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The paper is devoted to the robotic based machining. The main focus is made on robot accuracy in milling

operation and evaluation robot capacity to perform the task with desired precision. Particular attention is paid

to the proper modeling of manipulator stiffness properties and the cutting force estimation. In contrast to other

works, the robot performance is evaluated using the circularity norm that evaluates the contortion degree of the

benchmark circle to be machined. The developed approach is applied to five industrial robots of KUKA family,

which have been ranked for several machining tasks. The validity of the proposed technique was confirmed by

experimental study dealing with robot-based machining of circular grooves for several workpiece samples and

different locations.

1. Introduction

High-speed machining is quite a new application of industrial

robots since previously they were mainly used in automotive manu-

facturing, for part handling and welding [1,2] . As follows form related

study [3], the machining segment represents less than 5% of the total

market of the industrial robots, but the share is continuously increas-

ing. So, replacement of conventional CNC machines by more compe-

titive industrial robots becomes more and more attractive. The main

restraint here is rather limited knowledge of robotics by potential

customers and lack of competence of the of robotic cell end-users.

Besides, replacing CNC machines by robots leads to additional manage-

ment expenses. On the other side, the research labs have already

confirmed that CNC machines replacement by robots gives essential

benefits (reduced product cost, increasing of the work-cell flexibility),

which must be clarified for practicing engineers. For this reason, this

paper proposes an industry oriented technique for evaluation of the

robot capacities in machining, which can be used as the base for the

related comparison study.

Compared to conventional CNC machines, robots are able to

process complex bulky 3D shapes and provide large and easily

extendable workspace that can be modified by adding extra axes.

Besides, the same workspace can be shared by several robots. However,

the robot trajectory generation is much more complex task compared

to the Cartesian machines since mapping from the actuator space to the

operational space is highly non-linear. Nevertheless, the results

obtained for the tool path optimization of CNC machines [4–7] can

be also applied to robotic cells. Another difficulty may arise because of

robot redundancy with respect to the technological process. In fact,

conventional machining process requires 5 dof only while most of

industrial robots have 6 actuators. This redundancy can be used to

optimize the tool path, to improve the trajectory smoothness [8] or to

reduce the joint torque in order to minimize the impact of machining

forces on the robot behavior [9,10].

Another difficulty of robot application in machining is related to

non-negligible compliance of robotic manipulators available on the

market. For instance, in some cases the end-effector deflections due to

the influence of the cutting forces may overcome 10 mm [11]. To

reduce them, robot manufacturers pay particular attention to improve-

ment of manipulator stiffness and compensation of the compliance

errors using dedicated mechanism and/or special control algorithms.

To improve the manipulator stiffness, designers are obliged either to

increase the link cross-section or to use advanced composites materi-

als. It is clear that the first solution leads to increasing of manipulator

moving masses and consequent reduction of dynamic properties. In

contrast, utilization of composite materials essentially influences on the
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(5 µm) [27]. Traditionally, they are used for processing of metal parts

from parallelepiped-like crude products with high material removal

rate. These operations are quite popular in automotive industry,

aeronautics as well as in mold making, prototyping, etc.

Contemporary CNC machines possess quite large workspace allowing

essentially increase an application area. Besides, their efficiency was

also proved for processing of composite materials that are utilized more

and more due to perfect mass-to-strength ratio. In addition to milling,

finishing and trimming operations can be also performed by CNC

machines at present. Nevertheless, in spite of numerous advantages,

the CNC machines remain very expensive and their workspace is

limited and cannot be extended, which is crucial for aeronautic and

shipbuilding. This motivates users to find an alternative solution.

One of the promising ways to overcome the above mentioned

difficulties is replacing the CNC machines by industrial robots, whose

cost is competitive and workspace can be easily extended (by adding

extra actuated axes). An example for such an application is presented in

Fig. 1. It worth mentioning that machining is fairly new application for

robots. Traditionally, the market of industrial robots is shared between

handling, pick and place, assembling and welding. The processing

(including machining), represents insignificant part of the market, less

than 5%. According to PWC study [28] this shares will remain the same

in nearest future, as still there are a lot of pick and place operations to

be automated with the improvement in robotic vision. Nevertheless,

the share of robot-based machining is continuously growing and about

a quarter of new robotic cells in North America are processes oriented

ones. Large part of this market share corresponds to trimming that was

traditionally a high-qualified manual work, but nowadays the robots

become competitive here due to increasing of their accuracy. For

machining, robots are attractive due to their large and extendable

workspace and competitive price that makes them a cost-effective

solution for machining of large dimension parts. However, the main

obstacle for robots utilization in machining is their relatively low

accuracy (about 0.7 mm) and repeatability (about 0.2 mm) compared

to the CNC machines, assessment of robot capability for this applica-

tion have been explored by Slamani et al. [29,30] with several methods.

It worth mentioning that under the cutting force influence, the

positioning errors can reach up to several millimeters. Nevertheless,

there are a number of efficient solutions to reduce manipulator

positioning errors that were discovered in research labs and progres-

sively applied in industrial environment. The latter allows robots to

compete with CNC machines in terms of accuracy, while providing

essentially larger workspace. In more details, comparison of CNC

machines and robots for machining is presented in Table 1.

2.2. Cutting forces in machining

The problem of the cutting forces evaluation is in the focus of

mechanical engineers more than 70 years. In his pioneer work,

Merchant used principle of minimum angle to develop an analytical

Fig. 1. Example of machining process with robot.

robot price and decreases its market competitiveness. Nevertheless, 
both ways improve the link stiffness only, while the major manipulator 
elasticity is often concentrated in the actuator gears [12] and can be 
hardly improved in practice. Another method of the compliance error 
reduction is based on the mechanical gravity compensators (pneu-
matic, hydraulic, spring-based, etc.), which produce auxiliary forces/
torques reducing impact of the link weights. However, this solution 
does not allow compensating the impact of the machining forces but 
only shifts the force-deflection relation. To overcome the problem of 
elastic deformations in the actuator gears, robot manufactures tends to 
use secondary encoders attached to the motor shaft [13] that allows to 
modify the actuator input in order to compensate the gear compliance. 
It is obvious that this approach also increases the robot price. 
According to our experience, the double encoders enable compensating 
about 65% of the compliance errors on average, but in some workspace 
areas the compensation level is limited by 40–50%. The main reason 
for this is that the robot link deformations are outside of the double 
encoder observability. It is clear that for the high-speed milling, where 
the cutting forces are high enough to cause deflection of several 
millimeters, such level of error compensation is not enough sufficient. 
In this case, it is reasonable to apply the off-line error compensation 
technique [14–16] based on the modifying the target trajectory used as 
the controller input. As follows for our previous research, this approach 
is very efficient. In particular, the off-line technique based on the 
simple (reduced) manipulator stiffness model allows user to compen-

sate 85–90% of the end-effector deflections [12,17,18], while the 
complete stiffness model ensures the compensation level of about 
95%[19]. However, it should be stressed that usually robot manufac-

turers do not provide customers with the manipulator stiffness para-
meters, so they must carry out dedicated experimental study to obtain 
the desired model [18,20–23]. In this paper, the above mentioned 
problem will be also considered.

