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We show that a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon is the algebra of a monoid R 0 n namely the 0-rook monoid, in the same vein as Norton's 0-Hecke algebra being the algebra of a monoid H 0 n := H 0 n (A) (in Cartan type A). As expected, R 0 n is closely related to the latter: it contains the H 0 n (A) monoid and is a quotient of H 0 n (B). It shares many properties with H 0 n , in particular it is Jtrivial. It allows us to describe its representation theory including the description of the simple and projective modules. We further show that R 0 n is projective on H 0 n and make explicit the restriction and induction along the inclusion map. A more surprising fact is that there are several non classical tower structures on the family of (R 0 n ) n∈N and we discuss some work in progress on their representation theory.

Introduction

The Iwahori-Hecke algebra were defined by Iwahori in [START_REF] Iwahori | On the structure of a Hecke ring of a Chevalley group over a finite field[END_REF] in the following way: let q be a prime power and let M = M n (F q ) be the monoid of all n × n matrices over F q . Let G = GL n (F q ) ⊂ M be the general linear group, and let B ⊂ G be the Borel subgroup of upper triangular matrices. The Bruhat decomposition can be written G = σ∈S n BσB where S n is the symmetric group. For σ ∈ S n let T σ = 1 |B| ∑ x∈BσB x ∈ CG. The Hecke ring is the Z-ring spanned by the T σ and denoted by H C (G, B). Iwahori then proved that this definition can be extended for q outside of prime powers and this Hecke algebra, denoted by H n (q), has a presentation given by generators T 1 , . . . , T n-1 (where T i := T s i ) and relations

(1)

T 2 i = q • 1 + (q -1)T i , 1 ≤ i ≤ n -1, ( 2 
) T i T i+1 T i = T i+1 T i T i+1 1 ≤ i ≤ n -2, ( 3 
) T i T j = T j T i if |i -j| ≥ 2.
L. Solomon [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF] studied the Iwahori algebra H C (M, B). The Bruhat decomposition is now M = r∈R n BrB where R n is the set of rook matrices consisting of n × n matrices with entries {0, 1} and at most one nonzero entry in each row and column; see [START_REF] Renner | Analogue of the Bruhat decomposition for algebraic monoids. II. The length function and the trichotomy[END_REF]. Those matrices form a monoid (a generalization of groups in which the elements do not have to be invertible), called the rook monoid. In [START_REF] Solomon | The Iwahori algebra of M n (F q ). A presentation and a representation on tensor space[END_REF], Solomon described a generalization I n (q) outside of prime powers and a first presentation, which Halverson reformulated in [START_REF] Halverson | Representations of the q-rook monoid[END_REF] into the following one, with generators T 1 , . . . , T n-1 , P 1 , . . . , P n together with Relations (1) (2) and [START_REF] Denton | On the representation theory of finite J -trivial monoids[END_REF] above and extra relations: (4) P 2 i = P i , 1 ≤ i ≤ n, (5) P i P j = P j P i , 1 ≤ i, j ≤ n, (6) P i T j = T j P i , 1 ≤ i < j ≤ n, [START_REF] Iwahori | On the structure of a Hecke ring of a Chevalley group over a finite field[END_REF] 

P i T j = T j P i = qP i 1 ≤ j < i ≤ n, ( 8 
) P i+1 = qP i T -1 i P i 1 ≤ i < n.
The 0-Hecke algebra is the degeneracy at q = 0 of the Hecke algebra H n (q) of the symmetric group (or more generally a Coxeter group [START_REF] Fayers | 0-Hecke algebras of finite Coxeter groups[END_REF]). Its importance comes, among other things, from its action by divided difference operators on polynomials leading to the Demazure character formula. Starting from the work of Norton and Carter [START_REF] Norton | 0-Hecke algebras[END_REF][START_REF] Carter | Representation theory of the 0-Hecke algebra[END_REF], it has received attention from community ranging from combinatorics, algebraic geometry, representation theory and semi-group theory [START_REF] Krob | Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0[END_REF]. The goal of this abstract is to define and study the q = 0 degeneracy of I n (q). This abstract is structured as follows: after some background (Section 1), we first define the 0-rook monoid R 0 n by a presentation (Section 2.1) and describe some left and right faithful actions on so-called rook vectors and polynomials (Section 2.2 and Theorem 3). Using these presentations, we prove that R 0 n is J -trivial (Theorem 4). In Section 3, we investigate the representation theory of R 0 n including simple and projective modules. We show (Theorem 7) that R 0 n is projective over H 0 n and give an explicit rule for the decomposition numbers (Theorem 8). In Section 4, we discuss some work in progress about the branching graphs and tower of monoids.

