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MONOMIAL IDEALS WITH TINY SQUARES

SHALOM ELIAHOU, JÜRGEN HERZOG AND MARYAM MOHAMMADI SAEM

Abstract. Let I ⊂ K[x, y] be a monomial ideal. How small can µ(I2) be in
terms of µ(I)? It has been expected that the inequality µ(I2) > µ(I) should hold
whenever µ(I) ≥ 2. Here we disprove this expectation and provide a somewhat
surprising answer to the above question.

1. Introduction

For an ideal I in a Noetherian ring R, let µ(I) denote as usual the least number
of generators of I. If µ(I) = m, how small can µ(I2) be in terms of m? Obviously,
in suitable rings with zero-divisors, we may have µ(I2) = 0. There even exist one-
dimensional local domains (R,m) with the property that the square of their maximal
ideal m requires less generators than m itself, see [1, 2]. However, if R is a regular
local ring, or if R is a polynomial ring over a field K and I is a homogeneous ideal of
R, it has been expected in [3] that the inequality µ(I2) > µ(I) should hold whenever
µ(I) ≥ 2. This is indeed the case for any integrally closed ideal I in a 2-dimensional
regular local ring. On the other hand, it is not too difficult to construct examples
of monomial ideals I in a polynomial ring S with at least 4 variables such that
µ(I2) < µ(I). However, these examples satisfy height I < dimS. So far no ideals
I with µ(I2) < µ(I) were known for 2-dimensional regular rings. In this paper, we
shall prove the following statements.

Theorem 1.1. For every integer m ≥ 5, there exists a monomial ideal I ⊂ K[x, y]
such that µ(I) = m and µ(I2) = 9.

Moreover, this result is best possible for m ≥ 6.

Theorem 1.2. Let I ⊂ K[x, y] be a monomial ideal. If µ(I) ≥ 6 then µ(I2) ≥ 9.

Here are some notation to be used throughout. We denote by M the set of
monomials in K[x, y], i.e.

M = {xiyj | i, j ∈ N}.
As usual, we view M as partially ordered by divisibility.

For a monomial ideal J ⊂ K[x, y], we denote by G(J) its unique minimal system of
monomial generators. It is well known that G(J) is of cardinality µ(J) and consists
of all monomials in J which are minimal under divisibility, i.e.

G(J) =
(
M∩ J

)
\
(
M∩ J

)
M∗

where M∗ =M\ {1}.
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Finally, given integers a ≤ b, we denote by [a, b] the integer interval they span,
i.e.

[a, b] = {c ∈ Z | a ≤ c ≤ b}.

2. Preliminaries

Let m ≥ 2 be an integer and let I ⊂ K[x, y] be a monomial ideal such that
µ(I) = m. Then G(I) = {u1, . . . , um}, where ui = xaiybi for all i and where the
exponents ai, bi ∈ N satisfy

(1)
a1 > a2 > · · · > am,

b1 < b2 < · · · < bm.

Removing any common factor among the ui, we may assume am = b1 = 0 if desired.

Let V = {(i, j) ∈ N2 | 1 ≤ i ≤ j ≤ m}, and consider the map

f : V → I2

(i, j) 7→ uiuj.

Then f(V ) generates I2, but not minimally so in general. Thus G(I2) ⊆ f(V ), with
equality only occurring in special circumstances. How small can G(I2) be? So far
this was not well understood. We provide a complete answer in this note.

We partially order N2 as follows:

(i, j) ≤ (k, l)⇐⇒ i ≤ k and j ≤ l.

Since V ⊂ N2, we also view V as partially ordered by ≤. Recall thatM is partially
ordered by divisibility. These orderings interact in a simple yet useful way, as shown
by the lemma below. Recall that an antichain in a poset is a subset whose elements
are pairwise noncomparable.

Lemma 2.1. Let v, v′ ∈ V . If f(v) divides f(v′), then either v = v′ or else {v, v′}
is an antichain in V .

Equivalently, if v < v′, then {f(v), f(v′)} is an antichain in M.

