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Chaos-based potentials are defined and implemented in the onedimensional tight-binding model as a way of simulating disorder-controlled crystalline lattices. In this setting, disorder is handled with the aid of the chaoticity parameter. The inverse participation ratio (IP R) probes the response of the system to three different such potentials and shows consistent agreement with results given by the Lyapunov exponent Ly: the greater Ly(r) for the chaotic sequence as a function of the chaoticity parameter r, the greater the asymptotic value IP R(r) for the large-system ground state.

Introduction

Growing crystalline structures and new materials which would show previously desired properties -or avoid undesired ones -is a long-standing task. As a particular characteristic, disorder is an inherent and mostly uncontrolled feature of natural materials. It is acceptedly one of the main responsible facts for resistivity, be it electrical, thermal, or signal resistivity; and its very notion is based on the randomness of its occurrence. Contrary to common sense, controlled disorder can be made an interesting property, although perhaps difficult to achieve. The advent of quasicrystals made a notable step towards disorder control, due to the possibility of using binary substitution sequences to guide deposition-based crystalline growth. Although disorder was not fully controlled, it could be classified as an ascending feature for different quasicrystals, i.e., different substitution sequences. Remarkably, the early and well-known chaotic maps can give rise to binary sequences where the disorder is controlled by their chaoticity parameter and even measured by their associated Lyapunov exponent. Here, such chaos-based sequences are constructed from three known maps -logistic, tent, and Gaussian maps -and used as potentials in the one-dimensional Schrödinger equation. It is seen that a system simulated in this way not only responds unambiguously to more or less disorder in the potential but also allows for a disorder control in an experimental realization.

The remainder of this article is organized as follows. Section 2 states the main ideas, scope, and objectives of this work. In section 3, there appear the necessary definitions and model. Section 4 brings results and comments. In section 5, we discuss the consistency of our proposals in comparison with results known for disordered potentials. A short section 6 concludes this article.

Theory

Aperiodic sequences of different types have recently been used to simulate disordered one-dimensional crystalline structures, as potentials entering the Schrödinger equation. One of the main purposes of this effort is to simulate the physics of quasicrystals, which can be viewed as intermediate systems between the well-understood cases of periodic and disordered lattices. The latter ones are fairly well described by Bloch theorem and Anderson localization phenomenon respectively. In the case of periodic potentials, the eigensolutions of the Schrödinger operator can be chosen to exhibit periodic absolute values [START_REF] Ashcroft | Solid State Physics[END_REF], thus providing good conducting properties. At the other extreme, one-dimensional disordered potentials afford localized probability densities and, in this way, insulating properties [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF].

