1 -r 1 r 2 (11) R = r 2 + t 2 t 2 r 1 1 -r 1 r 2 (12) 
T = t 1 t 2 1 -r 1 r 2 (13) Component 2 Component 1 i 0 r 1 r' 1 t 1 t' 1 t 2 r 2 r' 2 t' 2 j 0 i 1 j 1 i 2 j 2
Front side Another way of obtaining formulas [START_REF] Clapper | The effect of multiple internal reflections on the densities of halftones prints on paper[END_REF] to ( 13) is the method used by Kubelka, who, in his study of non-symmetric diffusing media [START_REF] Kubelka | New contributions to the optics of intensely light-scattering materials, part II: Non homogeneous layers[END_REF], considered all possible paths of light following multiple reflections between the two layers (see Fig. 2). Let us detail the calculations allowing to obtain the equation of the front-side reflectance given by Eq. [START_REF] Clapper | The effect of multiple internal reflections on the densities of halftones prints on paper[END_REF]. We consider light that is internally reflected a number of times before leaving the interface between the two layers. Light can be internally reflected one time and exit, three times and exit, ... 2k + 1-times and exit. At the first internal reflection, light is attenuated by r 2 . At the thirth internal reflections, light is further attenuated by r 1 r 2 , and finally, at the 2k + 1 th internal reflection, light is attenuated by r 2 (r 1 r 2 ) k . The sum of all the possible paths for light leads to convergent geometric series:

Back side

R = r 1 + t 1 t 1 ∞ ∑ k=0 r 2 r 1 r 2 k = r 1 + t 1 t 1 r 2 1 -r 1 r 2 (14) 
We observe that before being reflected, a light ray undergoes an odd number of internal reflections between the two layers: k reflections on the inner face of layer 1 and k + 1 reflections on the upper face of layer 2, which therefore makes 2k + 1 internal reflections and a global factor r k 1 r k+1 2 . It is thus possible to deduce the average number of internal reflections undergone by light component before exiting the medium at the upper side. This number, denoted n R , is the average of the odd numbers 2k + 1, with k ∈ N, weighted by r k 1 r k+1 2 , which is the probability for light to undergo an odd number of internal reflections. Thus one can write:

n R = 1 × r 2 + 3 × r 1 r 2 2 + 5 × r 2 1 r 3 2 + ... + (2k + 1) × r k 1 r k+1 2 + ... r 2 + r 1 r 2 2 + r 2 1 r 3 2 + ... + r k 1 r k+1 2 + ... (15 
) Then, by denoting q = r 1 r 2 , Eq. ( 15) can be written:

n R = r 2 ∑ ∞ k=0 (2k + 1) q k r 2 ∑ ∞ k=0 q k (16)
which yields

n R = 1 + 2q ∑ ∞ k=1 kq k-1 ∑ ∞ k=0 q k (17)
The lower term of the fraction of Eq. ( 17) is the geometric serie with the common ratio q; its limit is 1/(1q). The upper term is the first derivative of the geometric serie with the common ratio q, it converges to the derivative of the geometric serie, i.e. 1/(1q) 2 . Finally, one obtains:

n R = 1 + 2q 1 -q = 1 + q 1 -q = 1 + r 1 r 2 1 -r 1 r 2 (18) 
The average number of reflections n R is the number of reflections that would yield the same attenuation of light as in the present case, if at each reflection cycle, the attenuation of light would be only r 1 r 2 . This means that we transform the "multiple internal reflections" into a series of serial attenuation filters having each an attenuation of r 1 r 2 and ask how many of these filters we need to obtain the same attenuation of light as with two layer having an infinite number of internal reflections.

Likewise, the average number of internal reflections undergone by light before exiting the medium on the back side is:

n T = n R -1 = 2r 1 r 2 1 -r 1 r 2 (19)
r 1 t' 1 t 1 t 2 t 1 t' 1 r 2 (r' 1 r 2 ) k t 2 t 2 r' 1 r 2 t 1 t 2 (r' 1 r 2 ) k t 1 t 2 (r' 1 r 2 ) k+1 r' 1 t 1 r 2 t' 2 r' 2 t 2 r 1 t 1 t' 1 r 2 t 1 t' 1 r' 1 r 2 2 layer 1 layer 2 Fig. 2.
Reflections and transmissions between two diffusing layers.