Proof. Set v = (i, j), v′ = (k, l), and assume v < v′. Then i ≤ k and j ≤ l, and
at least one of these inequalities is strict. We have f(v) = uiuj = xai+ajybi+bj .
Similarly, f(v′) = xak+alybk+bl . Since the at are decreasing and the bt are increasing,
and since either i < k or j < l, we have

ai + aj > ak + bl,

bi + bj < bk + bl.

Therefore, neither uiuj divides ukul, nor conversely. �

Remark 2.2. If v, v′ ∈ V , then v, v′ are noncomparable if and only if

min v < min v′ ≤ max v′ < max v or min v′ < min v ≤ max v < max v′.

Picturing any pair w = (i, j) ∈ V as an edge joining the vertices i, j ∈ N, it is
useful to keep in mind that graphically, noncomparable pairs v, v′ ∈ V look like this:
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v

v′

For instance, if v = (1, 3), the only element of V which is noncomparable to v is
v′ = (2, 2), as is graphically obvious. Therefore by Lemma 2.1, if u1u3 /∈ G(I2), then
the only element of G(I2) dividing u1u3 must be u22.

Of course, noncomparability is not a transitive relation. For instance, the only
elements of V which are noncomparable to v′ = (2, 2) are all v′′ ∈ V of the form
v′′ = (1, j) with j ∈ [3,m]. Therefore, if u22 /∈ G(I2), any minimal generator of I2

dividing it must be of the form u1uj for some a priori unspecified j ∈ [3,m].

We shall also need the next lemma.

Lemma 2.3. Let v, v1, v2 ∈ V . Assume that v1 ≤ v2 and that f(v) divides both
f(v1), f(v2). Then f(v) divides f(v′) for all v′ ∈ V such that v1 ≤ v′ ≤ v2.

Proof. Set v = (i, j), v1 = (i1, j1), v2 = (i2, j2), v
′ = (r, s). The hypotheses, together

with the respective monotonicity of the at and bt, imply

ai + aj ≤ ai2 + aj2 ,

bi + bj ≤ bi1 + bj1 .

Since i1 ≤ r ≤ i2 and j1 ≤ s ≤ j2, it follows that

ai2 + aj2 ≤ ar + as,

bi1 + bj1 ≤ br + bs.

Thus ai + aj ≤ ar + as and bi + bj ≤ br + bs, whence f(v) divides f(v′). �

3. Conditions for tiny squares

We now give conditions on a monomial ideal I = (u1, . . . , um) in K[x, y] which
will force µ(I2) to be a small constant.

Theorem 3.1. Let m ≥ 5. Let I = (u1, . . . , um) ⊂ K[x, y] be a monomial ideal
with ui = xaiybi for all i, where a1 > · · · > am and b1 < · · · < bm. Assume that the
following divisibility conditions hold:

u1um | u2um−1(2)

u1um−1 | u2u3, u
2
m−2(3)

u22 | u1u3, u1um−2(4)

u2um | u3um−1, um−2um−1(5)

u2m−1 | u3um, um−2um.(6)

Then µ(I2) = 9. More precisely, I2 is minimally generated by the set

G = {u21, u1u2, u22} ∪ {u1um−1, u1um, u2um} ∪ {u2m−1, um−1um, u2m}.
3



Proof. To see that G generates I2, we must show that, for all i, j ∈ [1,m] such that
i ≤ j, the monomial uiuj is a multiple of some element in G . We distinguish several
cases.

Case i = 1. If j ∈ {1, 2,m−1,m}, we are done since the corresponding monomial
u1uj belongs to G. Assume now j ∈ [3,m−2]. Then (1, 3) ≤ (1, j) ≤ (1,m−2), and
since u22 divides both u1u3 and u1um−2 by (4), it also divides u1uj by Lemma 2.3.

Case i, j ∈ [2,m−2]. If (i, j) = (2, 2), we are done since u22 ∈ G. If (i, j) 6= (2, 2),
then (2, 3) ≤ (i, j) ≤ (m− 2,m− 2), and since u1um−1 divides both u2u3 and u2m−2
by (3), it follows from Lemma 2.3 that u1um−1 also divides uiuj.

Case j = m−1. If i = 2, then by (2), u2um−1 is divisible by u1um and u1um ∈ G.
If i ∈ [3,m − 2], then (3,m − 1) ≤ (i,m − 1) ≤ (m − 2,m − 1), and since u2um
divides both u3um−1 and um−2um−1 by (5), it also divides uium−1 by Lemma 2.3.
Finally, if i = m− 1, we are done since u2m−1 ∈ G.