In the context of one-dimensional systems, quasicrystal issues have been addressed by using almost-periodic substitution sequences to mimic the ordering of the atoms in a crystalline lattice [START_REF]QUASICRYSTALS: The State of the Art[END_REF][START_REF]Beyond Quasicrystals[END_REF]. Substitution sequences and the properties of the Scrödinger operator have been extensively studied both from the theoretical [START_REF] Queffélec | Substitution Dynamical Systems -Spectral Analysis[END_REF][START_REF] Luck | Cantor spectra and scaling of gap widths in deterministic aperiodic systems[END_REF][START_REF] Dulea | Trace-map invariant and zeroenergy states of the tight-binding Rudin-Shapiro model[END_REF][START_REF] Ryu | Extended and critical wave functions in a Thue-Morse chain[END_REF][START_REF] Dulea | Unusual scaling of the spectrum in a deterministic aperiodic tight-bindind model[END_REF][START_REF] Oh | Band-structural and Fourier-spectral properties of one-dimensional generalized Fibonacci lattices[END_REF][START_REF] Piéchon | Analytical results for scaling properties of the spectrum of the Fibonacci chain[END_REF][START_REF] Oliveira | Quantum return probability for substitution potentials[END_REF] and the experimental [START_REF] Merlin | Quasiperiodic GaAs-AlAs Heterostructures[END_REF][START_REF] Todd | Synchrotron X-Ray Study of a Fibonacci Superlattice[END_REF][START_REF] Axel | High-Resolution X-Ray-Diffraction Spectra of Thue-Morse GaAs-AlAs Heterostructures: Towards a Novel Description of Disorder[END_REF][START_REF] Mizoguchi | Observation of coherent acoustic phonons in Fibonacci superlattices[END_REF] points of view. Some examples of these sequences are the early Fibonacci substitution sequence, as well as Thue-Morse, perioddoubling, paper-folding, Rudin-Shapiro sequences, and others [START_REF]Beyond Quasicrystals[END_REF]. The main interests in these studies are the physical transport properties [START_REF] Dulea | Localization of electrons and electromagnetic waves in a deterministic aperiodic system[END_REF][START_REF] Iochum | Resistance of one-dimensional quasicrystals[END_REF][START_REF] Ryu | Electronic properties of a tight-binding and a Kronig-Penney model of the Thue-Morse chain[END_REF][START_REF] Roy | Landauer resistance of Thue-Morse and Fibonacci lattices and some related issues[END_REF][START_REF] Katsanos | Quantum electron dynamics in periodic and aperiodic sequences[END_REF][START_REF] Roy | A study of Landauer resistance and related issues of the generalized Thue-Morse lattice[END_REF][START_REF] Piéchon | Anomalous diffusion properties of wave packets on quasiperiodic chains[END_REF][START_REF] Roche | Conductivity of quasiperiodic systems: A numerical study[END_REF][START_REF] Salejda | The Landauer conductance of generalised Fibonacci superlattices[END_REF][START_REF] Pellegrino | Persistent current and Drude weight in onedimensional rings with substitution potentials[END_REF] and the mathematical spectral types [START_REF] Queffélec | Substitution Dynamical Systems -Spectral Analysis[END_REF][START_REF] Bovier | Remarks on the spectral properties of tightbindind and Kronig-Penney models with substitution sequences[END_REF][START_REF] Allouche | Schrödinger operators with Rudin-Shapiro potentials are not palindromic[END_REF] of the corresponding Schrödinger operators.

The almost-periodic sequences cited above have no definite period and appear as intermediate cases between periodic and disordered structures. Although these substitution sequences could be classified in a hierarchy of ascending disorder [START_REF] Pellegrino | Persistent current and Drude weight in onedimensional rings with substitution potentials[END_REF][START_REF] Steuer | Entropy and optimal partition for data analysis[END_REF][START_REF] Gong | A measurement of disorder in binary sequences[END_REF], this is a static classification, since each sequence is generated by a fixed iteration rule. It would be greatly desirable both for the physical and mathematical possibilities to have a variable disorder, eventually controlled by a continuous variation of a parameter. This is the main purpose of this article. We start exploring here the properties of the Schrödinger operator triggered by a new type of possibly disorder-controlled potential, which will be based on iteration maps appearing in Chaos Theory [START_REF] Hilborn | Chaos and Nonlinear Dynamics -An Introduction for Scientists and Engineers[END_REF] (hereafter called chaotic potentials) 1 . As it is well known those maps are not periodic in the chaotic region, and chaoticity can be controlled by a continuous parameter r and measured by a Lyapunov exponent [START_REF] Hilborn | Chaos and Nonlinear Dynamics -An Introduction for Scientists and Engineers[END_REF].

To that end, our main probing tool will be the Inverse Participation Ratio (IP R) of a given eigenvector of the Schrödinger operator. This ratio is a real number defined and used in Solid State Theory to characterize localizationdelocalization transitions and their consequences to the transport properties [START_REF] Evers | Fluctuations of the Inverse Participation Ratio at the Anderson Transition[END_REF][START_REF] Ludlam | Localisation of the Vibrations of Amorphous Materials[END_REF][START_REF] Monthus | Anderson localization of phonons in dimension d = 1, 2, 3: Finite properties of the inverse participation ratios of eigenstates[END_REF][START_REF] Murphy | Generalized inverse participation ratio as a possible measure of localization for interacting systems[END_REF]. It will be seen that IP R for the ground-state eigenvector, as a function of the chaoticity parameter, shows very good agreement with the structure of chaotic regions and periodicity windows characteristic of these chaotic maps. In this way, one could seek to control the effects of the disorder in the potential sequence appearing in the Schrödinger operator just by varying the chaoticity parameter.