MEAN-PATH-DEFINED YULE-NIELSEN (MPD-YN) MODEL IN REFLECTANCE MODE

Let us come back to the Yule-Nielsen model, by starting with the physical interpretation of this model that we introduced in Ref. [START_REF] Hébert | Color and spectral mixing in printed surfaces[END_REF]. We noticed that the Yule-Nielsen equation can be formally derived by modelling the reflectance of the halftone print as the result of the reflection by the support and n events of spectral filtering due to the Neugebauer primaries in respect to their respective surface coverage, these filtering events being separated by n scattering events that make light moving from one primary to any other primary. This interpretation implicitly assumes that this number of scattering events, the same for all primaries and all wavelengths of light, correlates with the lateral propagation of light into the print, which is admitted to be at the origin of the Yule-Nielsen effect. We now refine this interpretation by considering that the number of scattering events, thereby the n value, may depend upon wavelength and primary, because absorption decreases the extinction free mean path of light, therefore the lateral propagation of light. This idea extends the one introduced by Ino and Berns in Ref. [START_REF] Ino | Building color management modules using linear optimization II. Prepress system for offset printing[END_REF] and Rossier and Hersch in Ref. [START_REF] Rossier | Ink-dependent n-factors for the Yule-Nielsen modified spectral Neugebauer model[END_REF] where different (wavelength-independent) n values were attributed to the different inks, fitted from the measured spectral reflectances of halftone patches. In our approach, one spectral n value will be attributed to each primary, computed thanks to close form formulas, and representing an average number of backscattering events in the print. In the equations hereinafter, all reflectances and n values are spectral parameters, even though the dependence upon wavelength is not specified in order to keep the equations easier to read.

Let us now introduce the model, by considering first a solid primary (surface coverage 1). Even though the Yule-Nielsen effect is not visible with this solid primary, there is lateral light propagation in it, that can be represented by n i back-scattering events in average. Each back-scattering event concerns a fraction r of light. After the n i scattering events, the final reflectance (which has been previously measured) is R i (Fig. 3-a and 3-b):

r n i = R i (20) 
It follows from Eq. ( 20) that

r = R 1/n i i (21) 
therefore that the fraction of light concerned by each scattering event in this primary is R 1/n i i . If we extend this line of reasonning to a halftone color of one ink, therefore containing two primaries (Fig. 3-c): the unprinted support labeled 1, and the ink labeled i, with respective surface coverages a 1 and a i = 1a 1 , we must consider the fact that back-scattering events occur in the two primaries. We assume that each backscattering event has a probability a 1 to occur in primary 1, and a probability a i to occur in primary i; the average fraction of light concerned is

r = a 1 R 1/n 1 1 + a i R 1/n i i (22)
Since we have n backscattering events distributed in primaries 1 and i according to the respective probabilities a 1 and a i , the total number of backscattering events is, in average,

n = a 1 n 1 + a i n i (23) 
It comes after Eqs. ( 22) and ( 23) that the reflectance of the halftone patch is The average numbers of internal reflections n 1 and n i are calculated according to the method described in Section 3, from the reflectance and transmittance of half-layers that we propose to determine now.

R = r n = a 1 R 1/n 1 1 + a i R 1/n i i a 1 n 1 +a i n i (24) 
Regarding the unprinted paper, it is considered as a symmetrical diffusing layer whose transfer factors R 1 and T 1 are measured. The unprinted paper sheet is then represented by the following transfer matrix:

M 11 = 1 T 1   1 -R 1 R 1 T 2 1 -R 2 1   (25) 
We suppose now that the sheet of paper is the superposition of two identical symmetrical half-layers having both half the thickness of the sheet, and whose transfer matrix A 11 satisfies the relation (see Fig. 4-a):

A 2 11 = M 11 (26) 
Note that the number of sublayers could be 3 or more but there is no analytical formula giving the average number of internal reflections for more than 2 sublayers, and the advantage of the model (i.e. the fact that it is based on analytical formulas) vanishes.

We denote as ρ 1 and τ 1 the transfer factors associated with the matrix A 11 , i.e. the transfer factors of a half-layer:

A 11 = 1 τ 1   1 -ρ 1 ρ 1 τ 2 1 -ρ 2 1   = M 1/2 11 ( 27 
)
The transfer factors ρ 1 and τ 1 of the half-layer are obtained by applying Eqs. ( 6) and [START_REF] Yule | The penetration of light into paper and its effect on halftone reproduction[END_REF], respectively, to matrix M 1/2 11 . Note that since the half-layer is symmetrical, similar values for ρ 1 and τ 1 would be given by formulas [START_REF] Viggiano | The color of halftone tints[END_REF] and [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF]. From Eq. (??) in which ρ 1 = ρ 2 = ρ 1 , we obtain the average number of reflections between the two identical half-layers:

n 1 = 1 + ρ 2 1 1 -ρ 2 1 ( 28 
)
At this step of the line of reasonning, ρ 1 and τ 1 , and thus n 1 , are just numerical values but it is more interesting that the latter are closed-form expressions as functions of the measured transfer factors R 1 and T 1 of the unprinted paper. For this, it is necessary to develop formulas [START_REF] Rogers | The Point Spread Function and Optical Dot Gain[END_REF] to [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF] applied to matrix M 1/2 11 [see Eq. ( 27)]. But these developments require many calculations which involves the diagonalization of the matrix M 11 . Therefore, we propose to present, in the following, an equivalent but simpler method based on the inversion of the Kubelka formulas leading to the average number of internal reflections n 1 as a simple closed-form expression in terms of R 1 and T 1 .