Background

Rook Matrices and rook vectors Definition 1.

A rook matrix is a n × n matrix with entries {0, 1} and at most one nonzero entry in each row and column.

We encode it by its rook vector of size n whose i-th coordinate is 0 if there is no 1 in the i-th column of r, and the index of the row with the 1 in the i-th column otherwise.

Example 1. The rook matrices 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 and 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 will be denoted by 04231 and 03041.

Any permutation matrix is a rook matrix, as any permutation is a rook vector. The product of two rook matrices is again a rook matrix, so that they form a finite submonoid of the monoid of matrices. We denote by I n the identity rook matrix (or its rook vector).
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Representation theory of J -trivial monoid

In 1951, Green introduced several preorders on monoids (see for example: [10, Chapter V]) related to inclusion of ideals. In the following, we write R for right ideal, L for left and J for bi-sided. Let K ∈ {R, L, J } and M be a monoid. For x, y ∈ M, we write x ≤ K y when the K-ideal generated by x is contained in the K-ideal generated by y. For example, if K = L, this means that x ≤ L y if Mx ⊂ My or equivalently if x = uy for some u ∈ M. These relations are clearly preorders and naturally give rise to equivalence relations. For example x L y if and only if Mx = My. A monoid M is called K-trivial if all K-classes are of cardinality one, that is if the preorders are actual orders. For finite monoid, R, L and J are related as follows:

Lemma 1 ([10] V. Theorem 1.9). A finite monoid is J -trivial when it is both R and L-trivial.

The representation theory of J -trivial monoids has been well studied by Denton, Hivert, Schilling and Thiéry [START_REF] Denton | On the representation theory of finite J -trivial monoids[END_REF]. It turns out that it is combinatorial: more precisely, one can compute the simple, projective modules, the Cartan matrix and even the quiver by computing only in the monoid, without requiring linear combinations. We only summarize very shortly the result here. We denote by E(M) the set of idempotents (elements such that e 2 = e) of M.

Theorem 1 ([3]

). Let M be a J -trivial monoid. There are as many as simple modules S e as idempotents e ∈ E(M), all of dimension 1. Their structure is as follows: S e is spanned by some e with the action of any m ∈ M given by m • e = e if me = e, and 0 otherwise.

To describe the projective module, define

rfix(x) := min{e ∈ E(M) | ex = x}, (1.1) 
the min being taken for the J -order.

Theorem 2 ([3]

). For any idempotent e denote by L(e) := Me, and we set

L = (e) := {x ∈ Me | rfix(x) = e} and L < (e) := {x ∈ Me | rfix(x) < L e} . (1.2)
Then, the projective module P e associated to S e is isomorphic to KL(e)/KL < (e). In particular, taking as basis the image of L = (e) in the quotient, the action of m ∈ M on x ∈ L = (e) is given by: m • x = mx if rfix(mx) = e and 0 otherwise.

The 0-Hecke algebra as the algebra of a J -trivial monoid

By putting q = 0 in Relation (1) defining the Hecke algebra, one gets the quadratic equation T 2 i = -T i , the braid relations being unchanged. Further putting π i := T i + 1, the algebra H n (0) becomes the algebra of a monoid H 0 n generated by the (π i ) i<n with the relation π 2 i = π i and the braid relations. It turns out that H 0 n is J -trivial and that the representation theory of H n (0) worked out by Norton and Carter [START_REF] Norton | 0-Hecke algebras[END_REF][START_REF] Carter | Representation theory of the 0-Hecke algebra[END_REF] can be obtained from the general representation theory of J -trivial monoids [START_REF] Denton | On the representation theory of finite J -trivial monoids[END_REF]. Note that, to get a monoid for H n (0), a common choice is to put π i := -T i . However, this choice does not extend to the rook case.

The key to the representation theory of H 0 n is the following: Lemma 2. Let x ∈ H 0 n . Then, the idempotent rfix(x) is the maximal element of the parabolic subgroup generated by the π i 's where i is a right descent of x, that is xπ i = x.

We therefore recover the fact that the projective modules of H 0 n have their bases indexed by permutations with a given descent set.