3 Definitions and model

The tight-binding model

We consider here the time-independent Schrödinger operator in the tightbinding approximation

(Hψ) n = ψ n+1 + ψ n-1 + V n ψ n , (1) 
where one assumes the potential V , created by a lattice of atoms placed at positions n, to be concentrated in the regions close to the atoms, being negligible in the regions between them [START_REF] Ashcroft | Solid State Physics[END_REF][START_REF] Oliveira | Quantum return probability for substitution potentials[END_REF]. In this approximation, the eigenfunctions are given by the values ψ n at sites n, when subjected to a potential with values V n . In this model, one easily switches different potentials just by choosing appropriate sequences of real numbers {V n } ∞ n=1 .

Chaotic sequences and potentials

The sequences to be used as potentials in eq. ( 1) will be obtained from three iteration maps w n+1 = f r (w n ) commonly encountered in Chaos Theory [START_REF] Hilborn | Chaos and Nonlinear Dynamics -An Introduction for Scientists and Engineers[END_REF], namely

• the logistic map

w n+1 = rw n (1 -w n ) r ∈ [3.4, 4.0] (2) 
• the tent map

w n+1 = r 1 -2 w n - 1 2 r ∈ [0.4, 1.0] (3) 
• the Gaussian map

w n+1 = e -bwn 2 + r r ∈ [-1, 0.1] (4) 
In all these maps, r is a continuous parameter which controls in a sense the chaoticity of the map. In the expressions above, the intervals are chosen to cover the regions of chaos and periodicity of the maps. For the sake of the point we want to make, plots for these maps will appear in the next section along with our results. It suffices to state here that, for r in the chaotic regions, these sequences neither have definite period nor are completely random, once they are constructed with fixed rules. Chaoticity, which will give us the desired disorder, is incremented by going deeper into the chaotic region and is measured by the corresponding Lyapunov exponent [START_REF] Hilborn | Chaos and Nonlinear Dynamics -An Introduction for Scientists and Engineers[END_REF] 

Ly (r) = 1 N N n=1 ln f r (w n ) . (5) 
In order to allow an easier comparison with results found in the literature for almost-periodic substitution potentials, and also to set an experimental perspective based on crystal growing [START_REF] Axel | High-Resolution X-Ray-Diffraction Spectra of Thue-Morse GaAs-AlAs Heterostructures: Towards a Novel Description of Disorder[END_REF], we take here binary chaotic potentials as given by

• V n = 1 if w n ≤ 0.5 and V n = 2 if w n > 0.
5 in the cases of logistic and tent maps;

• V n = 1 if w n ≤ 0 and V n = 2 if w n > 0 in the case of the Gaussian map.
The Lyapunov exponent, as given by eq. ( 5), is not directly applicable to these binary sequences [START_REF] Steuer | Entropy and optimal partition for data analysis[END_REF][START_REF] Gong | A measurement of disorder in binary sequences[END_REF]. It is, however, remarkable the fact that the Inverse Participation Ratio, to be defined in the following, captures indeed the features of that exponent even after the transposition to the corresponding binary sequence. Details of this accordance will be seen in the next section.