The Kubelka formulas ( 10) and ( 11) applied to the superposition of the two identical symmetrical half-layers give:

R 1 = ρ 1 + ρ 1 τ 2 1 1 -ρ 2 1 ( 29 
)
and

T 1 = τ 2 1 1 -ρ 2 1 ( 30 
)
We deduce the reflectance ρ 1 and the tansmittance τ 1 of one half-layer by inversing Eqs. ( 29) and ( 30):

ρ 1 = R 1 1 + T 1 ( 31 
)
τ 1 = T 1 (1 + T 1 ) 2 -R 2 1 1 + T 1 (32) 
Finally, according to Eqs. ( 28) and ( 31), the average number of internal reflections expressed in terms of the measured reflectance and transmittance of the unprinted paper is:

n 1 = 1 + 2R 2 1 (1 + T 1 ) 2 -R 2 1 ( 33 
)
The average number of internal reflections n i in the sheet printed with the solid primary i is computed in the same way. The transfer factors of the print, denoted as R i , R i , T i and T i , are measured. It is then possible to build the corresponding transfer matrix:

M i1 = 1 T i   1 -R i R i T i T i -R i R i   (34) 
It is assumed that the print is the superposition of a nonsymmetric diffusing half-layer with the solid primary i, whose transfer matrix is denoted A i1 , and of the symmetric unprinted half-layer, whose transfer matrix remains A 11 = M 1/2 11 (see Fig. 4-b). Hence, we have:

M i1 = A i1 .A 11 (35) 
The transfer factors associated with A i1 are denoted as ρ i , ρ i , τ i and τ i :

A i1 = 1 τ i   1 -ρ i ρ i τ i τ i -ρ i ρ i   = M i1 .A -1 11 ( 36 
)
The transfer factors ρ i , τ i , ρ i and τ i of the non-symmetric halflayer with the solid primary i are obtained by applying Eqs. ( 6) to [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF], respectively, to matrix M i1 .A -1

11 . The average number of internal reflections n i between the printed and unprinted halflayers is obtained by applying Eq. ( 18) in which r 1 is replaced with ρ i and r 2 with ρ 1 :

n i = 1 + ρ i ρ 1 1 -ρ i ρ 1 ( 37 
)
It is also possible to obtain n i as a closed-form expression in terms of the transfer factors R 1 et T 1 of the unprinted paper, and the back-side reflectance R i of the paper with the solid primary i. For this, we use the Kubelka formula (12) applied to the superposition of the printed and unprinted half-layers:

R i = ρ 1 + ρ i τ 2 1 1 -ρ 1 ρ i (38)
We deduce the reflectance ρ i of the printed half-layer by inversing Eq. (38):

ρ i = R i -ρ 1 τ 2 1 + ρ 1 R i -ρ 1 (39)
Then, we replace ρ 1 and τ 1 with their expressions given by Eqs. ( 31) and [START_REF] Nyström | High Resolution Analysis of Halftone Prints : A Colorimetric and Multispectral Study[END_REF], respectively, and obtain:

ρ i = (1 + T 1 ) R i (1 + T 1 ) -R 1 T 1 (1 + T 1 ) 2 -R 2 1 + R 1 R i (1 + T 1 ) -R i (40) 
Finally, according to Eqs. ( 31), ( 37) and ( 40), the average number of internal reflections n i expressed in terms of the measured reflectance and transmittance of the paper printed with primary i can be written:

n i = 1 + 2R 1 R i (1 + T 1 ) -R 1 T 1 (1 + T 1 ) 2 -R 2 1 ( 41 
)
We recall that the transfer factors R 1 , R i and T 1 , thereby parameters n 1 and n i , depend on wavelength. We notice that n i depends only on the reflectance R 1 and the transmittance T 1 of the paper as well as on the back-side reflectance of the primaries R i which is the measured reflectance of the unprinted side of the paper, the other side being printed with fulltone primary i. One also remarks that the use of transfer matrices is not necessary to justify the formulas of the MPD-YN model since these latter have been deduced from the Kubelka formulas [see Eqs. ( 29), ( 30) and (38)] and their inversion [see Eqs. ( 31), ( 32) and (39)]. However, we will see in Section 6 that the transfer matrix approach will be very useful for the predictions of recto-verso halftone color prints.

