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MONOMIAL IDEALS WITH TINY SQUARES

Let I ⊂ K[x, y] be a monomial ideal. How small can µ(I 2 ) be in terms of µ(I)? It has been expected that the inequality µ(I 2 ) > µ(I) should hold whenever µ(I) ≥ 2. Here we disprove this expectation and provide a somewhat surprising answer to the above question.

Introduction

For an ideal I in a Noetherian ring R, let µ(I) denote as usual the least number of generators of I. If µ(I) = m, how small can µ(I 2 ) be in terms of m? Obviously, in suitable rings with zero-divisors, we may have µ(I 2 ) = 0. There even exist onedimensional local domains (R, m) with the property that the square of their maximal ideal m requires less generators than m itself, see [START_REF] Herzog | A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring[END_REF][START_REF] Orecchia | One-dimensional local rings with reduced associated graded ring and their Hilbert functions[END_REF]. However, if R is a regular local ring, or if R is a polynomial ring over a field K and I is a homogeneous ideal of R, it has been expected in [START_REF] Herzog | On the number of generators of powers of an ideal[END_REF] that the inequality µ(I 2 ) > µ(I) should hold whenever µ(I) ≥ 2. This is indeed the case for any integrally closed ideal I in a 2-dimensional regular local ring. On the other hand, it is not too difficult to construct examples of monomial ideals I in a polynomial ring S with at least 4 variables such that µ(I 2 ) < µ(I). However, these examples satisfy height I < dim S. So far no ideals I with µ(I 2 ) < µ(I) were known for 2-dimensional regular rings. In this paper, we shall prove the following statements.

Theorem 1.1. For every integer m ≥ 5, there exists a monomial ideal I ⊂ K[x, y] such that µ(I) = m and µ(I 2 ) = 9.

Moreover, this result is best possible for m ≥ 6.

Theorem 1.2. Let I ⊂ K[x, y] be a monomial ideal. If µ(I) ≥ 6 then µ(I 2 ) ≥ 9.
Here are some notation to be used throughout. We denote by M the set of monomials in K[x, y], i.e. M = {x i y j | i, j ∈ N}.

As usual, we view M as partially ordered by divisibility. For a monomial ideal J ⊂ K[x, y], we denote by G(J) its unique minimal system of monomial generators. It is well known that G(J) is of cardinality µ(J) and consists of all monomials in J which are minimal under divisibility, i.e. 

G(J) = M ∩ J \ M ∩ J M * where M * = M \ {1}.

Preliminaries

Let m ≥ 2 be an integer and let I ⊂ K[x, y] be a monomial ideal such that µ(I) = m. Then G(I) = {u 1 , . . . , u m }, where u i = x a i y b i for all i and where the exponents

a i , b i ∈ N satisfy (1) a 1 > a 2 > • • • > a m , b 1 < b 2 < • • • < b m .
Removing any common factor among the u i , we may assume

a m = b 1 = 0 if desired. Let V = {(i, j) ∈ N 2 | 1 ≤ i ≤ j ≤ m},
and consider the map

f : V → I 2 (i, j) → u i u j .
Then f (V ) generates I 2 , but not minimally so in general. Thus G(I 2 ) ⊆ f (V ), with equality only occurring in special circumstances. How small can G(I 2 ) be? So far this was not well understood. We provide a complete answer in this note.

We partially order N 2 as follows:

(i, j) ≤ (k, l) ⇐⇒ i ≤ k and j ≤ l.

Since V ⊂ N 2 , we also view V as partially ordered by ≤. Recall that M is partially ordered by divisibility. These orderings interact in a simple yet useful way, as shown by the lemma below. Recall that an antichain in a poset is a subset whose elements are pairwise noncomparable.

Lemma 2.1. Let v, v ∈ V . If f (v) divides f (v ), then either v = v or else {v, v } is an antichain in V . Equivalently, if v < v , then {f (v), f (v )} is an antichain in M.
Proof. Set v = (i, j), v = (k, l), and assume v < v . Then i ≤ k and j ≤ l, and at least one of these inequalities is strict. We have

f (v) = u i u j = x a i +a j y b i +b j . Similarly, f (v ) = x a k +a l y b k +b l .
Since the a t are decreasing and the b t are increasing, and since either i < k or j < l, we have

a i + a j > a k + b l , b i + b j < b k + b l .
Therefore, neither u i u j divides u k u l , nor conversely.