Note 1. The reader has to be careful that we are working with the π i basis whereas in the literature it is customary to work with the T i basis. As a consequence the eigenvalues 0 and -1 with T i becomes respectively 1 and 0. The usual simple and projective modules for H n (0) associated with the set I ⊂ 1, n -1 are associated with 1, n -1 \ I in our conventions.

Definitions and elementary properties

We now define the 0-rook monoid R n 0 by extending the definition of H n 0 .

Relations

In the relations defining I n (q) let q = 0 and let π i = T i + 1. We get the quadratic equations π 2 i = π i , the braid relations for π i where 1 ≤ i ≤ n -1 together with (4)

P 2 i = P i , 1 ≤ i ≤ n, ( 5 
) P i P j = P j P i , 1 ≤ i, j ≤ n, ( 6 
) P i π j = π j P i , 1 ≤ i < j ≤ n, ( 7 
) P i π j = π j P i = P i , 1 ≤ j < i ≤ n, ( 8 
) P i+1 = P i π i P i , 1 ≤ i < n.
Let R 0 n be the monoid generated by the generators π 1 , . . . π n-1 , P 1 , . . . P n and these relations. The latter clearly show that it is generated only by P 1 , π 1 , . . . π n-1 , and that the Relation [START_REF] Krob | Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0[END_REF] is rather a definition. Furthermore, P n is the zero of R 0 n , that is for any x ∈ R 0 n , one has xP n = P n x = P n . By induction one can show that putting π 0 = P 1 , the following is an alternative presentation of R 0 n :

(1)

π 2 i = π i , 0 ≤ i ≤ n -1, ( 2 
) π i π i+1 π i = π i+1 π i π i+1 1 ≤ i ≤ n -2, (3) π 1 π 0 π 1 π 0 = π 0 π 1 π 0 = π 0 π 1 π 0 π 1 (4) π i π j = π j π i if |i -j| ≥ 2.
The 0-rook Monoid and its Representation

5

This shows that R 0 n is a quotient of the Hecke-monoid at q = 0 of type B, and that the Hecke-monoid H n (q) at q = 0 of type A is a submonoid of it.

Acting on vectors and polynomials

Let r = r 1 . . . r n ∈ R n . The classical right action of H 0 n on vectors can be extended to R 0 n on rook vectors as follows:

(r 1 . . . r n )

• π i = r 1 . . . r i-1 r i+1 r i r i+2 . . . r n if r i < r i+1 , r 1 . . . r n otherwise, for 1 ≤ i ≤ n -1. (r 1 . . . r n ) • π 0 = 0r 2 . . . r n .
Lemma 3. The previous definition is a right monoid action of R 0 n on R n called the right natural action. Under this action, P j acts by killing the first j entries: (r 1 . . . r n ) • P j = 0 . . . 0r j+1 . . . r n .

Similarly, we now describe a left action on rook vectors: let r = r 1 . . . r n ∈ R n . For 0 ≤ j ≤ n, we write j ∈ r if j ∈ {r 1 , . . . , r n }. The left action of π i ∈ R 0 n on r can be described the following way:

• π 0 replaces 1 by 0 in r if 1 ∈ r, and fixes r otherwise.

• For i > 0, the action of π i on r is if i, i + 1 ∈ r, call k and l their respective positions. Then π i fixes r if l < k, otherwise it exchanges i and i + 1. -if i ∈ r and i + 1 ∈ r, then π i replaces i + 1 by i.

-if i + 1 ∈ r then π i fixes r.
Lemma 4. The previous definition is a left monoid action of R 0 n on R n called the left natural action. Under this action, P j acts by replacing the entries smaller than j by 0.

Example 2. π

0 • 0342 = 0342, π 1 • 0342 = 0341, π 2 • 0342 = 0342, π 3 • 0342 = 0432, π 0 • 132 = 032.
This sheds some light on the link with the type B: it is well known that type B can be realized using signed permutations. The quotient giving the 0-rook monoid can be realized by replacing the negative numbers by zeros.

One can also extend the action of H 0 n by isobaric divided differences on polynomials: the monoid R 0 n acts also on the polynomials in n indeterminates over any ring k, k[X 1 , . . . , X n ] in the following way.