To advance robot application in machining, end-user should be 
provided with clear and efficient tool allowing to evaluate the final 
product quality expressed via the level of the end-effector deflections 
caused by the manipulator elasticity. These deflections can be com-
puted both for a single work point and given force/torque or for a set of 
given trajectories and corresponding cutting forces [24]. It is clear that 
usual approach based on different indices extracted from the Cartesian 
stiffness matrix [21,25,26] are not suitable here. In particular, com-

monly used performance measures based on the stiffness matrix 
singular values do not represent directly the machining accuracy which 
is the primary indicator for practicing engineers. For this reason, this 
paper proposes an industry oriented technique allowing to examine 
particular robot suitability for a give machining task and to compare 
several robot-based implementations.

To address the above mentioned problems, the reminder of the 
paper is organized as follows. Section 2 deals with the particularities of 
the robot based machining. Section 3 presents stiffness modeling 
background for industrial robots. Section 4 introduces industry-or-
iented performance measure adapted for machining accuracy evalua-
tion. Section 5 contains comparison analysis of several industrial 
robots available on the market that are suitable for high-speed 
machining. Section 6 deals with experimental validation of the main 
theoretical results. In Section 7, the limitations of the proposed 
approach and perspectives are discussed. Finally, Section 8 sum-

marizes the main contributions of the paper.

2. Robot-based machining

2.1. Particularities of machining with robots

Machining with robots is an intersection of two engineering fields: 
conventional machining and robotics. Machining sector usually prefers 
for these operations Cartesian CNC machines, which provide end-users 
with high reliability, good repeatability (2 µm) and very good precision
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1D cutting force model as a function of the chip thickness and material

properties [31]. Later, this model has been extended to the 2D and 3D

cases [32] and applied to orthogonal cutting such as turning [33] and

milling [34]. These results allowed preventing the chatter phenomenon

leading to machine and tool damage. Further advances in this area lead

to the mechanistic models of the cutting force proposed by Marttelloti

[35] and Koenigsberger [36]. These models describe the machining

process behavior as the function of the cutting tool geometry and some

essential process parameters (such as feed rate, spindle speed, etc).

Later, they were integrated in commercial software [37,38]. The

mechanistic models were able to predict deformation of the tool during

machining and to adapt cutting conditions in order to guaranty high

quality of the final product.

Nowadays the cutting force models allow user to take into account

more details concerning the application area and cutting conditions

(tool geometry, for instance). For example, in the case of the plain

milling tool, the flute angle is the constant defining by the tool

geometry [39], while for the carbide insert tool, the flute angle is a

variable that varies during technological process [40]. Contemporary

fully mechanistic models include more physical parameters (both tool

geometry and cutting conditions) [41,42], and allow user to estimate

cutting forces for different applications. They rely on a special cutting

coefficient that characterizes the specific pressure for the cutting tool

and workpiece material.

For the face milling application considered in this paper, the

carbide insert tool is used and corresponding cutting force model is

able to analyze the path of each teeth and to predict corresponding

force [42,43] taking into account the cutting conditions as well as

cutting tool geometry and orientation. The geometry of technological

process and the cutting force components are presented in Fig. 2. In the

tool coordinate system the instantaneous force F FF = [ , 0, ]i
n

i
f
i T is

defined by two principal components: the normal force Fn acting

perpendicular to the tool face and the friction force Ff acting along

the face. Here, the superscript “i” indicates the nature of the force, i.e.

instantaneous. In the above decomposition, the friction force Ff
i can be

expressed via the normal force Fn
i using the friction coefficient kf , i.e.

F k F= ⋅f
i

f n
i. The normal force Fn

i depends on the engagement angle φ,

the feed rate per tooth per revolution f mm, [ ]z and the cut depth

a mm, [ ]p

F φ K f a φ( ) = ⋅ ⋅ ⋅ sinn
i

n z p (1)

where K N mm, [ / ]n
2 is a specific cutting coefficient, which depends on

the material properties and the cutting tool. Here, φsin takes into

account variation of the cross section of the chip depending on the tool

advance in the material.

For computational convenience, the instantaneous force Fi is

presented in the cylindrical coordinate system as F F FF = [ , , ]i
r
i

t
i

z
i T

0 ,

where F F F, ,r t z are the radial, tangential and axial (in z-direction)

components, respectively. The correspondence between these forces is

defined by the rotation matrix κ λ γR ( , , )s 0 that describes the tool

orientation, i.e. entering angle κ , helix angle λsand cutting angle γ0

κ λ γF R F= ( , , )⋅i
s

i
0 0 (2)

Using the above presentation, it is possible to project the cutting

force in the workpiece frame (in the Cartesian space) as

φF R F= ( )⋅C
i

z
i

0 (3)

where the subscript “C” indicates the Cartesian space, and Rz is the

homogeneous rotation matrix around z-axis by the engagement angle

φ. Since the cutting force varies with the engagement angle φ, it

reasonable to average it for the turn

∫F
π

F dφ=
1

2
n

φ

φ

n
i

S

E

(4)

where the angles φS and φE define the tool engagement interval. More

details concerning these angles are given in Fig. 3. It is obvious that

they depend on the technological task and cutting tool diameter.

Similarly, the average cutting force in the Cartesian coordinate

system can be computed as

Table 1

Comparison of CNC machins and robots for machining application.

Indicator CNC machine Industrial robot

Accuracy ~0.005 mm ~0.1–1.0 mm

Repeatability ~0.002 mm ~0.03–0.3 mm

Workspace Limited Large

Workspace extending Impossible Possible by adding extra actuated axis

Kinematic architecture Cartesian Serial

Number of actuated axes 3 or 5 6+

Kinematic redundancy Non Yes, 1 dof at least

Complexity of trajectory Suitable for 3/5 axes machining Any complex trajectory

Relation between actuated and operational space Linear Non-linear

Actuator feedback Single encoder Single or double encoders

Mechanical compliance Relatively high Relatively Low

Compliance error compensation Non-required Mechanical (Gravity compensators)

Algorithmic (off-line and/or on-line)

Dynamic properties Moderate, homogeneous within the workspace High, heterogeneous within the workspace

Control algorithm Continues path control Point-to-point control

Continues path control

Programming language Standardized G-code language Manufacture Specified languages (KRL, V+, Karel, RAPID, Inform, etc.)

Manufacturing flexibility Single or several similar operations Any type of operation

Price Competitive for 3-axis tools Competitive for 6 dof robots

Expensive for 5-axis tools

Fig. 2. Cutting force components and machining process geometry.
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∫
π

φ κ λ γ dφF R R F=
1

2
( )⋅ ( , , )⋅C

φ

φ

z s
i

0 0
S

E

(5)

Taking into account that FF C= ⋅n with kC = [1, 0, ]f
T , one can

rewrite the above expression in the final form

⎛

⎝
⎜

⎞

⎠
⎟∫

π
F φ φ dφ κ λ γF R R C=

1
2

( )⋅ ( ) ⋅ ( , , )⋅C
φ

φ

n z s 0
S

E

(6)

allowing user to present the cutting force is a function

φ φ κ λ γ K f aF ( , , , , , , , )C S E s n0 z 0 depending on a number of physical and

geometric parameters (cutting conditions, tool orientation and tool

geometry, material properties). The latter will be used in the following

sections to compute the external force applied to the robot end-effector.