Remark 2.2. If v, v ∈ V , then v, v are noncomparable if and only if min v < min v ≤ max v < max v or min v < min v ≤ max v < max v .
Picturing any pair w = (i, j) ∈ V as an edge joining the vertices i, j ∈ N, it is useful to keep in mind that graphically, noncomparable pairs v, v ∈ V look like this:

v v For instance, if v = (1, 3), the only element of V which is noncomparable to v is v = (2, 2), as is graphically obvious. Therefore by Lemma 2.1, if u 1 u 3 / ∈ G(I 2 ), then the only element of G(I 2 ) dividing u 1 u 3 must be u 2 2 .
Of course, noncomparability is not a transitive relation. For instance, the only

elements of V which are noncomparable to v = (2, 2) are all v ∈ V of the form v = (1, j) with j ∈ [3, m]. Therefore, if u 2 2 / ∈ G(I 2 )
, any minimal generator of I 2 dividing it must be of the form u 1 u j for some a priori unspecified j ∈ [3, m].

We shall also need the next lemma.

Lemma 2.3. Let v, v 1 , v 2 ∈ V . Assume that v 1 ≤ v 2 and that f (v) divides both f (v 1 ), f (v 2 ). Then f (v) divides f (v ) for all v ∈ V such that v 1 ≤ v ≤ v 2 . Proof. Set v = (i, j), v 1 = (i 1 , j 1 ), v 2 = (i 2 , j 2 ), v = (r, s).
The hypotheses, together with the respective monotonicity of the a t and b t , imply

a i + a j ≤ a i 2 + a j 2 , b i + b j ≤ b i 1 + b j 1 .
Since i 1 ≤ r ≤ i 2 and j 1 ≤ s ≤ j 2 , it follows that

a i 2 + a j 2 ≤ a r + a s , b i 1 + b j 1 ≤ b r + b s . Thus a i + a j ≤ a r + a s and b i + b j ≤ b r + b s , whence f (v) divides f (v ).

Conditions for tiny squares

We now give conditions on a monomial ideal I = (u 1 , . . . , u m ) in K[x, y] which will force µ(I 2 ) to be a small constant.

Theorem 3.1. Let m ≥ 5. Let I = (u 1 , . . . , u m ) ⊂ K[x, y] be a monomial ideal with u i = x a i y b i for all i, where a 1 > • • • > a m and b 1 < • • • < b m .
Assume that the following divisibility conditions hold:

u 1 u m | u 2 u m-1 (2) u 1 u m-1 | u 2 u 3 , u 2 m-2 (3) 
u 2 2 | u 1 u 3 , u 1 u m-2 (4) u 2 u m | u 3 u m-1 , u m-2 u m-1 (5) u 2 m-1 | u 3 u m , u m-2 u m . (6)
Then µ(I 2 ) = 9. More precisely, I 2 is minimally generated by the set

G = {u 2 1 , u 1 u 2 , u 2 2 } ∪ {u 1 u m-1 , u 1 u m , u 2 u m } ∪ {u 2 m-1 , u m-1 u m , u 2 m }.
Proof. To see that G generates I 2 , we must show that, for all i, j ∈ [1, m] such that i ≤ j, the monomial u i u j is a multiple of some element in G . We distinguish several cases.

Case i = 1. If j ∈ {1, 2, m -1, m}, we are done since the corresponding monomial u 1 u j belongs to G. Assume now j ∈ [3, m -2]. Then (1, 3) ≤ (1, j) ≤ (1, m -2), and since u 2 2 divides both u 1 u 3 and u 1 u m-2 by (4), it also divides u 1 u j by Lemma 2.3.