Case j = m. If i = 2, we are done since u2um ∈ G. If i ∈ [3,m − 2], then
(3,m) ≤ (i,m) ≤ (m−2,m), and since u2m−1 divides both u3um and um−2um by (6),
it also divides uium by Lemma 2.3. Finally, if i ∈ {m − 1,m}, we are done since
um−1um, u

2
m ∈ G.

We conclude that G generates I2. To establish the equality G = G(I2), it remains
to see that G is an antichain. Let A ⊂ V consist of nine pairs (i, j) such that
G = {uiuj | (i, j) ∈ A}, for instance

A = {(1, 1), (1, 2), (2, 2), (1,m−1), (1,m), (2,m), (m−1,m−1), (m−1,m), (m,m)}.

Replacing (2, 2) by (1, 3) and (m − 1,m − 1) by (m − 2,m) yields a chain in V ,
namely

(1, 1) < (1, 2) < (1, 3) <

(1,m− 1) < (1,m) < (2,m) <

(m− 2,m) < (m− 1,m) < (m,m).

It follows from Lemma 2.1 that the set

G′ = G ∪ {u1u3, um−2um} \ {u22, u2m−1}

is an antichain. In particular, its subset G \ {u22, u2m−1} also is. Consider now u1u3.
Since G generates I2, then u1u3 is a multiple of some element of G. Moreover, since
G′ is an antichain, the only possible factors of u1u3 in G are u22 and u2m−1. But
since (1, 3) < (m− 1,m− 1), Lemma 2.1 implies that {u1u3, u2m−1} is an antichain.
Therefore, the only factor of u1u3 in G is u22. Hence, since any monomial in I2 has
at least one factor in G ∩ G(I2), it follows that u22 ∈ G(I2).

Let us now see that u22 cannot divide another member of G. By Lemma 2.1, the
only possible multiples of u22 in G would be u1um−1 and u1um. But neither possibility
arises, since u1um−1 divides u2u3 by (3), and u1um divides u2um−1 by (2).

Entirely symmetric arguments apply to u2m−1. We conclude that G = G(I2), as
desired. �
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4. An explicit construction

We now show that the conditions of Theorem 3.1 ensuring µ(I2) = 9 are realizable.

Proposition 4.1. Let m ≥ 5. Let I = (u1, . . . , um), where ui = xaiybi with expo-
nents ai, bi defined as follows:

(a1, . . . , am) = (5m, 4m, 4m− 1, . . . , 3m+ 4,m, 0),

(b1, . . . , bm) = (am, . . . , a1).

Then µ(I) = m and µ(I2) = 9.

Proof. Since the ai are decreasing and the bi are increasing, the ui constitute an
antichain and hence a minimal system of generators of I. In order to show µ(I2) = 9,
it suffices to prove that the divisibility conditions of Theorem 3.1 are met. This is
straightforward. For convenience, here are the monomials involved:

u1um = x5my5m u2um−1 = x5my5m

u1um−1 = x6my4m u2u3 = x8m−1y4m+4 u2m−2 = x6m+8y8m−2

u22 = x8my2m u1u3 = x9m−1y3m+4 u1um−2 = x8m+4y4m−1

u2um = x4my6m u3um−1 = x5m−1y7m+4 um−2um−1 = x4m+4y8m−1

u2m−1 = x2my8m u3um = x4m−1y8m+4 um−2um = x3m+4y9m−1.

�

Let us now look at the degree distribution of G(I) and of G(I2). The generators
ui of I are of degree ai + bi = ai + am+1−i for all i ∈ [1,m]. For m ≥ 5, we find

deg(u1) = deg(u2) = deg(um−1) = deg(um) = 5m,
deg(ui) = deg(um+1−i) = 7m+ 3

for all 3 ≤ i ≤ m− 2. That is, the ideal I is generated in two degrees only. For I2

the situation is even simpler. It is generated in the single degree 10m, the common
degree of its nine minimal generators.