In a more general case if there are several engagement zones (see

Fig. 3c,f for example) it is required to integrate the cutting force for

each of them φ φ( , )S
j

E
j , which yields

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫∑

π
F φ φ dφ κ λ γF R R C=

1
2

( )⋅ ( ) ⋅ ( , , )⋅C
j

n

φ

φ

n z s=1 0
S
j

E
j

(7)

where n is the number of engagements for the turn. It should be

mentioned that the specific cutting coefficient Kn depends on the

material and tool properties, so it can be hardly estimated analytically.

For the conventional tools and materials its values can be found in

relevant manuals. Also the specific cutting coefficient can be estimated

using the orthogonal-to-oblique method based on the material data-

base [44,45]. However, for the particular applications with specific

tool-material couple, this coefficient can be estimated from the

dedicated experimental study only [46].

Once the cutting force is computed, it is possible to estimate the

torque applied to the robot end-effector while machining. It can be

obtained as the cross product of the tool radius vector

rcosφ rsinφr = [ , , 0]Tand the cutting force: M r F= × 0. Here, r is

the tool radius. In more convenient form, the torque expression can be

presented as

F κ λ γM r R C= ⋅( × )⋅ ( , , )⋅n s 0 (8)

where r( × ) is the skew-symmetric matrix based on the vector r.

The above presented models have been implemented as a Matlab

toolbox that integrates analytical expressions for different stages of

machining process. Example of its application is presented in Fig. 4. It

has been obtained for the cutting tool with three teeth (z = 3) of the

radius R mm= 5 and the following machining parameters: κ = 90°,
γ = 7°0 , λ = 45°s , f mm tooth= 0.08 /z , a mm= 5p , K N mm= 750 /n

2.

Here, the specific cutting coefficient Kn was estimated experimentally

for the particular tool and workpiece material. As follows from the

figure, the maximum cutting force/torque correspond to the complete

engagement (i.e. φ = 180°) and about 1.5 kN and 10Nm respectively. As

follows from our experience, these values are non-negligible for typical

industrial robots and may cause essential deflections of the end-effector

(about several millimeters), which obviously affects the quality of the

final product. In the following sections, the above presented force/

torque will be used as reference (i.e., a benchmark task) to estimate the

manipulator compliance errors and to compare industrial robot

performances for machining application.

3. Manipulator compliance errors and their impact on

machining precision

The cutting forces considered in the previous section cause non-

negligible deflections of the robot end-effector that influence on the

precision of the machining process. This section provides mathematical

background for the estimation of the deflection magnitude taking into

account manipulator component elasticity.

3.1. Stiffness model of an industrial manipulator

In robotics, manipulator stiffness is usually described by the

Cartesian stiffness matrix KC that allows user to compute the end-

effector deflections Δt as

Fig. 3. Tool engagement angles for different machining tasks.

4



Δt K F= ⋅C
−1 (9)

for given external force/torque F, which in the case of machining

corresponds to the cutting force. This matrix is positive definite, it

essentially varies throughout the robot workspace and highly depends

on the robot configuration. There exist different modeling approaches

that allow obtaining desired stiffness matrix: the Finite Elements

Analysis (FEA), the Matrix Structural Analysis (MSA), and the

Virtual Joint Modeling method (VJM). Their detailed comparison,

including advantages and limitations, can be founded in [47–52]. From

our experience, the most attractive for our application is the VJM

method, which extends the conventional rigid model of manipulator by

introducing several virtual joints describing elasticity of principal

components [53,54]. Using the VJM-based technique, the stiffness

model of a typical industrial robot is presented as a serial chain

containing a number of rigid links separated by actuators and virtual

springs [23,26] as shown in Fig. 5.

To compute the desired Cartesian stiffness matrix, it is necessary to

consider simultaneously the extended geometric model t g q θ= ( , )and
static equilibrium equation J F K θ⋅ = ⋅θ

T
θ . The first of them allows

computing the end-effector location t for given coordinates of the

actuators q and virtual joint deflections θ caused by the external

loading F. The static equilibrium equation is derived using the virtual

work principal and allows to find relation between the external force/

torque and the deflections of the virtual joints. It includes the matrix Kθ

describing the virtual joint elasticities (joint stiffness matrix) and the

Jacobian of the extended geometric model with respect to the virtual

joint coordinates J g q θ θ= ∂ ( , )/∂θ . Simultaneous solution of the above

mentioned equations leads to the following expression for the desired

Cartesian matrix [55–57]

K J K J= ( · · )C θ θ
−1

θ
T −1

(10)

which obviously depends on the manipulator geometry (via the

Jacobian Jθ) and its elastostatic properties (via joint stiffness matrix

Kθ). In more general case, when the external loading F is rather high

and changes essentially the manipulator equilibrium configuration, the

Cartesian stiffness matrix also depends on the Hessian Hθθ (second

order derivative of the extended geometric model), taking the form

[53,54,58]

K J K H J= ( ·( − ) · )C θ θ θθ
−1

θ
T −1

(11)

where H g q θ F θ= ∂ ( ( , )⋅ )/∂θθ
2 2 describes modification of manipulator

elasticity due to applied loading.

It should be stressed that the above expressions for the Cartesian

stiffness matrix (10)-(11) were derived assuming that joint stiffness

matrix Kθ is constant. However, if the manipulator includes the gravity

compensators (Fig. 6a,b), the equivalent joint stiffness coefficients

become configuration dependent [59] and relevant joint stiffness

matrix is presented as a sum

K K K q= + ( )GC
θ θ

0
θ (12)

where the first term Kθ
0 is constant and corresponds to the manipulator

without compensator (see Kθ in Eq. (10)); and the second term K q( )GC
θ

depends on the manipulator configuration and describes equivalent

elasticity of the gravity compensator with respect to the virtual joints.

As follows from relevant study, the matrix K q( )GC
θ is rather sparse and

contains only several non-zero elements which are described by highly

non-linear functions. For example, for the spring-based gravity com-

pensator in the second actuated joint (Fig. 6a,c), the matrix K q( )GC
θ is

expressed as follows

diag K a L ηK q( ) = (0, · · , 0, 0, 0, 0)GC
GC qθ (13)

where KGC is the compensator spring stiffness, a and L are the

geometric parameters (see Fig. 6c), and ηq is the configuration-

dependent coefficient expressed as

⎛

⎝
⎜

⎞

⎠
⎟η α q

s

s

a L

s
α q α q= cos( + ) − · sin ( + ) + cos( + )q

0
2

2

(14)

Here, s0 is the compensator spring preloading, q is the actuated

coordinate, α and s are auxiliary geometric parameters defining

compensator configuration whose meaning is clear from Fig. 6c.

Hence, knowing relevant geometric and elastic parameters of the

manipulator, it is possible to compute the Cartesian stiffness matrix KC

and the undesired end-effector deflections caused by the machining

Fig. 4. Variation of forces/torques for different stages of machining process R mm= 5 , z = 3, κ = 90°, γ = 7°0 , λ = 45°s , f mm rev= 0.08 /z , a mm= 5p , K N mm= 750 /n
2.

Fig. 5. Typical industrial robots (a) and its VJM-based stiffness model (b).
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force F. However, in practice, robot specifications usually include the

geometric parameters only, while the elastic parameters should be

identified by the users from the dedicated experimental study. This

problem is in the focus of the following section.