Case i, j ∈ [2, m -2]. If (i, j) = (2, 2), we are done since u 2 2 ∈ G. If (i, j) = (2, 2), then (2, 3) ≤ (i, j) ≤ (m -2, m -2), and since u 1 u m-1 divides both u 2 u 3 and u 2 m-2 by (3), it follows from Lemma 2.3 that u 1 u m-1 also divides u i u j . Case j = m -1. If i = 2, then by (2), u 2 u m-1 is divisible by u 1 u m and u 1 u m ∈ G. If i ∈ [3, m -2], then (3, m -1) ≤ (i, m -1) ≤ (m -2, m -1)
, and since u 2 u m divides both u 3 u m-1 and u m-2 u m-1 by (5), it also divides andsince u 2 m-1 divides both u 3 u m and u m-2 u m by (6), it also divides u i u m by Lemma 2.3. Finally, if i ∈ {m -1, m}, we are done since u m-1 u m , u 2 m ∈ G. We conclude that G generates I 2 . To establish the equality G = G(I 2 ), it remains to see that G is an antichain. Let A ⊂ V consist of nine pairs (i, j) such that G = {u i u j | (i, j) ∈ A}, for instance A = {(1, 1), (1, 2), (2, 2), (1, m-1), (1, m), (2, m), (m-1, m-1), (m-1, m), (m, m)}.

u i u m-1 by Lemma 2.3. Finally, if i = m -1, we are done since u 2 m-1 ∈ G. Case j = m. If i = 2, we are done since u 2 u m ∈ G. If i ∈ [3, m -2], then (3, m) ≤ (i, m) ≤ (m -2, m),
Replacing (2, 2) by [START_REF] Herzog | A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring[END_REF][START_REF] Herzog | On the number of generators of powers of an ideal[END_REF] and (m -1, m -1) by (m -2, m) yields a chain in V , namely

(1, 1) < (1, 2) < (1, 3) < (1, m -1) < (1, m) < (2, m) < (m -2, m) < (m -1, m) < (m, m).

It follows from Lemma 2.1 that the set

G = G ∪ {u 1 u 3 , u m-2 u m } \ {u 2 2 , u 2 m-1
} is an antichain. In particular, its subset G \ {u 2 2 , u 2 m-1 } also is. Consider now u 1 u 3 . Since G generates I 2 , then u 1 u 3 is a multiple of some element of G. Moreover, since G is an antichain, the only possible factors of u 1 u 3 in G are u 2 2 and u 2 m-1 . But since (1, 3) < (m -1, m -1), Lemma 2.1 implies that {u 1 u 3 , u 2 m-1 } is an antichain. Therefore, the only factor of u 1 u 3 in G is u 2 2 . Hence, since any monomial in I 2 has at least one factor in G ∩ G(I 2 ), it follows that u 2 2 ∈ G(I 2 ). Let us now see that u 2 2 cannot divide another member of G. By Lemma 2.1, the only possible multiples of u 2 2 in G would be u 1 u m-1 and u 1 u m . But neither possibility arises, since u 1 u m-1 divides u 2 u 3 by (3), and u 1 u m divides u 2 u m-1 by [START_REF] Orecchia | One-dimensional local rings with reduced associated graded ring and their Hilbert functions[END_REF].

Entirely symmetric arguments apply to u 2 m-1 . We conclude that G = G(I 2 ), as desired.

An explicit construction

We now show that the conditions of Theorem 3.1 ensuring µ(I 2 ) = 9 are realizable. Proof. Since the a i are decreasing and the b i are increasing, the u i constitute an antichain and hence a minimal system of generators of I. In order to show µ(I 2 ) = 9, it suffices to prove that the divisibility conditions of Theorem 3.1 are met. This is straightforward. For convenience, here are the monomials involved:

u 1 u m = x 5m y 5m u 2 u m-1 = x 5m y 5m u 1 u m-1 = x 6m y 4m u 2 u 3 = x 8m-1 y 4m+4 u 2 m-2 = x 6m+8 y 8m-2 u 2 2 = x 8m y 2m u 1 u 3 = x 9m-1 y 3m+4 u 1 u m-2 = x 8m+4 y 4m-1 u 2 u m = x 4m y 6m u 3 u m-1 = x 5m-1 y 7m+4 u m-2 u m-1 = x 4m+4 y 8m-1 u 2 m-1 = x 2m y 8m u 3 u m = x 4m-1 y 8m+4 u m-2 u m = x 3m+4 y 9m-1 .
Let us now look at the degree distribution of G(I) and of G(I 2 ). The generators u i of I are of degree