Example 4.2. Here is the case m = 10 of Proposition 4.1. We have

I = (x50, x40y10, x39y34, x38y35, x37y36, x36y37, x35y38, x34y39, x10y40, y50)

and

I2 = (x100, x90y10, x80y20, x60y40, x50y50, x40y60, x20y80, x10y90, y100).

To conclude this section, let us show that in contrast, if I is generated in a single
degree, then µ(I2) grows to infinity with µ(I).

Proposition 4.3. Let I ⊂ K[x, y] be a monomial ideal generated in a single degree.
If µ(I) = m then µ(I2) ≥ 2m− 1.

Proof. Set G(I) = {u1, . . . , um}, and assume deg(ui) = d for all i. Since deg(uiuj) =
2d for all i, j, the distinct uiuj form an antichain for divisibility. Hence µ(I2) equals
the number of pairwise distinct uiuj. Now that number is at least 2m − 1, as
witnessed by the subset

u1u1, u1u2, . . . , u1um, u2um, . . . , umum.
5
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5. Computing µ(Ik)

For the ideal I satisfying µ(I) = m,µ(I2) = 9 of the preceding section, we now
determine µ(Ik) for all k.

Proposition 5.1. Given m ≥ 5, let I = (u1, . . . , um) be the ideal defined in Propo-
sition 4.1. For all k ≥ 3, we have µ(Ik) = 5k + 1.

Proof. It follows from Theorem 3.1 that I2 is minimally generated by

G = {u21, u1u2, u22} ∪ {u1um−1, u1um, u2um} ∪ {u2m−1, um−1um, u2m}.
Let J = (u1, u2, um−1, um) and H = (u3, . . . , um−2), so that I = J + H. Then
I2 = J2, since I2 = (G) ⊆ J2 ⊆ I2. Hence IJ, IH ⊆ J2, from which it follows that
Ik = Jk for all k ≥ 3.

Now, by construction in Proposition 4.1, we have J = (x5m, x4mym, xmy4m, y5m).
Let J0 = (x5, x4y, xy4, y5). Then µ(Jk) = µ(Jk

0 ) for all k ≥ 1. Moreover, we have

J3
0 = (x15, x14y, . . . , xy14, y15)

as easily seen. It follows that Jk
0 = (x, y)5k for all k ≥ 3. Therefore

µ(Ik) = µ(Jk) = µ(Jk
0 ) = 5k + 1

for all k ≥ 3, as stated. �

Corollary 5.2. For any integer k0 ≥ 2, there exists a monomial ideal I in K[x, y]
such that µ(Ik) < µ(I) for all k such that 2 ≤ k ≤ k0.

Proof. Let m > 5k0 + 1. By Propositions 4.1 and 5.1, there is an ideal I with
µ(I) = m > 5k0 + 1 and satisfying µ(Ik) ≤ 5k + 1 for all k ≥ 2. Therefore
µ(Ik) < µ(I) for all 2 ≤ k ≤ k0. �

6. Optimality

We now prove that Theorem 3.1 is best possible, in the sense that µ(I2) is bounded
below by 9 if µ(I) ≥ 6. For that we need some more notation. If I ⊂ K[x, y] is a
monomial ideal with G(I) = {u1, . . . , um}, let us denote

G2(I) = {uiuj | 1 ≤ i ≤ j ≤ m},
i.e. G2(I) = f(V ) in the notation of the Introduction. Let

γ : G2(I)→ G(I2)

be the map defined, for all uiuj ∈ G2(I), by

(7) γ(uiuj) = ukul,

where ukul ∈ G(I2) is the lexicographically first minimal monomial generator of I2

dividing uiuj. Note that γ ◦ γ = γ. Finally, given uiuj ∈ G2(I), we denote

div(uiuj) = {urus ∈ G2(I) | urus divides uiuj}.
Of course γ(uiuj) ∈ div(uiuj). We will repeatedly use the following reformulation
of Lemma 2.1.
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Lemma 6.1. For all (i, j) ∈ V , we have

div(uiuj) ⊆ {uiuj} ∪ {urus ∈ G2(I) | (r, s) is noncomparable to (i, j) in V }.
Proof. As stated in Lemma 2.1, if urus divides uiuj and (r, s) 6= (i, j), then {(r, s), (i, j)}
is an antichain in V . �

Thus for instance, div(u1u3) ⊆ {u1u3, u22} as already observed after Remark 2.2.
Again, it is useful to keep in mind the picture representing noncomparable pairs
following that remark.