Inverse Participation Ratio

Perhaps the most conspicuous effect of a one-dimensional random potential is the localization of the wavefunctions, solutions of the Schrödinger equation, within finite regions in space [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Kramer | Localization: theory and experiment[END_REF]. At the other extreme, periodic potentials give rise to wavefunctions which are extended over the lattice [START_REF] Ashcroft | Solid State Physics[END_REF]. The Inverse Participation Ratio of a given wavefunction, defined as a function of the system size N by

IP R (N ) =        N n=1 |ψ n | 4 N n=1 |ψ n | 2 2        -1 , (6) 
reflects the regions where the wavefunction has appreciable amplitudes and, therefore, its distribution over the lattice [START_REF] Evers | Fluctuations of the Inverse Participation Ratio at the Anderson Transition[END_REF][START_REF] Ludlam | Localisation of the Vibrations of Amorphous Materials[END_REF][START_REF] Monthus | Anderson localization of phonons in dimension d = 1, 2, 3: Finite properties of the inverse participation ratios of eigenstates[END_REF][START_REF] Murphy | Generalized inverse participation ratio as a possible measure of localization for interacting systems[END_REF]. In this way, one can verify that IP R(N ) tends to zero as 1/N for large enough system sizes N in the case of periodic potentials. For the random case, IP R(N ) attends a constant value k > 0 as N goes to infinity [START_REF] Ludlam | Localisation of the Vibrations of Amorphous Materials[END_REF][START_REF] Monthus | Anderson localization of phonons in dimension d = 1, 2, 3: Finite properties of the inverse participation ratios of eigenstates[END_REF]. Aperiodic potentials, such as the almost-periodic substitution potentials, are expected to fall between these extreme cases [START_REF] Oliveira | Characterization of spectrum and eigenvectors of the Schrödinger operator with chaotic potentials[END_REF]. The large-N values of IP R(N ) could, therefore, probe the effect of a greater or smaller disorder in the potentials; the higher the asymptotic value of IP R(N ), the greater the disorder of the potential. Here we take the eigenvector associated with the lowest energy eigenvalue for the Schrödinger operator and calculate its large-N value for IP R. This asymptotic value, being a function of the parameter r, will be denoted here simply IP R(r). This will be our probing tool in order to see whether chaotic potentials, as defined here, could provide a way in which disorder is implemented in a more controlled procedure, as compared to other known aperiodic potentials.

Results

In Figures 123we show in plots (a) the original chaotic maps for different values of r, prior to the conversion into binary sequences. In plots (b) there appear the Lyapunov exponents for the original sequences and the average asymptotic large-N values IP R(r) for the corresponding binary sequences. In all these plots, we use sequences of size N = 1000 and in the calculation of IP R(r) we take averages over the results for 500 realizations of the sequences with different initial seeds w 0 .

In plots (a) we see the characteristic features of these chaotic maps, with regions of chaos and, eventually, windows of periodicity. We have chosen these three maps due to their different routes to chaos. The logistic map undergoes a sequence of period-doublings for its fixed points until entering a region of chaos at r ≈ 3.6. This chaotic behavior is observed up to r = 4.0, with periodicity windows appearing at precise values of r. For the tent map, the behavior is quite different, the sequence entering directly the chaotic region without passing a period-doubling transition. Finally, for the Gaussian map, we see the period-doubling transition to chaos, as in the case of the logistic map, but also a period-undoubling transition back to periodicity. The corresponding plots in (b) show that IP R(r) accompanies this structure, with positive values for r in the chaotic regions and vanishing values for r in the periodicity windows.

This agreement is in fact remarkably emphasized by the comparison between IP R(r) and the Lyapunov exponent Ly(r), both shown in plots (b). Expression (5) yields corresponding forms for the Lyapunov exponents • for the logistic map