a i + b i = a i + a m+1-i for all i ∈ [1, m]. For m ≥ 5, we find deg(u 1 ) = deg(u 2 ) = deg(u m-1 ) = deg(u m ) = 5m, deg(u i ) = deg(u m+1-i ) = 7m + 3 for all 3 ≤ i ≤ m -2.
That is, the ideal I is generated in two degrees only. For I 2 the situation is even simpler. It is generated in the single degree 10m, the common degree of its nine minimal generators.

Example 4.2. Here is the case m = 10 of Proposition 4.1. We have I = (x 50 , x 40 y 10 , x 39 y 34 , x 38 y 35 , x 37 y 36 , x 36 y 37 , x 35 y 38 , x 34 y 39 , x 10 y 40 , y 50 ) and I 2 = (x 100 , x 90 y 10 , x 80 y 20 , x 60 y 40 , x 50 y 50 , x 40 y 60 , x 20 y 80 , x 10 y 90 , y 100 ).

To conclude this section, let us show that in contrast, if I is generated in a single degree, then µ(I 2 ) grows to infinity with µ(I). Proof. Set G(I) = {u 1 , . . . , u m }, and assume deg(u i ) = d for all i. Since deg(u i u j ) = 2d for all i, j, the distinct u i u j form an antichain for divisibility. Hence µ(I 2 ) equals the number of pairwise distinct u i u j . Now that number is at least 2m -1, as witnessed by the subset Proof. It follows from Theorem 3.1 that I 2 is minimally generated by

u 1 u 1 , u 1 u 2 , . . . , u 1 u m , u 2 u m , . . . , u m u m .
G = {u 2 1 , u 1 u 2 , u 2 2 } ∪ {u 1 u m-1 , u 1 u m , u 2 u m } ∪ {u 2 m-1 , u m-1 u m , u 2 m }. Let J = (u 1 , u 2 , u m-1 , u m
) and H = (u 3 , . . . , u m-2 ), so that I = J + H. Then I 2 = J 2 , since I 2 = (G) ⊆ J 2 ⊆ I 2 . Hence IJ, IH ⊆ J 2 , from which it follows that I k = J k for all k ≥ 3. Now, by construction in Proposition 4.1, we have J = (x 5m , x 4m y m , x m y 4m , y 5m ). Let J 0 = (x 5 , x 4 y, xy 4 , y 5 ). Then µ(J k ) = µ(J k 0 ) for all k ≥ 1. Moreover, we have J 3 0 = (x 15 , x 14 y, . . . , xy 14 , y 15 ) as easily seen. It follows that J k 0 = (x, y) 5k for all k ≥ 3. Therefore

µ(I k ) = µ(J k ) = µ(J k 0 ) = 5k + 1 for all k ≥ 3, as stated.
Corollary 5.2. For any integer k 0 ≥ 2, there exists a monomial ideal I in K[x, y] such that µ(I k ) < µ(I) for all k such that 2 ≤ k ≤ k 0 .

Proof. Let m > 5k 0 + 1. By Propositions 4.1 and 5.1, there is an ideal I with µ(I) = m > 5k 0 + 1 and satisfying µ(I k ) ≤ 5k + 1 for all k ≥ 2. Therefore µ(I k ) < µ(I) for all 2 ≤ k ≤ k 0 .

Optimality

We now prove that Theorem 3.1 is best possible, in the sense that µ(I 2 ) is bounded below by 9 if µ(I) ≥ 6. For that we need some more notation.

If I ⊂ K[x, y] is a monomial ideal with G(I) = {u 1 , . . . , u m }, let us denote G 2 (I) = {u i u j | 1 ≤ i ≤ j ≤ m}, i.e. G 2 (I) = f (V ) in the notation of the Introduction. Let γ : G 2 (I) → G(I 2 )
be the map defined, for all u i u j ∈ G 2 (I), by

(7) γ(u i u j ) = u k u l ,
where u k u l ∈ G(I 2 ) is the lexicographically first minimal monomial generator of I 2 dividing u i u j . Note that γ • γ = γ. Finally, given u i u j ∈ G 2 (I), we denote

div(u i u j ) = {u r u s ∈ G 2 (I) | u r u s divides u i u j }.
Of course γ(u i u j ) ∈ div(u i u j ). We will repeatedly use the following reformulation of Lemma 2.1.

