
HAL Id: hal-01691239
https://hal.science/hal-01691239

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Hydraulic tomography of discrete networks of conduits
and fractures in a karstic aquifer by using a

deterministic inversion algorithm
P. Fischer, Abderrahim Jardani, N. Lecoq

To cite this version:
P. Fischer, Abderrahim Jardani, N. Lecoq. Hydraulic tomography of discrete networks of conduits
and fractures in a karstic aquifer by using a deterministic inversion algorithm. Advances in Water
Resources, 2018, 112, pp.83-94. �10.1016/j.advwatres.2017.11.029�. �hal-01691239�

https://hal.science/hal-01691239
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 
 

Research Paper/ 

Hydraulic Tomography of Discrete Networks of Conduits 

and Fractures in a Karstic Aquifer by Using a 

Deterministic Inversion Algorithm 

 P. Fischer1, A. Jardani1, N. Lecoq1 

(1) Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France 

 

Conflict of interest: None 

Corresponding author: P. Fischer 

E-mail : pierre.fischer1@univ-rouen.fr 

 

Key words: Distributed modeling, Coupled discrete-continuum model, Deterministic 

inversion, Heterogeneity, Aquifer characterization 

 

 

 

 

 

 

Intended for publication in Advances in Water Resources

mailto:pierre.fischer1@univ-rouen.fr


2 
 

Abstract 1 

In this paper we present a novel inverse modeling method called Discrete Network 2 

Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete 3 

network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a 4 

coupled discrete-continuum concept to simulate numerically water flows in a model and a 5 

deterministic optimization algorithm to invert a set of observed piezometric data recorded 6 

during multiple pumping tests. In this method, the model is partioned in subspaces piloted by 7 

a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the 8 

conduits) that are considered as unknown. In this way, the deterministic optimization process 9 

can iteratively correct the geometry of the network and the values of the properties, until it 10 

converges to a global network geometry in a solution model able to reproduce the set of data. 11 

An uncertainty analysis of this result can be performed from the maps of posterior 12 

uncertainties on the network geometry or on the property values. This method has been 13 

successfully tested for three different theoretical and simplified study cases with hydraulic 14 

responses data generated from hypothetical karstic models with an increasing complexity of 15 

the network geometry, and of the matrix heterogeneity.  16 
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1. Introduction 17 

In hydrogeological studies, the choice of the management and protection strategies of the 18 

groundwater resources is mainly based on the characterization of the hydraulic properties of 19 

the aquifer, such as hydraulic conductivity and specific storage. This characterization is most 20 

often carried out from pumping, slug and tracer tests by intrusively recording the aquifer 21 

responses, such as hydraulic pressure and tracer concentration at a set of boreholes (Butler 22 

2005). The reliability of these techniques for capturing the spatial heterogeneity of the 23 

hydrodynamic properties is particularly conditioned by the amount and spatial disposition of 24 

wells used during the investigation, and the procedure applied to analyze the hydraulic data 25 

(Yeh and Lee 2007). In karstic and/or fractured aquifers the hydrodynamic properties (such as 26 

the hydraulic conductivity) can vary significantly from 10-10 m/s to 10-1 m/s, even at small 27 

scales (Wang et al. 2016). This heterogeneity mainly depends on the apertures, connectivity 28 

and density of the conduits and fractures network in the medium, making the groundwater 29 

flow path complex (Eisenlohr et al. 1997 ; Kovacs et al. 2005 ; Borghi et al. 2016 ; Ronayne 30 

2013). In this complex context, the hydraulic flow pattern is spatially disconnected and 31 

principally focused in the transmissive fissures and fractured zones, wherein the geometrical 32 

features and hydraulic flow regime (turbulent or laminar) are usually difficult to identify, 33 

especially with a limited number of wells, or with the use of oversimplified assumptions for 34 

interpreting the piezometric data to infer the hydrodynamic parameters. 35 

In the hydroscience literature, several different modeling approaches based on the physical 36 

theories have already been tested in order to simulate the dynamics of karstic flows for the 37 

prediction of hydraulic properties (Hartmann et al. 2014). Among them, the equivalent porous 38 

media model, also called the single continuum model, in which the discrete features of 39 

fractures and karstic conduits are conceptualized as a porous media with continuous hydraulic 40 

properties (Larocque et al. 1999 ; Illman 2014 ; Wang et al. 2016). This simplifies the 41 
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description of heterogeneity of karstic aquifers because it does not require an accurate 42 

knowledge on the architecture of fractures and conduits networks for simulating the 43 

groundwater flows. In such concept, it is sufficient to assign high hydraulic conductivity 44 

values to fractured zones and very low conductivity for intact rock. Otherwise, the coupled 45 

discrete-continuum distributed approach is of great interest thanks to its ability to imitate the 46 

dual hydrodynamic behaviors in the fractured aquifers by using Discrete Channel or Fracture 47 