Ly (r) = 1 N N n=1 ln |r (1 -2w n )| (7) 
• for the tent map

Ly (r) = ln |2r| (8) 
• for the Gaussian map In the regions where Ly(r) ≤ 0, IP R(r) vanishes as well, pointing out a periodicity window. On the other hand, Ly(r) is positive in the regions of chaotic behavior, a feature captured by IP R(r). Moreover, one can see that IP R(r) follows on average the increasing-decreasing behavior of Ly(r). A closer look reveals that IP R(r) increases smoothly as the maps undergo the bifurcation process, and drops down abruptly when the maps enter a periodicity window. This behavior can be seen, for example, at r ≈ 3.83 for the logistic map, or at r ≈ -0.4 for the Gaussian map. On the other hand, one observes some abrupt jumps in the IP R curve for the tent map, which are apparently not associated with a particular behavior of the corresponding map. The wavefunction for these values of the chaoticity parameter, however, shows accordingly a more localized distribution. This is suggestive of a consistent estimative, via IP R(r), of the response of the system to the disorder of the potential. In references [START_REF] Pellegrino | Persistent current and Drude weight in onedimensional rings with substitution potentials[END_REF][START_REF] Gong | A measurement of disorder in binary sequences[END_REF] it is pointed out that different approaches in order to produce a hierarchy of disorder for aperiodic sequences frequently end at inconsistent results.

Ly (r) = 1 N N n=1 ln 2bw n e -bw 2 n (9)
We stress the fact that this consistent agreement between Ly(r) and IP R(r) is seen here despite the conversion of the original sequences into binary ones, Ly(r) being directly calculated for the former and IP R(r) being indirectly calculated for the ground state generated by the latter ones. This agreement is found also for the excited states, with the same overall behavior of IP R. In the next section we give more details on this point.

Discussion

Much work on disordered potentials in one-dimensional tight-binding models has been done in the last decades. Since the potentials proposed here are less studied, we compare our results with those ones known for disordered potentials, in order to check for the consistency of IP R as indicative of the effects of randomness.

The correlation between the ratio IP R and the Lyapunov exponent Ly of the sequences which generate these chaotic potentials is clearly seen in Figure 4, where we plot the varying of IP R(r) with Ly(r). In fact, wherever Ly > 0 one has IP R > 0. Also, IP R increases on average with the increase of Ly. For logistic and Gaussian potentials, the many-valued character of IP R is due to the periodicity windows in the original maps, where Ly goes back to negative values and reincreases with the next period-doubling process, followed by IP R which goes back to zero and reincreases jointly. In this respect, the tent map shows a neat single-valued aspect, since there are no periodicity windows above the chaos threshold. In a situation where one would seek controlled disordered, the corresponding tent potential could be a good choice.

For potentials with increasing randomness, the energy-band structure seen for periodic potential is gradually destroyed. It is known that, in this process, the eigenstates associated with band-edge energies are more localized than those associated with band-center energies. This delocalization feature is also captured by the inverse participation ratio, eigenstates with greater IP R being more localized. We verified that this agreement is found for the excited states all along the spectrum, and we illustrate it with the logistic potential in the chaotic region (r = 4). In Fig. 5 we show the inverse participation ratio IP R for all the eigenstates. The central region of the spectrum have on average eigenstates with lower values for IP R. From these results we choose three eigenstates (k = 101, 510, 511), and plot in Fig. 6 the corresponding probability densities |ψ k | 2 over the lattice. It is seen that even small variations of IP R indicate corresponding variations in the localization length of states.

In this work, chaotic maps were intentionally chosen due to their intricate dynamics, which provided the desired disorder, and to the positive Lyapunov exponents in chaotic regions, which provided the desired control. Nonetheless, there is a whole class of systems, so-called strange nonchaotic attractors (SNA) [START_REF] Grebogi | Strange attractors that are not chaotic[END_REF], which present a fractal nature, with complicated dynamics, but for which all the Lyapunov exponents are either zero or negative. It would be interesting to test the behavior of the participation ratio IP R for tight-binding solutions generated by binary sequences built from such attractors. In what follows, as an example, we take the quasiperiodically forced logistic map [START_REF] Heagy | The birth of strange nonchaotic attractors[END_REF][START_REF] Prasad | Intermittency route to strange nonchaotic attractors[END_REF][START_REF] Prasad | Strange nonchaotic attractors[END_REF] given by

w n+1 = r [1 + cos (2πθ n )] w n (1 -w n ) ( 10 
)
θ n+1 = θ n + φ (mod1) , (11) 
where φ is an irrational number (we take the golden mean φ = √ 5 -1 /2), and the usual restriction 0 ≤ r ≤ 4 imposes 0 ≤ ≤ (4/r -1). It was shown that for = r / (4 -r) = 0.95 this system has a SNA behavior in the approximate interval 2.75 ≤ r ≤ 3. For r far below this interval, one has (quasi)periodic dynamics, which becomes more and more complicated as r approaches the SNA region. For r > 3 one has two regions of chaotic behavior separated by a narrow (quasi)periodic region around r ≈ 3.4. In Fig.