Let f ∈ k[X 1 , . . . , X n ]. Define f • π 0 := f |X 1 =0 = f (0, X 2 , . . . X n ), and f • π i := X i f -(X i f ) • s i X i -X i+1 . (2.1)
Again, f • P j = f (0, . . . 0, X j , . . . X n ). It is actually possible to get an action of the full generic q-rook algebra by letting f

• T i := q( f • s i ) + (1 -q)( f • (π i -1)
) . Since this action is faithful, this leads to very natural definitions of the rook-monoids and algebras.

Joël Gay and Florent Hivert

Properties of the monoid

In this subsection, we show that the previous actions are faithful, that is the given presentation is equivalent to the definition by operators. We work with the right action proceeding by induction on n, using the chain of inclusions

R 0 1 ⊂ R 0 2 ⊂ • • • ⊂ R 0 n .
We start by defining a rook analog of the (inverse) Lehmer code of a permutation. Definition 2. Let m be the map from the words on Z to N defined recursively as follows: m( ) = 0 where denotes the empty word. For any word w and any letter d, m(wd

) :=      -d if d ≤ 0 ; m(w) + 1 if 0 < d ≤ m(w) + 1 ; m(w) if d > m(w) + 1 .
(

2.2)

A code of size n is a word on Z defined recursively by: the empty word is a code, and wd is a code if w is a code and -m(w) ≤ d ≤ n. We denote by C n the set of codes of size n. 

:=      1 if i > n, π n . . . π i if 0 ≤ i ≤ n, π n . . . π 1 π 0 π 1 . . . π i if i < 0. Definition 3. If c = c 1 . . . c n ∈ C n , let π c := 0 . . . c 1 • 1 . . . c 2 • • • • • n -1 . . . c n ∈ R 0 n . Example 4. Let c = 11120. Then π c = 0 . . . 1 • 1 . . . 1 • 2 . . . -1 • 3 . . . 2 • 4 . . . 0 = 1 • π 1 • π 2 π 1 π 0 π 1 • π 3 π 2 • π 4 π 3 π 2 π 1 π 0
The key fact is that an element of R 0 n is uniquely determined by its (left or right) action on the rook identity matrix:

Theorem 3. For all n ∈ N, the maps c ∈ C n → π c ∈ R 0 n and r ∈ R 0 n → I n •r ∈ R n and r ∈ R 0 n → r • I n ∈ R n are bijections so that, |C n | = |R 0 n | = |R n |.
In particular any element of R 0 n can be expressed in a unique way as π c . Moreover these canonical expressions are reduced. The map r → r • I n , when extended by linearity, is an isomorphism of R 0 n -modules between the left regular module and natural module.

For instance the expression

P n = π 0 π 1 π 0 π 2 π 1 π 0 π 3 π 2 π 1 π 0 . . . π n-1 π n-2 . . . π 1 π 0 is the reduced canonical expression of P n .
Note that, under the compose bijection c → r := I n •π c , the integer m(c) + 1 is the position of the first zero in r. And that the conditions of Definition 2 amount to saying that if a word is reduced, it never exchanges two zeros when applied to (123 . . . n).

Green relations for the rook monoid

In this subsection, we show that R 0 n is J -trivial. We generalize the notion of inversions of permutations to rooks r = r 1 . . . r n ∈ R n as Inv(r) = {(i, j) | i < j and r i > r j > 0}. We also define its support as Supp(r) := {i | r i = 0} and its content as Cont(r) := {r i = 0}. We order inversions and supports by inclusion, and contents of the same length by product order that is if Cont

(r) = {c 1 < • • • < c l } and Cont(r ) = {d 1 < • • • < d l } we write Cont(r) ≤ Cont(r ) if for all i ≤ l one has c i ≤ d i .
We then define a relation over R n . If r, r ∈ R n then r r ⇐⇒ Supp(r) Supp(r ), or Supp(r) = Supp(r ) and Cont(r) ≤ Cont(r ) and Inv(r) ⊇ Inv(r ).

It is easy to see that this is an order on R n , with I n as maximal element and 0 n = 00...0 as minimal one.

Proposition 1. The left action is regressive: for f ∈ R 0 n and r ∈ R n , one has f • r r. As a consequence, R 0 n is L-trivial.

It is well known (see eg: [START_REF] Denton | On the representation theory of finite J -trivial monoids[END_REF]) that any monoid that has a faithful regressive left action is L-trivial. This shows that the L-preorder on R 0 n is actually an order. It is a rook analog of the weak order for permutations (also called permutohedron order). It is also a lattice. However, it is not a lattice quotient of the type B weak order.