For completeness, let us give optimal lower bounds on µ(I 2 ) for monomial ideals I ⊂ K[x, y] such that µ(I) = m ≤ 5. The result is as follows.

µ(I 2 ) ≥            1 if m = 1, 3 if m = 2, 5 if m = 3, 7 if m = 4, 8 if m = 5.
As stated, these five lower bounds are sharp. The verification is left to the reader.

Let us conclude this paper with two questions. Let m ≥ 6 be an integer, and let I ⊂ K[x, y] be a monomial ideal such that µ(I) = m. We have seen in Proposition 4.3 that if I is generated in a single degree, then µ(I 2 ) ≥ 2m -1. Our ideals in Proposition 4.1 reaching the absolute minimum µ(I 2 ) = 9 are generated in two degrees depending on m, namely 5m and 7m + 3.

Here is our first question. If I is generated in two degrees d 1 < d 2 such that the difference d = d 2 -d 1 is fixed and independent of m, does it follow that µ(I 2 ) must grow to infinity with m? This seems to be true for d = 1, but it would be nice to have a proof.

Our second question is, what would be the proper generalization of the present results in n variables?

Finally, given integers

  a ≤ b, we denote by [a, b] the integer interval they span, i.e. [a, b] = {c ∈ Z | a ≤ c ≤ b}.

Proposition 4. 1 .

 1 Let m ≥ 5. Let I = (u 1 , . . . , u m ), where u i = x a i y b i with exponents a i , b i defined as follows:(a 1 , . . . , a m ) = (5m, 4m, 4m -1, . . . , 3m + 4, m, 0), (b 1 , . . . , b m ) = (a m , . . . , a 1 ).Then µ(I) = m and µ(I 2 ) = 9.

Proposition 4. 3 .

 3 Let I ⊂ K[x, y] be a monomial ideal generated in a single degree. If µ(I) = m then µ(I 2 ) ≥ 2m -1.

5.

  Computing µ(I k ) For the ideal I satisfying µ(I) = m, µ(I 2 ) = 9 of the preceding section, we now determine µ(I k ) for all k. Proposition 5.1. Given m ≥ 5, let I = (u 1 , . . . , u m ) be the ideal defined in Proposition 4.1. For all k ≥ 3, we have µ(I k ) = 5k + 1.

Lemma 6.1. For all (i, j) ∈ V , we have div(u i u j ) ⊆ {u i u j } ∪ {u r u s ∈ G 2 (I) | (r, s) is noncomparable to (i, j) in V }.

Proof. As stated in Lemma 2.1, if u r u s divides u i u j and (r, s) = (i, j), then {(r, s), (i, j)} is an antichain in V .

Thus for instance, div(u 1 u 3 ) ⊆ {u 1 u 3 , u 2 2 } as already observed after Remark 2.2. Again, it is useful to keep in mind the picture representing noncomparable pairs following that remark.

Here is the main result of this section.

Theorem 6.2. Let I ⊂ K[x, y] be a monomial ideal. If µ(I) ≥ 6 then µ(I 2 ) ≥ 9.

Proof. Let m = µ(I). As before, we denote G(I) = {u 1 , . . . , u m }, where u i = x a i y b i for all i and where the a i , b i are decreasing and increasing, respectively. We start by considering the following six monomials in G 2 (I):

2 } by Lemma 6.1, since [START_REF] Herzog | A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring[END_REF][START_REF] Herzog | On the number of generators of powers of an ideal[END_REF] is comparable to all elements of V except (2, 2). Symmetrically, we have γ(u m-2 u m ) ∈ {u m-2 u m , u 2 m-1 }. Thus so far, we have six pairwise distinct minimal monomial generators of I 2 , namely (8)

). Moreover, it also follows from Lemma 6.1 that γ(u

Then card(A ) = 8. There are two subcases.