3.2. Identification of the stiffness model parameters

3.2.1. Methodology and basic equations

In practice, the stiffness model parameters of industrial robots are

not included in datasheets and identified from the appropriate experi-

mental data [60]. Relevant experimental setup usually requires open-

loop or/and closed-loop measurement system [22,61,62] as it is

presented in Fig. 7. As a rule, the identification procedure contains

the following steps [12,63]:

(i) Selection of optimal measurement configurations ensuring the

lowest impact of the measurement errors. At this step, a custo-

mized design of experiments technique is applied that is based on

the appropriate performance measure (RMS of the positioning

error after the compliance errors compensation [18,64,65], in-

dices computed using singular values of the manipulator Jacobian

[66–69], etc.). The importance of this step was shown in [66,69].

(ii) Measuring reference point locations without loading. The output

of this step is a set of Cartesian coordinates of the reference point

and corresponding values of the joint angles obtained from the

actuator encoders.

(iii) Application of the external loading to the manipulator end-

effector (specially designed for this experiments [23,70]). The

magnitude and direction of this loading should be either known or

measured in experiments. To increase the identification accuracy,

it is reasonable to apply maximum allowed force/torque but do

not violate the stiffness model linearity.

(iv) Measuring reference point locations with loading. Here, the

output is similar to the step (ii). To avoid influence of other

factors (such as reputability, heating, etc.), the measurements for

unloaded and loaded manipulator should be carried on sequen-

tially, i.e. without changing configuration between steps (ii)-(iv).

(v) Repeating steps (ii)-(iv) for all measurement configurations

obtained in step (i).

(vi) Estimation of the stiffness model parameters using dedicated

numerical procedure and set of the experimental data (end-effecto

locations with and without loading, corresponding joint coordi-

nates and loading magnitude/direction).

Basic expression for the stiffness model parameters identification is

derived from the force-deflection relation (9). It is usually written in

the following way [18,19]

Δ j nt A π= · ; = 1,j j (15)

where Δtj is the end-effector deflection caused by the loading, the

vector π aggregates all desired parameters (compliances) to be

identified, the subscript j defines the measurement experiment num-

ber, Aj is so-called observation matrix corresponding to the jth

experiment that is presented as

A J J F J J F J J F= [ , , . ... , ]j j j
T

j j j
T

j jm jm
T

j1 1 2 2 (16)

The latter is expressed via the external force Fjand the columns of

the Jacobians J J J J= [ , , ...., ]j j j jmθ 1 2 of the extended geometric model for

the manipulator configuration qj.

After application of the least square technique, the identification

procedure reduces to the following optimization problem

∑ Δ ΔA π t η η A π t( − ) ( − ) → min
j

m

j j
T

j
T

j j j
π=1 (17)

which should be solved with respect to the vector of the stiffness

parameters π. Here ηj is the matrix of the weighting coefficients that

normalizes the measurement data (normalization is obligatory if

position and orientation components are used simultaneously because

of different units). It should be noted that the weighting matrices ηj can

be similar for all experiments if the noise distribution remains the same

for all measurements. The above optimization problem is solved in a

usual way and yields the following expression for the set of the

unknown parameters

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ Δπ A η η A A η η tˆ = · .

j

m

j
T

j
T

j j
j

m

j
T

j
T

j j=1

−1

=1 (18)

If the measurement noise is Gaussian (as it is observed in practice),

expression (18) provides us with an unbiased estimate. Corresponding

covariance matrix evaluating the dispersion of π̂ can be computed as

follows

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑π A η η A A η η Σ η η A A η η Acov( ˆ ) =

j

m

πj
T

j
T

j πj
j

m

πj
T

j
T

j j j
T

j πj
j

m

πj
T

j
T

j πj=1

−1

=1
2

=1

−1

(19)

where the matrix Σ j
2 describes the variance of the measurement errors

in the jth experiment.

3.2.2. Case of manipulators with gravity compensators

If robot includes the gravity compensator, the force-deflection relation

becomes essentially non-linear and can be hardly presented in the form

(15). Nevertheless, using specific workaround [59], the set of the unknown

Fig. 6. Mechanical compensators of industrial robots (a, b) and their static model (c).

Fig. 7. Experimental setup for identification of stiffness model parameters.
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actuator is defined as π π π π ππ = [ , ( , ... ), , ... , ]ext 1 21 22 3 6 . Here, the subset

π π( , ...)21 22 represents the second joint compliances corresponding to

different values of the joint variable q2. This idea allows us to present the

basic equations in similar way

Δ j nt B π= ⋅ ; = 1,j j ext (20)

and to keep the same expressions (18)-(19) for the parameter estimates

while replacing Aj by Bj. The modified observation matrix Bj is composed

of the matrix Aj elements, it is obtained by inserting in the matrix Aj several

zero columns that correspond to the parameters from the subset π π( , ...)21 22

different from the current one.

On the second step, using the sub-set π π( , ... )i i1 2 , it is possible to

separate the stiffness parameters of the manipulator and the compen-

sator parameters. For example, for the spring-based compensator, one

can find separately the actuated joint stiffness Kθ
0 as well as gravity

compensator stiffness coefficient KGC and its preloading s0.

Corresponding equations can be also solved using the least square

technique that yields an expression

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑K K s K KC C C[ · ] =θ GC GC

T

i

m

i
T

i
i

m

i
T

θi
0

0 =1

−1

=1

GC GC

(21)

where mGC is the number of unique angles qi in the set of measurement

configurations, and the matrix Cj is defined as follows

a L α q a L s a L s α q α qC = [1 − · cos ( − ) / ·( / ·sin ( − ) + cos( − ))]i i i i i
2 2

(22)

Thus, this modification of the conventional identification technique

developed for strictly serial manipulator allows us to find the stiffness

model parameters for a more general case, for the manipulators with

gravity compensators.

3.2.3. Identification using enhanced partial pose measurements

Conventional full pose measurement technique [71,72] provides

both the position p and orientation φ that above were merged in a

single location vector t p φ= ( , ). However, in practice conventional

measurement systems (laser tracker Leica or Faro, for instance) do not

provide with the orientation components φ directly, so these angles are

computed using the Cartesian coordinates of several reference points

[73–75] as shown in Fig. 8. Further, to include both p and φ in the

identification equations, the full-pose measurement technique requires

normalization (see Eq. (17)) in order to avoid the non-homogeneity

problem. However, this normalization may affect the identification

results and it is reasonable to exclude it. For this reason, to avoid the

above mentioned difficulties, it was developed the enhanced partial

pose measurement technique [76], which uses the Cartesian coordinate

measurements only.

Using this idea, the identification equations can be written in a

reduced form, which yields the following expression for the desired set

of parameters πext

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛
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⎜
⎜

⎞

⎠
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⎟∑ ∑ ∑ ∑ Δπ B B B pˆ =ext

j
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j
i p

j
i p

j

m

i

n

j
i p

j
i

=1 =1

( ) ( )

−1

=1 =1

( )T T

(23)

where the superscript "(p)" indicates the position components (i.e. first

three lines in the case of matrix B p( )), the indices "j" and "i" define the

manipulator configuration number and the reference point number,

respectively, m and n are the number of configurations and reference

points used. Essential benefit of this approach comparing to the full

pose measurement technique is potential improvement of the identi-

fication accuracy due to increasing the total number of the scalar

equations from m6 to mn3 .