Here is the main result of this section.

Theorem 6.2. Let I ⊂ K[x, y] be a monomial ideal. If µ(I) ≥ 6 then µ(I2) ≥ 9.

Proof. Let m = µ(I). As before, we denote G(I) = {u1, . . . , um}, where ui = xaiybi

for all i and where the ai, bi are decreasing and increasing, respectively. We start by
considering the following six monomials in G2(I):

u21, u1u2, u1u3, um−2um, um−1um, u
2
m.

By Lemma 6.1, we have γ(u21) = u21 since (1, 1) is comparable to every (i, j) ∈ V ,
namely (1, 1) ≤ (i, j). Similarly, each one of the pairs (1, 2), (m − 1,m), (m,m) is
comparable to all elements of V , whence

γ(u1u2) = u1u2, γ(um−1um) = um−1um, γ(u2m) = u2m.

Consider u1u3. Then

γ(u1u3) ∈ div(u1u3) ⊆ {u1u3, u22}
by Lemma 6.1, since (1, 3) is comparable to all elements of V except (2, 2). Sym-
metrically, we have

γ(um−2um) ∈ {um−2um, u2m−1}.
Thus so far, we have six pairwise distinct minimal monomial generators of I2, namely

(8) A = {u21, u1u2, γ(u1u3), γ(um−2um), um−1um, u
2
m} ⊆ G(I2).

Considering u1um, we distinguish two cases.

Case 1: γ(u1um) 6= u1um. Therefore u1um /∈ G(I2), and γ(u1um) = urus for some
r, s ∈ [2,m − 1] such that r ≤ s. Since div(u2u3) ∩ div(um−2um−1) ⊆ {u1um} by
Lemma 6.1, it follows that γ(u2u3) 6= γ(um−2um−1). Moreover, it also follows from
Lemma 6.1 that γ(u2u3), γ(um−2um−1) /∈ A. So let

A′ = A t {γ(u2u3), γ(um−2um−1)}.
Then card(A′) = 8. There are two subcases.
Case (1.1) If γ(u1um) /∈ A′, then we are done, since joining γ(u1um) to A′ yields

nine minimal generators of I2.
Case (1.2) If γ(u1um) ∈ A′, then by Lemma 6.1, the only possibilities are as

follows:
γ(u1um) = u22 = γ(u1u3),
γ(u1um) = u2u3 = γ(u2u3),
γ(u1um) = um−2um−1 = γ(um−2um−1),
γ(u1um) = u2m−1 = γ(u2m−1).
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But then in each case, Lemma 6.1 implies γ(u2um−2) /∈ A′, and we are done again.

Case 2: γ(u1um) = u1um. Then u1um ∈ G(I2). Let

A′ = A t {u1um} = {u21, u1u2, γ(u1u3), γ(um−2um), um−1um, u
2
m, u1um}.

Then A′ ⊆ G(I2) and card(A′) = 7. Comparing γ(u1um−1) to γ(u1u3), and γ(u2um)
to γ(um−2um), gives rise to four subcases. Let us consider them in turn.

Case (2.1): γ(u1um−1) = γ(u1u3), γ(u2um) = γ(um−2um).
Since div(u1um−1) ∩ div(u1u3) ⊆ {u22}, we have γ(u1um−1) = γ(u1u3) = u22. Simi-

larly, we have γ(u2um) = γ(um−2um) = u2m−1. Therefore

u22 | u1um−1,

u2m−1 | u2um.

Hence u22u
2
m−1 | u1um−1u2um, implying u2um−1 | u1um. Whence

(9) u2um−1 = u1um

since u1um ∈ G(I2). Let

A′′ = A′ ∪ {γ(u2u3), γ(um−2um−1)}.
Then A′′ ⊆ G(I2) by construction. We claim that card(A′′) = 9. Indeed, Lemma 6.1
implies

{γ(u2u3), γ(um−2um−1)} ∩ A′ ⊆ {u1um}.
But since u1um = u2um−1 here, as observed in (9), it follows that

(10) u1um /∈ div(u2u3) ∪ div(um−2um−1),

whence the above intersection is empty. Moreover, since div(u2u3)∩div(um−2um−1) ⊆
{u1um}, it follows from (10) that γ(u2u3) 6= γ(um−2um−1). Therefore card(A′′) = 9
as claimed, and we are done in this case.