Figure 5: Inverse participation ratio of all the eigenstates ψ k for the logistic potential with r = 4.0. In the boxes there appear the choices used in Fig. 6.

7 we can see that the inverse participation ratio IP R(r) signals all these features. We take as an example a center-band delocalized eigenstate, ψ 300 . IP R(r) presents small values for r in the periodic region near r = 2 and attains increasing values as r approaches the SNA region and the dynamics becomes more complicated. Even in the SNA region, where the (largest) Lyapunov exponent Ly

(r) = 1 N N n=1 ln |r [1 + cos (2πθ n )] (1 -2w n )|
oscilates slightly around zero, IP R(r) correctly points the intricateness of the dynamics, with a corresponding localization process of the eigenstate (not shown here). It could be interesting to note that this results corroborates in a sense the choice of chaotic maps as a recipe for controled disorder since, then, the vanishing IP R in periodic regions clearly distinguishes it from the chaos-given disordered behavior with IP R(r) > 0. Finally, we just mention that, although it is known that the strength of the potential influences the localization properties of the eigenstates, the inverse participation ratio consistently keeps the agreement seen in the cases presented here. We have checked this consistency for different values of the potential amplitude V n in the interval [0, 1].

Conclusion

In this work we have proposed the use of new binary sequences, based on three different chaotic maps, as a way of introducing variable-disordered potentials in the Schrödinger operator. We have seen that the large-N value of the Inverse Participation Ratio (IP R(r)) for the ground-state of the Schrödinger operator, as a function of the chaoticity parameter r, correctly indicates the windows of periodicity and the regions of chaos pointed out by the Lyapunov exponents Ly(r). Moreover, we have seen in figures 1-3 (b) that IP R(r) follows the increasing (decreasing) behavior of Ly(r), providing a measure of chaoticity and disorder for the binary sequences, where the Lyapunov exponent is not directly applicable.

Finally, we mention that the techniques of growing superlattices by epi- taxy [START_REF] Axel | High-Resolution X-Ray-Diffraction Spectra of Thue-Morse GaAs-AlAs Heterostructures: Towards a Novel Description of Disorder[END_REF] could in principle be applicable to the chaotic potentials considered in this work. Experimental, and eventually technological, exploration of systems based on these chaotic potentials could then be considered.
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 1 Figure 1: Logistic Map. (a) Bifurcation Diagram for r ∈ [3.4, 4.0]. (b) IP R(r) and Ly(r) multiplied by 0.1 for better viewing.

Figure 2 :

 2 Figure 2: Tent Map. (a) Bifurcation Diagram for r ∈ [0.4, 1.0]. (b) IP R(r) and Ly(r) multiplied by 0.1 for better viewing.

Figure 3 :

 3 Figure 3: Gaussian Map. (a) Bifurcation Diagram for r ∈ [-1.0, -0.1]. (b) IP R(r) and Ly(r) multiplied by 0.1 for better viewing.
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 4 Figure 4: Correlation between Ly and IP R, both obtained as functions of the chaoticity parameter r.
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 6 Figure 6: Logistic Map. Probability density distributions over the lattice sites n for the eigenstates ψ 101 , ψ 510 , and ψ 511 .

Figure 7 :

 7 Figure 7: Forced Logistic Map. IP R(r) and Ly(r) multiplied by 0.1 for better viewing. Dotted guiding lines mark zero for IP R and Ly, and the approximate SNA region.

  

To the best of the authors' knowledge, this was first proposed by C. R. de Oliveira (personal communication,

2002).
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