The principal particularity of this approach that it operates with
several tool transformations p

tool
i , which should be also identified. It can

be proved that these transformations can be computed using the same

measurement data as

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ∑ Δp p D D D p[ ; ... ] =

tool tool
n

j

m

j j
i

j

m

j j
G1

=1

−1

=1

T T

(24)

where the matrix diagD R R= ( , ... , )j j j
n1 is composed of n rotation

matrices Rj, the matrix Rj defines the robot orientation that is

computed from the direct kinematics, Δ Δ Δp p p= [ ; ... ; ]
j
G

j
G

j
Gn1 is the

vector of residuals between the measurements (for the unloaded

manipulator) and computed positions for zero tool parameters. In

the experimental section of this paper, the above presented equations

will be used to identify the desired stiffness parameters of industrial

robots under study.

It should be mentioned that in the case when a sophisticated

manipulator CAD model is available, it is also posible to estimate

stiffness coefficient using virtual experiments [77,78]. Moreover, this

approach allows user to obtaine realistic 6 × 6 stiffness matrices for

each manipulator component separately.

3.3. Estimation of compliance errors and their compensation

The above presented stiffness model allows user to evaluate the

impact of the machining force on the robot precision. On the other

hand, this model can also be used for adjusting the controller input in

order to compensate (or to reduce) the manipulator compliance errors.

It should be mention that in the controllers of industrial robots, the

manipulator motions are usually generated by means of purely kine-

matic control (inverse and direct kinematics) allowing obtaining

actuator coordinates corresponding to the desired end-effector location

t0 without taking into account the external loading. However, in

machining application this approach is insufficient. To overcome this

difficulty, it is reasonable to integrate in the control scheme the

manipulator stiffness model that in general case can be written as

ft F t= ( | )F
−1

0 (25)

where the subscripts 'F' and '0' refer to the loaded and unloaded end-

effector locations, respectively, and '|' separates arguments of the

function f (). More details concerning this function are given in our

previous works [17,53].

Using this model, the problem of compliance error compensation

can be presented in the following way. Let us assume that the external

loading F causes undesired end-effector displacement from the location

t0 to tF. To compensate this error, it is necessary to find another

reference location t*, that will be used as the controller input and for

which the same loading F causes displacement to the desired location

t0. This idea leads to the following non-linear equation

ft F t= ( | *)0
−1 (26)

that should be solved with respect to t*. As follows from our experience,

the desired solution can be obtained using the simplest iterative

scheme

α ft t t F t* = * + ·( − ( | *))′
0

−1 (27)

where α is scalar parameter ensuring iterative scheme convergence, the

prime indicates modification of t* on the next iteration. In more detailsFig. 8. Typical measurement tool for robot calibration with three reference points.

parameters π = [  ,π π1 2,  π3, ... ,π ]6 can be extended up to πext, which for a 
typical industrial manipulator with compensator attached to the second
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the iterative procedure is presented in Fig. 9. In practice, it can be

implemented either on-line or off-line, as shown in Fig. 10.

4. Accuracy of robot-based machining and its evaluation

4.1. Industrial standards for machining accuracy

In industrial practice, there exist a number of norms to evaluate the

quality of a final product. They estimate the path straightness (ISO

12780 [79]), the surface flatness (ISO 12781 [80]) and the path

roundness (ISO 12181 [81]), which is also called the circularity.

Some details concerning their application can be found in [82–85].

Robotic trimming of a straight path was studied by Slamani et al. [86]

who investigated the influence of the cutting parameters on the final

product quality. The circularity norm was used in [87] to estimate

robot accuracy and efficiency of the proposed error compensation

technique. Similar approach based on the circular tests for boring of

aluminum parts for five-axis machining was applied in [88], where the

authors compared boring with a boring bar and boring with a high-

speed end mill.

From our experience, the circularity norm is the best suited one for

the machining process, since it also evaluates the straightness and

flatness in indirect way. In fact, the straightness violation leads to the

non-uniform circle stretching/shrinkage and the flatness violation

causes the circle twisting. On the other side, perfect milling of circular

profiles guarantees perfect machining of straight lines and plain

surfaces. For this reason, the circularity norm will be used further to

evaluate the capacity of industrial robot to perform the machining

tasks.

According to relevant standard (ISO 12181), the circularity calcula-

tion includes two steps: building a reference circle and estimating the

deviations with respect to the reference circle. The standard defines

four methods to obtain the reference circle that are called respectively

the Minimum Circumscribed Circle (MCC), the Maximum Inscribed

Circle (MIC), the Minimum Zone Circles (MZC) and the Least Squares

Circle (LSC). The difference between these methods is illustrated in

Fig. 11. In all cases, the circularity is equal to the distance between the

inscribed and circumscribed circles. The principal difference is related

to the center that is computed using different approaches. For example,

for MIC the center point is computed for the maximum inscribed circle

and it is also used for the minimum circumscribed one. In the MCC

method, the center is computed for the minimum circumscribed circle

and the inscribed circle is build using the same center point. In the case

of LSC, the inscribed and circumscribed circles are found for the center

point obtained for the least square circle. In contrast, the MZC method

uses a center point for which the distance between the inscribed and

circumscribed circles is minimal. It should be stressed that in the case

of real measurement data all methods are competitive and provide

almost the same results [89].

Usually, the reference circle is defined by a particular application.

In particular, for the hole-milling it is reasonable to use the MIC

reference circle that estimates the ability of the corresponding cylinder

to be inserted into the hole and the circularity characterizes the

clearance. In contrast, for machining of the cylinder that should enter

into the hole, the MCC is more appropriate. However, MIC and MCC

methods are not applicable if machining profile is asymmetrical. In this

case it is prudent to use either MZC or LSC methods. In fact, the MZC

evaluates true circularity; however it is the most complicated approach

Fig. 9. Compliance error compensation algorithm.

Fig. 10. Implementation of compliance error compensation technique.

8



from numerical point of view. Thus, a reasonable alternative in

engineering practice is the LSC method. Advantages of this method

are confirmed by simulation results presented in Fig. 12, which show

that difference between MZC and LSC is negligible in the case of

conventional cutting conditions [90].

4.2. Evaluation of circularity for robot-based machining

4.2.1. Basic expressions

As it was mentioned above, the circularity is the performance

measure that characterizes the difference between the radii of max-

imum inscribed and minimum circumscribed concentric circles ob-

tained for the reference machining profile

ρ r r= −max min (28)

In the frame of the LSC method, the center point is obtained by

solving the following optimization problem

∑ x x y y r( ( − ) + ( − ) − ) → min
i

n

i i
x y r=1 0

2
0

2 2

, ,0 0 (29)

where x y( , )i i are the coordinates of the machining profile provided by

the measurement system, x y( , )0 0 is the desired center of least-square

circle and r is its radius. The optimization problem (29) is highly non-

linear one and it cannot be solved analytically. For this reason, the

Newton–Raphson method is used. To improve the convergence, the

start point can be estimated from the simplified optimization problem

[91]

∑ x x y y(( − ) + ( − ) ) → min
i

n

i i
x y=1 0

2
0

2

,0 0 (30)

that yields
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(31)

After finding the center point x y( , )0 0 , the desired radii of the

circumscribed and inscribed circles are be computed as follows

r i n

r i n

p p

p p

= max( − , = 1, )

= min( − , = 1, )
i

i

max 0

min 0 (32)

where x yp = ( , )i i i
T are the measurement profile point and x yp = ( , )T

0 0 0

is the center of corresponding least-square circle. Hence, for given set

of points pi describing machining profile one can compute the

circularity index ρ using expressions presented above. It is clear that

these points can be obtained either experimentally or numerically,

using relevant models of the manipulator (whose parameters are

identified from the dedicated experiments, see Section 3.2). This paper

concentrates on the second approach that requires the manipulator

stiffness model only.