In the case of an opaque paper, the influence of the solid primary ink layer on the back-side reflectance R i is quite negligeable. This latter is therefore similar to the reflectance R 1 of the unprinted paper. It follows that the average numbers of internal reflections n i are identical for all the primaries and equal to n 1 . Thus, according to ( 23) and ( 24), the reflectance factor of the halftone print can be written:

R = (1 -a i ) R 1/n 1 1 + a i R 1/n 1 i n 1 (42)
where n 1 is given by Eq. (33).

We retrieve the formula of the Yule-Nielsen model where the n parameter here is a spectral parameter calculated from the measured transfer factors R 1 and T 1 of the unprinted paper. In this case, the calibration of the MPD-YN model for reflectance predictions requires the same number of measurements as for the Yule-Nielsen model, namely the front-side reflectance factors R i of all the solid Neugebauer primaries, to which is added the measurement of the transmittance T 1 of the unprinted paper, necessary to calculate the number of internal reflections n 1 according to Eq. (33). In order to visualize the spectral values taken by the average numbers of internal reflections in the case of real prints, we printed a halftone of magenta ink with a nominal surface coverage of 0.5 on symmetrical, supercalendered, nonfluorescent paper APCO. Figure 5-a represents the average number of internal reflections undergone by light within the blank support (n 1 ), within the solid magenta print (n 3 ) and within the halftone print (n). The average number values, calculated using the formula [START_REF] Viggiano | Physical significance of negative Yule-Nielsen nvalue[END_REF], are around 4. Their variation according to the wavelength of light is noticeable, but similar variations are observed from one sample to another one. The solid curve, associated with the solid ink, is located beneath the dashed curve, associated with the halftone: we logically deduce that the light is less reflected as the ink layer is more absorbing. Figure 6 represents the average number of internal reflections undergone by light within APCO paper printed with each of the eight solid Neugebauer primaries.

R 1 R 1 T 1 T 1 R i R' i T' i T i
The spectral reflectance of the halftone print is calculated (see Fig. 5-b) using Eq. ( 24). The root mean square deviation rms and the CIELAB ∆E 94 color difference between the predicted and measured spectra are respectively 0.004 and 0.30. With the Yule-Nielsen model, these values are equal to 0.003 and 0.17 respectively, with a fitted value n = 2.6 and an effective surface coverage a 3 = 0.54. In this example, the predictions are good whatever the model is: in both cases the color difference is clearly lower than 1. However, we notice the advantage of the MPD-YN model for which the terms n 1 and n 3 are calculated thanks to Eqs. ( 33) and (41) respectively, in contrast with the parameter n of the Yule-Nielsen model which is fitted so as to minimize the differences between predicted and measured spectra.

The MPD-YN model is not limited to predictions for singleink halftone colors: Eq. ( 24) can be generalized to halftone prints involving the eight Neugebauer primaries with any coverage a i ; in this case the front-side reflectance factors is written:

R = 8 ∑ i=1 a i R 1/n i i n (43) with 8 ∑ i=1 a i = 1, (44) n = 8 ∑ i=1 a i n i (45)
and n i is given by Eq. ( 41).

Even if the back-side reflectance, R (on the unprinted side) is not interesting in the case of a single-sided halftone print, it can also be predicted thanks to the following formulas:

R = 8 ∑ i=1 a i R 1/n i i n (46)
where R i is the back-side reflectance measured on the singlesided print with the solid Neugebauer primary i; the spectral terms n i and n are given by the formulas (41) and (45) respectively.

MPD-YN MODEL IN TRANSMITTANCE MODE

Regarding the transmittance of the print, the average number of internal reflections is equal to the one calculated for the reflectance, minus 1 (see Fig. 7). By following similar line of reasonning as for the reflectance, we can express the transmittance T j (j = 1 in the case of paper without ink or j = i in the case of a solid primary i) as the result of n j -1 events of factor T 1/(n j -1) j :

T j = T 1/(n j -1) j n j -1 (47)
The transmittance T of the halftone print considered above results from n successive attenuations of the light, each of factor t, such as:

T = t n (48) with t = (1 -a i ) T 1/(n 1 -1) 1 
+ a i T 1/(n i -1) i (49) 
and

n = (1 -a i ) (n 1 -1) + a i (n i -1) (50) 
where n 1 and n i are given by Eqs. ( 33) and ( 41) respectively. We thus obtain:

T = (1 -a i ) T 1/(n 1 -1) 1 
+ a i T 1/(n i -1) i (1-a i )n 1 +a i n i -1 (51) 
Like the reflectance model, Eq. ( 51) can be generalized to halftone prints involving the eight Neugebauer primaries with any coverage a i ; in this case, the forward transmittance factors is written:

T = 8 ∑ i=1 a i T 1/(n i -1) i n-1 (52)
where n i and n are given by Eqs. ( 41) and ( 45) respectively.