Case (2.2): γ(u1um−1) = γ(u1u3), γ(u2um) 6= γ(um−2um).
This is by far the most delicate case. As observed in the preceding case, the

equality γ(u1um−1) = γ(u1u3) implies γ(u1um−1) = γ(u1u3) = u22. Now γ(u2um) /∈
A′, as follows from Lemma 6.1 and the inequality γ(u2um) 6= γ(um−2um). Let

A′′ = A′ ∪ {γ(u2um)}.
Then A′′ ⊆ G(I2) and card(A′′) = 8. We distinguish four subcases, according to the
values of γ(u2um) and γ(um−2um). Recall that γ(um−2um) ∈ {um−2um, u2m−1}.
Case (2.2.1): γ(u2um) = u2um, γ(um−2um) = um−2um.
Then

A′′ = {u21, u1u2, u22, um−2um, um−1um, u2m, u1um, u2um}.
Interestingly here, for m = 5, there are explicit cases where A′′ = G(I2). Now

under our hypothesis m ≥ 6, a ninth element in G(I2) \ A′′ is given by γ(u3um), as
easily follows from the present shape of A′′ and Lemma 6.1.

Case (2.2.2): γ(u2um) = u2um, γ(um−2um) = u2m−1.
Then

A′′ = {u21, u1u2, u22, u2m−1, um−1um, u2m, u1um, u2um}.
8



Consider u2um−1. If γ(u2um−1) /∈ A′′, we have our ninth minimal generator and
we are done. Assume now for a contradiction that γ(u2um−1) ∈ A′′. Then under
the present shape of A′′ and Lemma 6.1, the only possibility is γ(u2um−1) = u1um.
Therefore

u22 | u1um−1,

u1um | u2um−1.

Hence u1u
2
2um |u1u2u2m−1, implying u2um |u2m−1. This is a contradiction, since u2m−1 =

γ(um−2um), whence u2m−1 divides um−2um which is not divisible by u2um.

Case (2.2.3): γ(u2um) 6= u2um, γ(um−2um) = um−2um.
By Lemma 6.1, we have γ(u2um) = urus for some 3 ≤ r ≤ s ≤ m− 1. Then

A′′ = {u21, u1u2, u22, um−2um, um−1um, u2m, u1um, urus}.

Consider um−3um. If γ(um−3um) /∈ A′′, we have our ninth minimal generator and
we are done. If γ(um−3um) ∈ A′′, then the only possibility allowed by Lemma 6.1 is
γ(um−3um) = urus. The same lemma then implies m− 2 ≤ r ≤ s ≤ m− 1.

Consider now u2u3. If γ(u2u3) /∈ A′′, we are done. Assume now for a contradiction
that γ(u2u3) ∈ A′′. Then the only possibility is γ(u2u3) = u1um. Therefore, since
γ(u1u3) = u22 in the present case, we have

u22 | u1u3,

u1um | u2u3.

Hence u1u
2
2um |u1u2u23, implying u2um |u23. This is a contradiction, since γ(u2um) =

urus, whence urus divides u2um but cannot divide u23 since r, s ∈ [m− 2,m− 1].

Case (2.2.4): γ(u2um) 6= u2um, γ(um−2um) = u2m−1.
As above, we have γ(u2um) = urus for some 3 ≤ r ≤ s ≤ m − 1, and here with

(r, s) 6= (m− 1,m− 1) since γ(u2um) 6= γ(um−2um) in the present Case (2.2). Then

A′′ = {u21, u1u2, u22, u2m−1, um−1um, u2m, u1um, urus}.

To settle this case, it suffices to show that either γ(u2um−1) or γ(um−2um−1) lies
outside A′′. Assume for a contradiction the contrary, i.e.

(11) {γ(u2um−1), γ(um−2um−1)} ⊂ A′′.