4.2.2. Modeling of the machining profile

This approach assumes that all geometric and elastic parameters of

the manipulator are either given or have been already identified from

the dedicated experiments. In this work, the circularity is evaluated for

the benchmark profile corresponding to a circular milling task of the

radius r mm= 100 . This benchmark is in a good agreement with typical

industrial requirements, but it can be easily adapted to other dimen-

sions.

Assuming that machining produces the cutting force/torque

F M( , ), the manipulator end-effector deflections Δti caused by this

loading can be computed using expression

⎡

⎣
⎢

⎤

⎦
⎥Δt J q K q J q

F

M
= ( ) · ( ) · ( )⋅i i i i

i

i
θ θ

−1
θ
T

(33)

where the subscript “i” indicatives the machining profile point number,

K q( )iθ is the manipulator stiffness matrix corresponding to the

configuration qi, J q( )iθ is the manipulator Jacobian for the same

configuration. Further, taking into account particularities of the

machining process, variation of the force/torque F M( , ) along the

path can be taken into account via the rotation transformation of

corresponding vectors (while the magnitudes remain the same).

So, for the given set of the polar angles φ{ }i , it is possible to compute

the set of points p{ }i describing the machining profile corresponding to

the desired circle:

φ φ

φ

p p R r J q K q J q R

F J q K q J q R M

= + ( )⋅ + ( ) · ( ) · ( )⋅ ( )⋅

+ ( ) · ( ) · ( )⋅ ( )⋅

i i
p

i i
p T

i i

p
i i

φ T
i i

0 θ
( )

θ
−1

θ
( )

θ
( )

θ
−1

θ
( )

(34)

Here, the radius-vector rdefines the profile point corresponding to

φ = 0, φR( )i is the rotation matrix, the superscripts “ p( )” and “ φ( )”
denote the position or orientation part of Jacobian matrix, i.e.

colJ J J= ( , )p φ
θ θ

( )
θ
( ) . Further, the obtained set of points p{ }i is used to

compute the desired circularity index ρ in accordance with expressions

(28–32).

Using the approach presented in this Section, it is possible to

evaluate circularity for the entire robot workspace (i.e. locating center

of the circle in different zones) and to determine the zone in which the

manipulator provides the best performance from the circularity point

of view. In the following Section, the developed approach is applied to

compare machining capabilities of several industrial robots used by our

industrial partners.

5. Comparison study: assessment of robots capacities for

machining

5.1. Examined industrial robots and their parameters

The technique developed in this paper has been applied to the

comparison study of five industrial robot of the Kuka family (Fig. 13).

Fig. 11. Estimation of the circularity: definition of ISO norms.

Fig. 12. Difference between the circularity norms.
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They were compared with respect to the circular machining task of

100 mm radius that was placed in different workspace points. The

examined robots have similar kinematics (Fig. 14), their geometric

parameters are presented in Table 2. In the unloaded mode, the

examined robots have comparable repeatability/accuracy in the range

from 50 to 80 µm. However, their payload capacities differ essentially

and vary from 100 to 500 kg as shown in Table 3. Working radii of the

examined robots are vary from 2.6 to 3.9 m.

Elastostatic parameters of the examined robots are presented in

Table 4. There were obtained using dedicated experimental study and

identification technique developed in our previous work [59,76]. It is

worth mentioning that for the parameters k2 describing equivalent

compliance of the second joint, it is given the range that takes into

account influence of the gravity compensator, which depends on the

manipulator configuration (see Section 3 for details).

To estimate the cutting force/torque for the benchmark task it was

assumed that the cutting tool radius is 5 mm and number of teeth is

equal to 3. The remaining machining parameters are: κ = 90°, γ = 7°0 ,

λ = 45°s , f mm rev= 0.08 /z , a mm= 5p , K N mm= 750 /n
2. For this

case, application the above presented technique (see Section 2.2.) for

completely engaged tool (φ = 180°) yields the following cutting

force N N NF = [−440 , −1370 , −635 ]C and cutting torque

Nm Nm NmM = [0 , 3 , 10.5 ], which will be used in the following section

for the circularity evaluation of robot-based machining.

5.2. Comparison analysis: robot performance in machining process

To compare accuracy of the examined robots with respect to the

machining process, it was considered the circular milling task of radius

100 mm. It was assumed that the benchmark trajectory was located in

the plane XOZ, which suits the majority of our industrial problems. For

this benchmark task, the circularity maps were computed for all

manipulators under study. Relevant results are presented in

Figs. 15–19, which include two cases corresponding to different

manipulator configurations (elbow-up and elbow-down). It is obvious

that manipulator configuration must remain the same during continues

machining process in order to avoid passing through the kinematic

singularities. In addition, the figures contain optimal regions (red

squares) for locating the machining tasks in square zones of different

sizes (i.e. 200×200 mm, 400×400 mm and 600×600 mm, etc.). The

figures also show the same zones in the middle of workspace (green

squares). Summary of these results is presented in Table 5 that, for

comparison purposes, also includes the circularity indices computed

for the cutting force/torque corresponding to 80% of maximum

Fig. 13. Examined industrial robots.

Fig. 14. Geometric parameters of examined robot.

Table 2

Principal geometric parameters of examined industrial robots, mm[ ].

Robot A B C D E F

KR100HA 350 750 1250 45 1000 210

KR120 R3900 750 590 1350 41 1800 240

KR270 R2700 350 675 1150 41 1200 240

KR360 L240 500 1045 1300 55 1525 290

KR500 500 1045 1300 55 1025 290

Table 3

Examined robot specification data.

Robot Repeatability Workspace

volume

Working

radius

Payload

KR 100 HA 0.05 mm 45.95 m3 2.6 m 100 kg

KR120

R3900

0.06 mm 206.72 m3 3.9 m 120 kg

KR270

R2700

0.06 mm 55 m3 2.7 m 270 kg

KR360

L240

0.08 mm 118 m3 3.325 m 360 kg

KR500 0.08 mm 68 m3 2.825 m 500 kg

Table 4

Stiffness parameters of examined robots.

Robot Equivalent joint compliances, μm/N

k1 k2 k3 k4 k5 k6

KR100 HA 1.92 0.28–0.55 0.56 3.31 3.83 5.42

KR120 R3900 1.13 0.26–0.36 0.43 0.96 3.82 4.01

KR270 R2700 0.54 0.28–0.30 0.42 2.79 3.48 2.074

KR360 L240 0.86 0.11–0.28 0.25 2.17 1.47 2.96

KR500 0.47 0.14–0.20 0.19 0.72 0.95 1.44
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loading. Some extra indicators for further comparison analysis are

presented Tables 6, 7, which contain accuracy for square workspace

regions in the case of optimal and middle-task placements, respec-

tively.

As follows from the obtained results, the best accuracy for the

considered benchmark task is ensured by the robot Kuka KR500. In

particular, for this robot the best circularity index is equal to 0.41 mm

(for the optimal task placement). This advantage is achieved due to less

complaint actuators that obviously increase the robot price. In general,

all examined robots except KR120 ensure circularity level about 3 mm

within entire workspace. It is clear that so high value of this indicator is

not acceptable in practice. But it worth mentioning that by applying

Fig. 15. Circularity maps for robot KR 100 HA, mm.