The forward transmittance T (identical to the backward transmittance, more or less measurement error) can also be predicted thanks to the following Eq.: 

T = 8 ∑ i=1 a i T 1/(n i -1) i n-1 (53)
where T i is the forward transmittance measured on the singlesided print with the solid Neugebauer primary i.

EXTENSION TO DUPLEX HALFTONE PRINTS

As for the Yule-Nielsen model, extended to double-sided prints in Ref. [START_REF] Hébert | Yule-Nielsen based recto-verso color halftone transmittance prediction model[END_REF], we propose a version of the MPD-YN model able to predict the reflectance and spectral transmittance factors of prints with halftone colors on their two sides. The prediction method is in two steps: in the first step, the halftone colors printed on the recto and verso sides are both considered as printed on the recto on different areas of the paper sheet, the verso being unprinted; the transfer factors of these two colors patches are predicted and a transfer matrix is attached to each one. In a second step, the two transfer matrices are combined and we can deduce the transfer factors of the paper printed with these two colors printed one on the recto side, the other on the verso side.

Let us present these two steps in detail. In the first step, we denote as A the color on the front side (recto) and B the one on the back side (verso). We consider these two colors printed on the recto side. The transfer factors R A , R A , T A and T A of the color patch A and the ones R B , R B , T B and T B of the color patch B are predicted thanks to the model presented in the previous section [see Eqs. (43), (45), (46), (52) and ( 53)]. The transfer matrix representing the color patch A (see Fig. 8-b) is:

M A = 1 T A   1 -R A R A T A T A -R A R A   (54) 
Regarding the color patch B, we now consider that it is printed on the verso side (the recto being unprinted); it is represented by the following transfert matrix M B (see Fig. 8-c) where the front-side and back-side reflectances, and the forward and backward transmittances, are mutually exchanged compared to their respective arrangement in M A :

M B = 1 T B   1 -R B R B T B T B -R B R B   (55) 
The spectral measurements of the transfer factors R 1 and T 1 of the unprinted paper (see Fig. 8-a) are used to build the transfer matrix M 11 given by Eq. [START_REF] Rogers | Effect of light scatter on halftone color[END_REF].

The second step is the combination of the matrices M 11 , M A and M B in order to obtain the transfer matrix of the recto-verso print with the color A on the recto side and the color B on the verso side. For this purpose, we decompose each of the three samples: unprinted paper, color patch A (recto side) and color patch B (verso side), into two half-layers as shown in Fig. 8. In the unprinted paper (matrix M 11 ), the two half-layers are similar and represented by the transfer matrix M 1/2 11 . The color patch A is made of the half-layer with color A (matrix P A to be determined) on top of an unprinted half-layer (matrix M 1/2 11 ). Since we have

M A = P A .M 1/2 11 , (56) 
the transfer matrix representing the upper half-layer is therefore

P A = M A .M -1/2 11 . (57) 
The color patch B is decomposed into an unprinted half-layer (matrix M 1/2 11 ) on top of an half-layer with color B. The transfer matrix representing this latter is:

P B = M -1/2 11 .M B . (58) 
Finally, if the paper is printed with the color A on the recto side and the color B on the verso side, we can reasonnably assume that it can be decomposed into the half-layer with the color A, represented by the matrix P A , on top of the half-layer with color B, represented by the matrix P B (see Fig. 8-d). Hence, the transfer matrix of the recto-verso print is given by:

M AB = M A .M -1 11 .M B (59) 
The transfer factors R AB , R AB , T AB and T AB of the rectoverso halftone print can be deduced from the formulas (6) to ( 9) applied to the matrix M AB . After computation, one obtains:

R AB = R A - R 1 -R B T A T A T 2 1 -R 1 -R A R 1 -R B (60) 
T AB = T 1 T A T B T 2 1 -R 1 -R A R 1 -R B (61) 
R AB = R B - R 1 -R A T B T B T 2 1 -R 1 -R A R 1 -R B (62) 
T AB = T 1 T A T B T 2 1 -R 1 -R A R 1 -R B (63) 