Furthermore, the presentation of R 0 n is symmetric: thus this monoid is isomorphic to its opposite and is thus also R-trivial. Finally we have proved the following:

Theorem 4. The monoid R 0 n is J -trivial.
3 Representation theory

Simple modules

As explained in Section 1.2 the representation theory of R 0 n is governed by its idempotents, as any J -trivial monoid. The following theorem, obtained by writing explicitly the canonical expression of the elements π J , describes them: Theorem 5. The monoid R 0 n has 2 n idempotents: the zero (maximal element) of every parabolic submonoid. Let J ⊂ {π 0 , . . . , π n-1 }, and π J the zero of the submonoid generated by J. It is an idempotent, and furthermore

π J • π i = π i • π J = π J if and only if π i ∈ J.
The monoid R 0 n has 2 n simple modules, all one-dimensional, labeled by the parabolic submonoids. More precisely, (S π J ) J⊂{π 0 ,...,π n-1 } is a complete set of pairwise non-isomorphic representatives of isomorphism classes of simple R 0 n -modules, where S π J is defined in Theorem 1.

Projective modules

Definition 4. For π ∈ R 0 n , we define its left R-descent set (respectively its right R-descent set) by D

L (π) = {0 ≤ i ≤ n -1 | π i π = π} (respectively D R (π) = {0 ≤ i ≤ n -1 | ππ i = π}).
A set of all elements of R 0 n having the same descent sets is called a R-descent class. Unless explicitly stated, all R-descents are on the right. There is only a finite number of different R-descent sets possible for π ∈ R 0 n : we call them R-descent type. We say that a R-descent type is of type 0 if it has 0 in it, 1 otherwise. Similarly to H 0 n , we represent the R-descent type by ribbons with either the first column filled with 0 if it is a 0-type, or empty otherwise. We say that a descent class D is finer than D if D ⊃ D .

Example 5.

Here is the list of the R-descent types for R 0 4 .

{} 0 {0} {1} {2} {3} 0 0 {0, 1} 0 
{0, 2} 0 
{0, 3} {1, 2} {1, 3} {2, 3} 0 0 0 {0, 1, 2} 0 0 {0, 1, 3} 0 {0, 2, 3} {1, 2, 3} 0 0 0 0 {0, 1, 2, 3}
As an application of Theorem 2 we get : Theorem 6. The projective indecomposable R 0 n -modules are indexed by the R-descent type D, and P D is spanned by the rooks belonging to the descent class D and is isomorphic to the quotient of the associated R-descent class by the finer R-descent classes.

See the picture at the left of Figure 1 for an example of a projective indecomposable R 0 n -module.

Restriction to H 0 n

We now investigate the relation between H 0 n and R 0 n . The restriction of simple modules from R 0 n to H 0 n and the induction of simple and projective modules from H 0 n to R 0 n are described by simple natural rules, which we don't describe here for space. More interesting are the restriction of projective modules from R 0 n to H 0 n . Indeed, we show that they are projective on H 0 n and give a precise combinatorial rule.

Perspectives and towers of monoids

We have the following chain of submonoids: R 0

1 ⊂ R 0 2 ⊂ R 0 3 ⊂ • • • ⊂ R 0 n ⊂ .
. . We can try to analyse the properties of this chain in term of tower of monoids [START_REF] Bergeron | Algebraic structures on Grothendieck groups of a tower of algebras[END_REF].

The first thing we need to do so is a way to embed R 0 n × R 0 m into R 0 n+m . We looked at the following embedding which seems more natural regarding the action on rook vectors and polynomials: R 0 n × R 0 m -→ R 0 n+m P i , π j -→ P i , π j P i , π j -→ P n+i , π n+j .

These embeddings are compatible with the usual ones used for H 0 n . Note that they are not injective. Nevertheless they seem to have some nice properties. For example we give here the rule for restriction of simple modules: Theorem 10. Let J be a subset of 0, . . . , n + m and S J the simple R 0 n+m -module associated to this parabolic subgroup. Then there are two possibilities for the restriction: It is also possible to compute the induction using Virmaux result [START_REF] Virmaux | Partial categorification of Hopf algebras and representation theory of towers of J -trivial monoids[END_REF].