Lemma 6.1 then implies

(12) {γ(u2um−1), γ(um−2um−1)} ⊆ {u1um, urus}.

On the other hand, that same lemma implies

(13) div(u2um−1) ∩ div(um−2um−1) ⊆ {u1um}.

We cannot have γ(um−2um−1) = u1um. For otherwise, in the present Case (2.2.4),
that equality would imply

u1um | um−2um−1,

u2m−1 | um−2um.
9



Therefore u1u
2
m−1um |u2m−2um−1um, whence u1um−1 |u2m−2. This is impossible, since

u22 divides u1um−1 in the present Case (2.2), whereas u22 cannot divide u2m−2 by
Lemma 6.1.

Therefore γ(um−2um−1) 6= u1um, whence γ(um−2um−1) = urus by (12). Since
r, s ∈ [3,m− 1], this and Lemma 6.1 imply (r, s) = (m− 2,m− 1). That is, we have

(14) γ(um−2um−1) = urus = um−2um−1.

Consider now u2um−1. It follows from (12), (13) and (14), that γ(u2um−1) = u1um.
In the present Case (2.2), this yields

u1um | u2um−1,

u22 | u1um−1.

Therefore u2um |u2m−1. But u2m−1 divides um−2um in the present Case (2.2.4), yet
u2um cannot divide um−2um. This contradiction shows that (11) is absurd. Therefore

card
(
A′′ ∪ {γ(u2um−1), γ(um−2um−1)}

)
≥ 9.

This settles Case (2.2.4) and concludes Case (2.2).

Case (2.3): γ(u1um−1) 6= γ(u1u3), γ(u2um) = γ(um−2um).
This case is symmetrical to Case (2.2). It follows from it by interchanging the

variables x, y and reversing the sequence u1, . . . , um.

Case (2.4): γ(u1um−1) 6= γ(u1u3), γ(u2um) 6= γ(um−2um).
Being in Case (2), recall that

A′ = A t {u1um} = {u21, u1u2, γ(u1u3), γ(um−2um), um−1um, u
2
m, u1um},

a subset of cardinality 7 in G(I2). It follows from the present hypotheses that

(15) A′ ∩ {γ(u1um−1), γ(u2um)} = ∅.

Thus, it suffices to show γ(u1um−1) 6= γ(u2um), for then this would imply

(16) card
(
A′ ∪ {γ(u1um−1), γ(u2um)}

)
= 9

and we would be done. Assume for a contradiction the contrary, i.e. that γ(u1um−1) =
γ(u2um). Lemma 6.1 then implies

(17) γ(u1um−1) = γ(u2um) = urus

for some r, s ∈ [3,m − 2] with r ≤ s. Thus urus divides both u1um−1 and u2um.
Since (1,m − 1) < (1,m) < (2,m) in V , Lemma 2.3 implies that urus also divides
u1um. But since u1um ∈ A′ ⊆ G(I2), it follows that urus = u1um. Thus urus ∈ A′,
contrary to the conjunction of (17) and (15). This contradiction settles (16) and
concludes the proof of the present last case, and hence of the theorem. �
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For completeness, let us give optimal lower bounds on µ(I2) for monomial ideals
I ⊂ K[x, y] such that µ(I) = m ≤ 5. The result is as follows.

µ(I2) ≥


1 if m = 1,
3 if m = 2,
5 if m = 3,
7 if m = 4,
8 if m = 5.

As stated, these five lower bounds are sharp. The verification is left to the reader.

Let us conclude this paper with two questions. Let m ≥ 6 be an integer, and let
I ⊂ K[x, y] be a monomial ideal such that µ(I) = m. We have seen in Proposi-
tion 4.3 that if I is generated in a single degree, then µ(I2) ≥ 2m − 1. Our ideals
in Proposition 4.1 reaching the absolute minimum µ(I2) = 9 are generated in two
degrees depending on m, namely 5m and 7m+ 3.

Here is our first question. If I is generated in two degrees d1 < d2 such that the
difference d = d2 − d1 is fixed and independent of m, does it follow that µ(I2) must
grow to infinity with m? This seems to be true for d = 1, but it would be nice to
have a proof.

Our second question is, what would be the proper generalization of the present
results in n variables?
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