CALIBRATION

The calibration of the Mean-Path-Defined Yule-Nielsen model for recto-verso halftone color prints in reflectance mode needs the measurements of the front-side reflectances R i and back-side reflectances R i of all the Neugebauer primaries, and the transmittance of the unprinted paper T 1 . In transmittance mode, the forward transmittances T i and backward transmittances T i of all Neugebauer primaries must be added. Note that for reflectance predictions of halftone colors printed on one side of an opaque paper sheet, the MPD-YN model needs the measurements of the front-side reflectances R i for all Neugebauer primaries and the transmittance of the unprinted paper T 1 , namely one more measurement than for the calibration of the Yule-Nielsen model. Moreover, in the case of halftone prints, it is known that the problem of dot gain needs additionnal measurements, in reflectance mode if one wants to predict reflectances, and/or transmittance mode if one wants to predict transmittances. At printing time, the inks spread on the substrate in a more or less pronounced way according to the physicochemical and mechanical properties of the materials. This phenomenon of spreading is called "mechanical dot gain". The combined effects of optical dot gain (Yule-Nielsen effect) and mechanical dot gain imply that actual coverages, called "effective coverages", are different from the coverages defined in the digital layout, called "nominal coverages". The effective coverages are the input parameters of the color prediction models but they are difficult to measure independently of the models, despite attempts using heavy methods to implement such as microscopic image analysis coupled with a model of optical dot gain [START_REF] Ukishima | Prediction and evaluation of color halftone print quality based on microscopic measurement[END_REF][START_REF] Rahaman | Microscale halftone color image analysis: perspective of spectral color prediction modeling[END_REF][START_REF] Nyström | High Resolution Analysis of Halftone Prints : A Colorimetric and Multispectral Study[END_REF]. An alternative to these methods is to make an assessment of the effective coverages using a macroscopic method that combines measurements of the transfer factors of 36 halftone samples and the use of the model itself [START_REF] Hersch | Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions[END_REF]. We propose to present in detail this method. The general principle of the method is to build correction curves relating the nominal and effective coverages of cyan, magenta and yellow inks, taking into account that the spreading of a given ink can be done in a different way on paper, depending on whether the latter is non-inked or printed with a solid Neugebauer primary composed with the other two inks. First, a set of 36 halftone color samples, shown in Fig. 9, is printed on one side of the symmetric paper sheet. These samples correspond to all the possible combinations of a given ink u of nominal coverage a equal to 0.25, 0.50 or 0.75, and a solid primary v obtained with the inks other than u. For example, for cyan ink, the 12 halftone colors (cmj), represented in Table 1, are obtained.
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There are also 12 samples for magenta and 12 samples for yellow. Each of these halftone colors contains two primaries which correspond to areas where the primary v is alone and areas where the ink u is superposed on the primary v to obtain the primary u + v. We denote by x the effective coverage of the primary u + v. We measure the spectral reflectance R u/v (λ) the theoretical reflectance and theoretical transmittance associated with this color and calculated using a color prediction model. The effective coverage is the value that minimizes the CIELAB ∆E 94 color distance between the measured spectrum and the spectrum predicted by the considered model when the parameter x varies between 0 and 1. We then obtain a value ã(R) u/v for the effective coverage in reflectance mode:

ã(R) u/v = argmin 0≤x≤1 ∆E 94 R (m) u/v (λ) , R (x) u/v (λ) ( 64 
)
and generally a different value ã(T) u/v in transmittance mode [START_REF] Mazauric | Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints[END_REF]: Thus, for each couple ink u, primary v, one obtain three effective coverages corresponding to the three nominal coverages 0.25, 0.50 and 0.75. By linear interpolation, one creates a function f u/v , also called ink spreading curve [START_REF] Hersch | Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions[END_REF], establishing the correspondance between the nominal and effective surface coverages. More precisely, f u/v (a) gives the effective coverage of the ink u on the primary v for any nominal coverage a. Considering the 36 calibration samples, one obtains a set of four spreading curves for each ink, therefore a total of 12 spreading curves for one given mode (reflectance or transmittance).

ã(T) u/v = argmin 0≤x≤1 ∆E 94 T (m) u/v (λ) , T (x) u/v (λ) (65 
Once the spreading curves in reflexion mode (or transmission mode) have been obtained, it is then possible to predict the spectral reflectance (respectively, transmittance) of any halftone color printed with the inks and paper used for the calibration. More precisely, if we consider a halftone color whose nominal coverages of cyan, magenta and yellow inks are denoted c 0 , m 0 and y 0 respectively, then the latter are converted to effective coverages c, m and y by performing a few iterations on the following three equations:

c = (1 -m) (1 -y) f c/w (c 0 ) + m (1 -y) f c/m (c 0 ) + (1 -m) y f c/y (c 0 ) + my f c/m+y (c 0 ) m = (1 -c) (1 -y) f m/w (m 0 ) + c (1 -y) f m/c (m 0 ) + (1 -c) y f m/y (m 0 ) + cy f m/c+y (m 0 ) y = (1 -c) (1 -m) f y/w (y 0 ) + c (1 -m) f y/c (y 0 ) + (1 -c) m f y/m (y 0 ) + cm f y/c+m (y 0 ) (66)
The effective coverages of the three inks are obtained by calculating the average of their four spreading curves, weighted by the coverages of the primaries over which these halftone inks overlap: for example, the weight associated with the curve of cyan ink on the red primary (i.e. f c/m+y ) is equal to the coverage of the red primary, that is to say my. At the first iteration, the initial values to the right of the equations (66) are c = c 0 , m = m 0 and y = y 0 , the values of c, m and y obtained on the left are then plotted in right-hand side of the equations (66) which give new values of c, m and y, and so on, until the values of c, m and y stabilize. These last values are then plotted in the Demichel equations (1) in order to obtain the effective coverages a i , i = 1, ..., 8 of the eight Neugebauer primaries.

PREDICTION ACCURACY

We tested the performance of the Mean-Path-Defined Yule-Nielsen model for the reflectance prediction of 81 color samples printed on one side of an APCO paper sheet (symmetrical, supercalendered and non-fluorescent), the other side being unprinted, with a classical rotated cluster halftoning at 120 lpi, with ink densities of 0.72 for cyan, 0.58 for magenta and 0.82 for yellow. The assessment of the mechanical dot gain was established by using the optimization formulas (64) and (65) applied to the 36 calibration samples (see Section 7) printed on the same sheet of paper as the 81 test samples. The reflectance factor of each sample is measured with the X-rite Color i7 spectrophotometer with a geometry d:8°. It is assumed that APCO paper is opaque enough to use Eq. (42) for predicting the spectral reflectance factors of the 81 color samples, randomly selected, exclusing the halftone colors used for the calibration of the model. The transmittance factor T 1 of the unprinted paper, involved in the calculation of the average number of internal reflection n 1 [see Eq. (33)], is measured with a geometry d:0°. The precision of the predictions is evaluated (see Table 2) by calculating the average of the root mean square (rms) spectral differences and the average of the CIELAB ∆E 94 color distances, over the 81 test samples, between predicted and measured spectra. We also write into brackets the 95th percentile of the CIELAB ∆E 94 distances (Q95). The results obtained with the MPD-YN model are compared with the ones obtained with the Yule-Nielsen model, whose ink surface coverages and n value have been calibrated independently of the MPD-YN model: the constant n value, fitted from the 36 calibration samples, was 4.5 for the prediction of the reflectance factors. Good accuracy have been observed for both the MPD-YN model and the Yule-Nielsen model: the mean square deviations are less than one percent and the colorimetric deviations are less than 1. However, even though equivalent performances are observed, the drawback with the Yule-Nielsen model is that the value of the n parameter must be fitted before allowing predictions. Recall that the MPD-YN model computes one spectal n value for each halftone color. One example of spectral n value is displayed in Figure 5, corresponding to the magenta 50 % halftone patch, printed with the same setup and materials than the set of halftone colors tested in this experiment. We also tested the performance of the MPD-YN model on 36 different duplex halftone color samples printed on APCO paper with a classical rotated cluster halftoning at 120 lpi, with ink densities of 0.60 for cyan, 0.45 for magenta and 0.55 for yellow. The precision of the predictions is presented in Table 3. The results obtained with the MPD-YN model are compared with those obtained with the Yule-Nielsen model with the parameter n = 2.3 for the predictions of the reflectance factors and n = 1.6 for the predictions of the transmittance factors (these two nvalues, rather low as expected in case of low ink densities [START_REF] Hébert | Review of spectral reflectance prediction models for halftone prints: calibration, prediction and performance[END_REF], were fitted using the 36 calibration samples). We observe good accuracy for both the MPD-YN model and the Yule-Nielsen model: the mean square deviations are less than one percent and the colorimetric deviations are less than 1.

Finally, we tested the performance of the MPD-YN model on 78 duplex halftone samples printed on office paper with a classical rotated cluster halftoning at 150 lpi. The results, shown in Table 4, are a little bit less accurate than the ones obtained with APCO paper but they are similar for both MPD-YN and Yule-Nielsen models with mean square deviations lower than 1.5 percent and colorimetric deviations lower than 1.5 in average. 