For projective modules, the situation is not so nice: In general, R 0 n is not projective over R 0 n-1 and R 0 n+m is not projective over R 0 n ⊗ R 0 m . However, R 0 n+m is projective over R 0 n ⊗ H 0 m . This gives us a structure of noncommutative symmetric function module and co-module on the sum of the Grothendieck group of the category of projective modules n K 0 (R n ), similar to the case of H 0 n (B). [START_REF] Huang | A tableau approach to the representation theory of 0-Hecke algebras[END_REF] It is worth noticing that the embedding we choose is not the only one. There are other choices of what happens to π 0 of the right-side. We choose to send it to P n+1 , but sending it to 1, π 0 or to 0 = P n+m also gives other embeddings. All of these embeddings are non-injective, but it seems that we could also use some combinations of these choices. We are currently searching for an embedding for which the projectivity property holds.

Res

  

  S J∩[0,...,n-1] ⊗ S {0}∪(J∩[n+1,...n-1])-n if [0, . . . , n] ⊂ J, S J∩[0,...,n-1] ⊗ S (J∩[n+1,...n-1])-notherwise.
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Definition 5. Let I ⊂ {1, . . . , n} of cardinality i. Let σ = i 1 . . . i n ∈ S n . We define ϕ I (σ) to be the rook obtained by removing the first i entries of σ and inserting zeros in positions indexed by the elements of I. We call ψ : R n → S n which takes a rook, put all zeros at the beginning of the word and replace them by the missing letters in decreasing order. Then ψ • ϕ I = id S n . Example 6. For instance ϕ {1,3} (14235) = 02035 and ψ(02410) = 53241.

n is a submonoid of R 0 n , thus it acts by left multiplication on R 0 n . It therefore makes sense to consider R 0 n as a H 0 n -module: Theorem 7. R 0 n is projective on H 0 n . As a consequence, any R 0 n -projective module remains projective when restricted to H 0 n . Proof. The proof widely uses the isomorphism between the regular R 0 n -module and the natural one (Theorem 3). Since applying H 0 n does not create any zeros, there is a filtration of R 0 n in H 0 n -modules depending on the number of zeros of the elements. By projectivity, it is enough to prove that each layer of this filtration is projective. Each layer of this filtration is a direct sum of modules depending on the position of these zeros since the zeros are not moved by the action of H 0 n . For such a summand where zeros are in positions i ∈ I, the map ψ of Definition 5 is an injective H 0 n -module morphism. Its image is the set of permutations which start with |I| descents which is a well known projective H 0 n -module. We now describe the restriction functor. We will use the product rule of ribbons (the multiplication rule of ribbon Schur functions in noncommutative symmetric functions [START_REF] Krob | Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0[END_REF]). The product of the two ribbons R and S is the sum of the two ribbons obtained by gluing the topmost leftmost box of S either on the right or below the bottommost rightmost box of R. Definition 6. Let D be a type of R-descent. Thus D is a set of boxes. A zero-filling of D is a ribbon of shape D with boxes either empty, either with 0 inside according to the following rules:

• In the first column, either every box contains 0 if D is of type 0, or none otherwise.

• Outside of the first column, if a box contains 0 then there is no box on its left, and all the boxes below also contain zeros.

To each of these fillings we associate the product of a column of size the total number of zeros, times the ribbons obtained from D in which each box with a zero on the filling has been removed, in the same order of appearance. Theorem 8. The indecomposable projective R 0 n -module of type D splits as a H 0 n -module as the direct sum of all the indecomposable projective H 0 n -module whose descent class are obtained in a product coming from a zero-filling of D, with multiplicity.

Example 8. This is an example of decomposition of a indecomposable projective R 0 n -module into indecomposable projective H 0 n -modules. The colors indicate the different products of zero-filling. See Figure 1. We have shown a way to decompose a projective R 0 n -module to projective H 0 n -modules. The following results tells us that we more precisely have a decomposition functor. Theorem 9. Let P R be an indecomposable projective module of R 0 n . Write P R = P H its decomposition into indecomposable projective H 0 n -modules. Then the isomorphism of H 0 n -module φ :

P H → P R is triangular: φ(e) = ϕ I (e) + ∑ e <e e , with ϕ I defined in Definition 5 and I the zero-set linked to P H . Example 9. We know from the Example 8 that there is a module inside the Figure 1, coming from the zero-filling 0 0 . This H 0 n -module is well-known to have the elements 3214, 4213 and 4312. So ours must contains π {0,2} (3214) = 0104, π {0,2} (4213) = 0103 and π {0,2} (4312) = 0102. See Figure 1.