Networks (DCN/DFN) for the conduits and fractures, and equivalent porous media for 48 

representing the matrix blocks (Teutsch 1993 ; Liedl et al. 2003 ; De Rooij et al. 2013). In 49 

contrast to the equivalent porous media model, the discrete-continuum approach requires a 50 

good knowledge on the geometry of the karstic and fracture networks. The influence of the 51 

discrete network geometry on the hydraulic simulations and the benefits of a coupled discrete-52 

continuum approach compared to the equivalent porous media have been widely discussed in 53 

the literature (Kovacs 2003 ; Painter and Cvetkovic 2005 ; Ghasemizadeh et al. 2012 ; 54 

Hartmann et al. 2014). One of these advantages is its efficiency to reproduce numerically the 55 

hydraulic fluctuations of karst spring discharge, while an equivalent porous media 56 

systematically generated lower values than the ones measured (Kovacs 2003).  57 

The hydraulic tomography is a useful tool to predict rigorously the spatial distribution of the 58 

hydraulic properties, or the structural architecture of the fractures and conduits and their 59 

properties. It involves the use of inverse algorithms to analyze jointly a set of hydraulic data 60 

collected during multiple pumping tests (Carrera et al. 2005 ; Cliffe et al. 2011 ; Zhou et al. 61 

2014). In this framework, various inversion algorithms were successfully applied for 62 

characterizing the hydraulic properties of fractured and heterogeneous aquifers using both 63 

concepts of parametrization discussed in the previous paragraph: the equivalent porous media 64 

and coupled discrete-continuum approach. 65 
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(1) Inversions in an equivalent porous media were led by using geostatistical approaches in 66 

which the statistical characteristics of hydraulic properties are used as a priori information to 67 

constraint the inversion. Among these tools we cite: sequential successive linear estimator 68 

(Yeh and Liu 2000 ; Ni and Yeh 2008 ; Hao et al. 2008 ; Illman et al. 2009 ; Sharmeen et al. 69 

2012), pilot-point (Lavenue and de Marsily 2001), transitional-probability (Wang et al. 2017), 70 

anisotropy directions (Meier et al. 2001), multi-scale resolution (Ackerer and Delay 2010), or 71 

structural approaches: probability perturbation method (Caers and Hoffman 2006), image-72 

guided (Soueid Ahmed et al. 2015), and cellular automata-based (Fischer et al. 2017). 73 

(2) On the other hand, the parameterization of hydraulic tomography using a distributed 74 

discrete-continuum approach is less flexible than the concept of the equivalent porous 75 

medium because the discrete-continuum model relies on the establishment of the architecture 76 

of the conduits and fractures, and their hydraulic properties. Several works have already 77 

brought some solutions to these difficulties. One solution would be to generate stochastically 78 

patterns of networks with various constraints: statistical constraints (Li et al. 2014 ; Le Coz et 79 

al. 2017), mechanical constraints (Bonneau et al. 2013 ; Jaquet et al. 2004), geological and 80 

speleogeological metrics information (Collon et al. 2017 ; Pardo-Iguzquiza et al. 2012), or 81 

flows hierarchical identification (Le Goc et al. 2010). More recently, Borghi et al. (2016) have 82 

combined the use of a generator of karstic networks, based on sets of fractures stochastically 83 

generated, with a gradient-based parameters optimization in order to reconstruct a discrete 84 

network able to reproduce a set of tracer test hydraulic data. 85 

In this present article we propose a novel strategy for dealing with hydraulic tomography of 86 

fractured and karstic aquifers, which we will shorten as the Discrete Network Deterministic 87 

Inversion (DNDI). The DNDI algorithm permits to map the architecture of fractures and 88 

conduits networks, their hydraulic properties, and the distribution of the transmissivity in the 89 

hard rock (matrix). 90 
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The DNDI approach relies on the use of a coupled discrete-continuum concept to simulate 91 

water flows through a karstic and fractured aquifer and a deterministic optimization algorithm 92 

to invert a set of observed piezometric data recorded during multiple pumping tests. The 93 

model is partitioned in several subspaces, each one being piloted locally by a set of 94 

parameters including: the orientations of the conduit/fracture, their equivalent transmissivity 95 

values, and the transmissivity of the rock matrix. This partitioning makes it possible to locally 96 

modify the directions of the fracture network and to iteratively update the geometry of the 97 

global network in order to minimize the objective function in the inverse process. The method 98 

is tested on several hypothetical and simplified karstic aquifers with simple to more complex 99 

conduit networks and with homogeneous or heterogeneous transmissivity in the matrices. 100 

2. Algorithm framework  101 

2.1.  Forward problem and model parameterization 102 

We represent a confined karstic and fractured aquifer in a two-dimensional model   with an 103 

equivalent porous media M  (for representing the water flows where the rock is intact) and a 104 

discrete network N  (for simulating the water flows in the fracture/conduit networks). The 105 

numerical simulation of groundwater flows are governed by a steady state continuity equation 106 

associated to Darcy’s law, considering a laminar flow in both the matrix domain and the 107 

discrete networks: 108 

M M
M M M

el.