CONCLUSION

We have introduced a surface model, called MPD-YN model, allowing the predictions of the spectral reflectances and transmittances of single-sided and duplex halftone prints, and whose formulation is close to the one of the Yule-Nielsen model. This model describes the optical dot gain by introducing into the Neugebauer formula spectral terms related to the concept of average number of internal reflections between two half-layers.

The advantage of the MPD-YN model is that these terms, wavelength-dependent and different for each halfone, are calculated from the measured transfer factors (reflectances, transmittances) of the solid Neugebauer primaries printed on the paper; they are not free parameters, in contrast with the n parameter of the Yule-Nielsen model which is fitted during the calibration phase by minimizing the differences between the predicted and measured spectra on a certain number of samples. The replacement of the free n parameter by this computed parameter has been possible thanks to the spectral information carried by the transmittance of the solid primary patches, measured in addition to the spectral reflectances. The spectral n parameter in the MPD-YN model is mainly related to the optical properties of the paper (scattering and absorption). When the paper is opaque enough so that the inks printed on the recto-side are not visible on the verso side, the back-side reflectances of the paper printed with the solid primaries are similar and the n parameter depends only on the spectral reflectance and transmittance of the unprinted paper. In the general case, through the back reflectances of the solid primary patches, the n parameter can render the effects of the paper's translucency or the fact that its optical properties are modified when the inks penetrate into it. The predictions given by the MPD-YN model are as accurate as the ones given by the Yule-Nielsen model (Yule-Nielsen modified spectral Neugebauer model).

Fig. 1 .

 1 Fig. 1. Flux transfers between two planar components (arrows do not render orientation of light).

Fig. 3 .

 3 Fig. 3. Internal reflections undergone by light before being reflected in the case of (a) an unprinted paper, (b) a printed paper with a solid primary layer and (c) a halftone print.

Fig. 4 .Fig. 5 .

 45 Fig. 4. Separation of the print, (a) without ink and (b) with solid primary, into two half-layers.

Fig. 6 .

 6 Fig. 6. Spectral values of the average numbers of internal reflections within a symmetrical paper sheet printed with each of the eight solid Neugebauer primaries.

Fig. 7 .

 7 Fig. 7. Internal reflections undergone by light before being transmitted in the case of (a) an unprinted paper, (b) a printed paper with a solid primary layer and (c) a halftone print.

Fig. 8 .

 8 Fig. 8. Modeling a duplex halftone print (d) from two singlesided halftone prints (b) and (c), and the unprinted paper (a).

Table 1 .

 1 List of halftone colors used to estimate the mechanical dot gain of the cyan ink. cyan/white (0.25 -0 -0) (0.50 -0 -0) (0.75 -0 -0) cyan/magenta (0.25 -1 -0) (0.50 -1 -0) (0.75 -1 -0) cyan/yellow (0.25 -0 -1) (0.50 -0 -1) (0.75 -0 -1) cyan/red (0.25 -1 -1) (0.50 -1 -1) (0.75 -1 -1) and the spectral transmittance T (m) u/v (λ) of this halftone color. We denote by R (x) u/v (λ) and T(x)

Fig. 9 .

 9 Fig. 9. Color samples for calibration of halftone color prediction models (the three values at the right of each color squares are respectively the c, m and y values).

Table 2 . Prediction accuracy of the MPD-YN and Yule- Nielsen models on 81 halftone colors printed on one side of an APCO paper sheet with the Canon Pro9500 inkjet printer.

 2 ∆E 94 (Q95) * Yule-Nielsen 0.006 -0.49 (1.10) * average of rms -average of ∆E 94 (95 th percentile)

	Model	Reflectance
	MPD-YN	0.006 -0.53 (1.18)

rms -

Table 3 . Prediction accuracy of the MPD-YN and Yule- Nielsen models on 36 duplex halftone colors printed on an APCO paper sheet with the Canon Pro9500 inkjet printer.

 3 ∆E 94 (Q95) * -0.76 (1.58) 0.001 -0.94 (1.49) Yule-Nielsen 0.007 -0.70 (1.36) 0.002 -0.94 (1.39) * average of rms -average of ∆E 94 (95 th percentile)

	Model	Reflectance	Transmittance
	MPD-YN	0.007	

rms -

Table 4 . Prediction accuracy of the MPD-YN and Yule- Nielsen models on 78 duplex halftone colors printed on an office paper sheet with the Canon Pro9500 inkjet printer.

 4 ∆E 94 (Q95) * -1.27 (2.77) 0.004 -1.17 (2.14) Yule-Nielsen 0.013 -1.16 (3.11) 0.003 -1.33 (2.05) * average of rms -average of ∆E 94 (95 th percentile)

	Model	Reflectance	Transmittance
	MPD-YN	0.012	

rms -