Fig. 16. Circularity maps for robot KR 120 R3900, mm.

Fig. 17. Circularity maps for robot KR 270-2 R2700, mm.
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relevant compliance error compensation techniques [14,17] it is

possible to improve the circularity by 80–95%, depending on the

stiffness model complexity [19]. This allows us to achieve the circular-

ity level of about 0.1 mm.

In practice, selection of a particular robot for the given task should

be multi-objective. It is necessary to take into account both the

accuracy (represented here via the circularity) and also pay attention

to the price, the robot workspace size and its payload capacities. For

instance, the robots KR100 and KR120 are not suitable for machining

of hard materials because of the payload limitation. However, because

of their lower price comparing to other examined robots, they are

competitive for machining if the cutting force magnitude is less than

1 kN. For the hard materials, either KR360 or KR500 can be used

depending on the required accuracy level and the workpiece dimen-

sions. On the other hand, the robot KR360 is competitive for large-

Fig. 18. Circularity maps for robot KR 360 L240, mm.

Fig. 19. Circularity maps for robot KR 500, mm.

Table 5

Circularity indices range of examined robots for elbow up/down configurations, mm.

Robot Under test loading Under 80% of maximum

loading

min max middle Min max middle

KR 100

HA

1.50/1.03 3.28/3.36 2.10/1.91 0.83/

0.58

1.82/

1.86

1.17/1.06

KR120

R3900

4.00/2.54 6.66/6.57 5.08/4.05 2.67/

1.69

4.44/

4.38

3.39/2.70

KR270

R2700

1.36/0.84 3.05/3.13 1.93/1.64 2.04/

1.26

4.58/

4.70

2.90/2.46

KR360

L240

1.69/1.02 2.85/2.81 2.29/1.80 3.34/

2.04

5.70/

5.62

4.58/3.60

KR500 0.77/0.41 1.38/1.42 1.00/0.76 2.14/

1.14

3.83/

3.94

2.78/2.11

Table 6

Machining accuracy for optimally-placed square zones (elbow up/down configurations), mm.

Robot 100×100 mm 200×200 mm 500×500 mm 1000×1000 mm

KR 100 HA 1.60/1.12 1.73/1.22 2.24/1.56 -/2.40

KR120 R3900 4.28/2.67 4.51/2.79 5.29/3.24 -/4.23

KR270 R2700 1.47/0.90 1.60/0.97 2.06/1.23 -/1.87

KR360 L240 1.81/1.08 1.96/1.15 2.39/1.50 -/2.01

KR500 0.84/0.45 0.93/0.49 1.21/0.64 -/1.00
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dimensional tasks only and for milling with forces higher than 2.5 kN.

Otherwise, KR270 is preferable that may ensure better performance

within its workspace. For extremely large-dimension parts, the robot

KR120 is preferable due to its high working radius, however its

accuracy is relatively low.

To simplify robot selection with regard to different objectives,

Fig. 20 presents the normalized bar diagram showing four principal

indicators: (i) the circularity indices, (ii) working radius, (iii) maximum

payload, and (iv) relative price. Corresponding absolute values of these

performance measures are presented in Tables 3, 5. The figure clearly

shows that increasing of the robot workspace leads to reduction of its

accuracy. From the other side, the robot accuracy is well correlated

with it price. These results allow practicing engineers to justify robot

selection for given machining task taking into account contradicting

objectives.

Integrated results of the completed comparison analysis are pre-

sented in Tables 8, 9. The first of them presents machining accuracy of

the examined robots (in terms of the circularity) for different magni-

tude of the cutting force. It is assumed here that either online or offline

compensation algorithm is implemented in order to reduce the

manipulator compliance errors. The second table presents the same

results in a slightly different way, allowing user to select an appropriate

robot from the set of the examined ones knowing the desired accuracy

and expected cutting force magnitude. It is worth mentioning that here

the accuracy is evaluated for 200×200 mm square zone optimally

located within the robot workspace (i.e. so called minimax circularity).

Hence, the developed methodology allows user to select an industrial

robot taking into account particularities of the given technological task.

6. Experimental validation

To validate the developed methodology, several machining experi-

ments were carried out using one of the examined robots used by our

industrial partners (Kuka KR270) and available in the laboratory. A

spindle PRECISE with a power of 24 kW was used to perform the tests.

The robotic cell layout is typical for pre-machining tasks for the most of

applications we are involved in. The experiments were targeted at

milling the circular grooves of radius 60 mm for several workpiece

locations. The workpiece locations were chosen according to the

available fixture on the machine table, on the same height and different

distances from the axis #1. The first placement is the closest one to the

robot base, the third placement corresponds to the maximum working

radius achieved on the machining table (the second placement is in the

middle between the first and the third ones). The main difference with

respect to the robot for the selected locations appears in the arm

configurations (axis #2 and #3). In our experiments, the grooves were

milled by a single step of the provided cutting depth, no intermediate

steps were used. The robot trajectory programming was done in the

Table 7

Machining accuracy for middle-placed square zones (elbow up/down configurations), mm.

Robot 100×100 mm 200×200 mm 500×500 mm 1000×1000 mm

KR 100 HA 2.19/2.02 2.30/2.14 2.65/2.54 -/3.30

KR120 R3900 5.21/4.10 5.35/4.21 5.81/4.57 -/5.28

KR270 R2700 2.02/1.74 2.11/1.84 2.42/2.17 -/2.81

KR360 L240 2.35/1.84 2.41/1.90 2.60/2.06 -/2.37

KR500 1.05/0.81 1.11/0.86 -/1.02 -/1.33

Fig. 20. Evaluating robot performances with regard to principal indicators.

Table 8

Machining accuracy of examined robots under different task loading (with compliance

error compensation), mm.

Robots Cutting force magnitude

100 N 200 N 500 N 1000 N 2000 N 3000 N

KR 100 HA 0.07 0.14 0.36 0.72 – –

KR120 R3900 0.18 0.35 0.88 1.76 – –

KR270 R2700 0.06 0.12 0.29 0.58 1.17 –

KR360 L240 0.07 0.14 0.35 0.71 1.42 2.13

KR500 0.03 0.06 0.14 0.28 0.57 0.85

Table 9

Capability of examined robots for different machining tasks (with compliance error

compensation).

Desired

accuracy

Cuttind force magnitude

100 N 200 N 500N 1000N 2000N 3000N

0.05 mm KR 100 KR 100 KR 500

KR 120 KR 270

KR 270 KR 360

KR 360 KR 500

KR 500

0.1 mm KR 100 KR 100 KR 100 KR 500

KR 120 KR 120 KR 270

KR 270 KR 270 KR 360

KR 360 KR 360 KR 500

KR 500 KR 500

0.2 mm KR 100 KR 100 KR 100 KR 100 KR 500 KR 500

KR 120 KR 120 KR 120 KR 270

KR 270 KR 270 KR 270 KR 360

KR 360 KR 360 KR 360 KR 500

KR 500 KR 500 KR 500

0.5 mm KR 100 KR 100 KR 100 KR 100 KR 270 KR 360

KR 120 KR 120 KR 120 KR 120 KR 360 KR 500

KR 270 KR 270 KR 270 KR 270 KR 500

KR 360 KR 360 KR 360 KR 360

KR 500 KR 500 KR 500 KR 500

1.0 mm KR 100 KR 100 KR 100 KR 100 KR 270 KR 360

KR 120 KR 120 KR 120 KR 120 KR 360 KR 500

KR 270 KR 270 KR 270 KR 270 KR 500

KR 360 KR 360 KR 360 KR 360

KR 500 KR 500 KR 500 KR 500
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Cartesian space with a fixed tool orientation. It should be mentioned

that in spite of the fact that only 5 dof are required to perform the

technological task (while the robot has 6 dof), the problem of the

redundancy resolution and manipulator configuration optimization

along the path is not important here since the milling tool axis

coincides with the last axis of the robot wrist. It is worth mentioning

also that here, because of some restrictions, the radius was lower

comparing to the benchmark task considered in Section 5.