Case (1.1) If γ(u 1 u m ) / ∈ A , then we are done, since joining γ(u 1 u m ) to A yields nine minimal generators of I 2 .

Case (1.2) If γ(u 1 u m ) ∈ A , then by Lemma 6.1, the only possibilities are as follows:

γ(u

But then in each case, Lemma 6.1 implies γ(u 2 u m-2 ) / ∈ A , and we are done again.

) and card(A ) = 7. Comparing γ(u 1 u m-1 ) to γ(u 1 u 3 ), and γ(u 2 u m ) to γ(u m-2 u m ), gives rise to four subcases. Let us consider them in turn.

Case (2.1):

Then A ⊆ G(I 2 ) by construction. We claim that card(A ) = 9. Indeed, Lemma 6.1 implies {γ(u

whence the above intersection is empty. Moreover, since div(u 2 u 3 )∩div(u m-2 u m-1 ) ⊆ {u 1 u m }, it follows from (10) that γ(u 2 u 3 ) = γ(u m-2 u m-1 ). Therefore card(A ) = 9 as claimed, and we are done in this case.

This is by far the most delicate case. As observed in the preceding case, the equality γ(u

2 . Now γ(u 2 u m ) / ∈ A , as follows from Lemma 6.1 and the inequality γ(u

Then A ⊆ G(I 2 ) and card(A ) = 8. We distinguish four subcases, according to the values of γ(u

Interestingly here, for m = 5, there are explicit cases where A = G(I 2 ). Now under our hypothesis m ≥ 6, a ninth element in G(I 2 ) \ A is given by γ(u 3 u m ), as easily follows from the present shape of A and Lemma 6.1.

Consider u 2 u m-1 . If γ(u 2 u m-1 ) / ∈ A , we have our ninth minimal generator and we are done. Assume now for a contradiction that γ(u 2 u m-1 ) ∈ A . Then under the present shape of A and Lemma 6.1, the only possibility is γ(u 2 u m-1 ) = u 1 u m . Therefore

∈ A , we have our ninth minimal generator and we are done. If γ(u m-3 u m ) ∈ A , then the only possibility allowed by Lemma 6.1 is

Consider now u 2 u 3 . If γ(u 2 u 3 ) / ∈ A , we are done. Assume now for a contradiction that γ(u 2 u 3 ) ∈ A . Then the only possibility is γ(u

2 in the present case, we have

As above, we have γ(u 2 u m ) = u r u s for some 3 ≤ r ≤ s ≤ m -1, and here with (r, s)

To settle this case, it suffices to show that either γ(u 2 u m-1 ) or γ(u m-2 u m-1 ) lies outside A . Assume for a contradiction the contrary, i.e.

On the other hand, that same lemma implies

We cannot have γ(u m-2 u m-1 ) = u 1 u m . For otherwise, in the present Case (2.2.4), that equality would imply

. This is impossible, since u 2 2 divides u 1 u m-1 in the present Case (2.2), whereas u 2 2 cannot divide u 2 m-2 by Lemma 6.1.

Therefore γ(u m-2 u m-1 ) = u 1 u m , whence γ(u m-2 u m-1 ) = u r u s by (12). Since r, s ∈ [3, m -1], this and Lemma 6.1 imply (r, s) = (m -2, m -1). That is, we have

Consider now u 2 u m-1 . It follows from ( 12), ( 13) and ( 14), that γ(u 2 u m-1 ) = u 1 u m . In the present Case (2.2), this yields

This settles Case (2.2.4) and concludes Case (2.2).

Case (2.3):

This case is symmetrical to Case (2.2). It follows from it by interchanging the variables x, y and reversing the sequence u 1 , . . . , u m .

Case (2.4)

Being in Case (2), recall that Since (1, m -1) < (1, m) < (2, m) in V , Lemma 2.3 implies that u r u s also divides u 1 u m . But since u 1 u m ∈ A ⊆ G(I 2 ), it follows that u r u s = u 1 u m . Thus u r u s ∈ A , contrary to the conjunction of ( 17) and (15). This contradiction settles (16) and concludes the proof of the present last case, and hence of the theorem.