Nevertheless, the obtained data can be reasonably used for the

validation assuming that simulation is adapted for these settings.

The experimental setup is presented in Fig. 21, it includes the robot

Kuka KR270 equipped with a spindle and a machining table with a

workpiece attached to. In the experiments the workpiece was placed in

several locations (Fig. 22a), the groove depth varied from 4 to 10 mm,

and two types of materials were used (soft and hard ones). The

machined workpiece are presented in Fig. 22b. To make theoretical

and experimental results comparable, the simulation has been repeated

for radius 60 mm and the cutting force estimated for this case.

Comparison of the theoretical and experimental results on linear

and polar plots are presented in Figs. 23 and 24 respectively, which

contain the milling path deviations with respect to the reference circle.

As follows from them the shapes of the machined grooves and

estimated ones are very close to each other. For instance, for the

location #1 and the cutting depth 6, 8 and 10 mm, the difference

between the measured and estimated circularity indices is less than 5%.

This allows us to conclude that the above presented technique for robot

comparison is based on realistic performance measures.

Summarized results of the experiment study are given in Table 10,

which contain the circularity indices for all machined samples. To

evaluate the quality of the studied machining process and to compute

the circularity, a standard 3 axis CMM machine was used. It should be

noted that the entry and exit points were eliminated from the analysis

in order to increase the validity of the circularity estimation. The

results clearly show that augmentation of the cutting force magnitude

(directly related to the cutting depth) leads to increasing of the

circularity index, which can be computed by simple scaling. Also, the

obtained results confirm advantages of the workpiece location #1

which is very close to the optimal task placement computed in

Section 5. It is worth mentioning that the stiffness-based optimization

of the task location is preferable here compared to the convention

kinematic-based approaches, which does not take into account the

machining accuracy.

7. Discussions

In spite of numerous advantages, the developed approach has some

limitations that should be clarified. It is clear that the adapted

performance measure (evaluating contortion of the benchmark circle)

is general enough since it indirectly takes into account other desired

properties such as the path straightness and surface flatness. From the

other side, if the technological task is exactly known (the path and

corresponding forces), it is possible to evaluate machining trajectory

directly. However, the latter approach may produce the task location

optimum that is not acceptable for a slightly different operation.

It is worth mentioning that the proposed methodology requires

estimation of the cutting forces that highly depend on the technological

tool and material properties, so it is computed rather approximately.

Nevertheless, small errors in the force magnitude are not critical here

since the circularity-force relation is almost linear. This fact is

confirmed by experimental results showing that the groove depth

increase from 6 to 8 mm leads to the circularity degradation from

0.69 to 0.89 mm. Hence, the issue of the cutting force magnitude is not

essential for the robot comparison because it does not violate the robot

dominance order. For this reason, the theoretical model of the cutting

force used in this paper is good enough to get reasonable results for

robot selection.

Another important subject to be discussed is the validity of the

cutting force magnitude/direction assumption. In fact, the developed

Fig. 21. Experimental setup: milling circular trajectory in aluminum by Kuka KR 270 robot.

Fig. 22. Experimental results: machined workpiece.
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methodology assumes that the cutting force is constant with respect to

the tool feed direction, and the force simply rotates while advancing

along the circle. From technological point of view this assumption is

equivalent to the constant groove depth condition. However, as follows

from the experimental study, the cutting depth essentially varies along

the trajectory (about 20%, from 0.8 to 1.3 mm depending on the

workpiece location). This aspect was ignored in the circularity comput-

ing (see Section 4.2) while it is an important issue to be considered in

future. The most obvious solution of this problem is to adjust the

cutting force for each path-point taking into account current groove

depth estimated via the relevant compliance error component. Such

enhancement should obviously make simulations results closer to the

experimental data.

It should be also stressed that the comparison analysis does not

require the complete stiffness model. In particular, the simplified

model taking into account the actuators elasticity only is sufficiently

good here, since it allows predicting about 80% of the end-effector

elastostatic deflections without violating the robot dominance order. In

contrast, for the compliance error compensation the complete stiffness

model is preferable, allowing to reach 95% error reduction level.

In the frame of the developed technique, the robots are compared

considering the circularity index only. However, the compliance errors

(caused by machining) emerge as the circle center shift and modifica-

tion of its radius also. For instance, in machining experiments it was

detected that the radii of the obtained circles differed from the desired

one by 0.6–1.0 mm. Similar results are also produced by simulation.

Nevertheless, from our point of view, the circularity index is the most

representative for the machining accuracy evaluation because the

radius modification can be easily eliminated by simple scaling of the

input trajectory in the robot control system.

Finally, it is worth mentioning that the developed methodology is

based on the performance indices computed using elasto-static model.

At the same time, the experimental data characterize both static and

dynamic properties of the robot. Nevertheless, there is good agreement

between the simulation and experiments, which justifies the methodol-

ogy proposed in this work.

8. Conclusions

The paper proposes an industry-oriented methodology allowing

user to rank industrial robots with respect to the machining accuracy.

The developed methodology is based on the circularity index evaluating

precision of the benchmark circular trajectory completed by an

examined robot. To compute this performance measure, the manip-

ulator stiffness model is used for estimation of the compliance errors

corresponding to the reference cutting force, identical for all consid-

ered robots. The cutting force is evaluated taking into account typical

machining conditions and material properties. The stiffness model is

obtained experimentally using dedicated technique presented in the

paper. The main advantage of the accepted performance measure is its

clear engineering meaning. Besides, it takes into account the round-

ness, path straightness and the surface flatness.

Efficiency of the developed technique was confirmed by an applica-

tion example that deals with comparison study of five industrial robots

of Kuka family. For each of the examined robots, the circularity was

evaluated for the entire workspace and for all possible manipulator

configurations. These results allowed us to get the circularity limits and

to find the best task placement for each case study. Final results are

Fig. 23. Measured compliance errors along the machining trajectories.
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presented the forms of the tables and bar diagram, which can be used

for selection an appropriate robot taking into account required

accuracy, payload and workspace size.

Validity of developed methodology was also proved by experimental

study dealing with robot-based machining of circular grooves for

several workpiece samples and different locations. The obtained

circularity indices were in a good agreement with the theoretical model

used in this paper. In addition, advantages of the optimal task

placement computed using this performance measure were also con-

firmed. The experimental results also showed almost linear relation

between the circularity and the cutting force magnitude, which allows

user to apply the same circularity maps for different machining

conditions and to adapt numerical values by simple scaling.

In future, the developed methodology will be enhanced in order to

take into account variation of cutting force and cutting depth along the

trajectory. Another research direction is related to investigation of

machining capacities for parallel robots and their comparison with the

serial ones.
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