N N
T N N T N

el.

.( . h) in the matrix

.( . h) in the network

e Q
e K

e Q
e K






   


   


          

     

V

V

                           (1) 109 

where MQ  and NQ  are punctual water extraction or injection rates per unit of thickness 110 

(m3/s/m) applied on the matrix and network respectively, KM denotes the matrix hydraulic 111 
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conductivities (m/s), KN denotes the fractures or conduits equivalent conductivities (m/s), h  112 

is the piezometric level (m) common to both domains M  and N , Me (m) is the thickness of 113 

the matrix block, Ne (m) is the aperture of the network, and elV  is an elementary volume at the 114 

pumping location (m3). We mention that Darcy’s law formulation in the matrix domain is 115 

described in 2D, and in 1D for fractured networks at the internal network boundaries. That’s 116 

why we use the tangential gradient operator 
T .    (where  is a local directional unit 117 

vector of the network) to solve the hydraulic equation at the network. In the study cases 118 

presented later in this article, we have chosen to simulate laminar flows as presented in Eq. 1 119 

in a network of conduits. However, the property values KN in the network can be more 120 

specifically adapted to the behavior of turbulent conduit flows or fracture flows through other 121 

empirical laws (eventually related to an aperture variable). 122 

The forward problem consists in solving numerically Eq. 1 by using a finite element 123 

technique with a triangular meshing. It links the hydraulic head data simulated continuously 124 

over the coupled model to the spatial distribution in the model of the conduits or fractures 125 

with their properties in 1D, and the hydraulic transmissivities of the matrix in 2D (Figure 1). 126 

The forward problem can be formulated as:  127 

  ,
Dir Prop

d Γ P Pf   ,                                                 (2) 128 

where d  is a vector of simulated hydraulic data  1n , f  is a forward operator that 129 

calculates the hydraulic data field from a model  ,Dir PropΓ P P  defined by given parameters of 130 

network geometry Dir
P  and hydraulic properties 

Prop
P ,   is a null mean Gaussian noise to add 131 

the uncertainties associated to the numerical discretization technique and the hydraulic 132 

experimental data. The model is enclosed in a large buffer zone associated to an equivalent 133 

porous media mean transmissivity. This zone permits to limit the influence of the boundary 134 
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conditions. The DNDI inversion algorithm was coded using Matlab and is linked to the 135 

COMSOL Multiphysics software which runs the forward problems. 136 

 137 

Figure 1: Example of a simulated distribution of hydraulic heads (here drawdowns) by solving 138 

the forward problem f  (Eq.1) for a steady state pumping in a given coupled discrete-139 

continuum distributed model  ,Dir PropP P . 140 

 141 

For the DNDI algorithm, the model domain Γ  is partitioned in xp  squared subspaces along 142 

the X-axis and 
yp  along the Y-axis. The total of subspaces of the whole domain is then 143 

x yp = p p . Three parameters are assigned to each subspace (Figure 3):  144 

(1) the local direction of the conduit/fracture network,  145 

(2) the local conduit/fracture equivalent transmissivity value, 146 

(3) and the local matrix transmissivity value. 147 

The geometry of the network follows the local direction in each subspace by a node-to-node 148 

principle. The network structure enters a subspace by activating one of its four nodes (corners 149 

of the square) and the subspace direction parameter will define to each other node of the 150 
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subspace the structure will generate. This other node will then be activated itself and permits 151 

to the structure to include new subspaces. A subspace in which the structure has already been 152 

generated becomes inhibited to another generation from the same network. The generation 153 

process is schematized in Figure 2.  154 

 155 

Figure 2: Schema of the node-to-node generation process in the DNDI method with six 156 

subspaces. An activated node in the top subspaces (a) starts the generation of the structure. 157 

The structure generates to the nodes in the bottom of these subspaces, following the local 158 

direction defined in the subspaces through the encoding rules. These reached nodes then 159 

become activated (b). The subspaces in which the structure has generated become inhibited to 160 

another generation (shown as greyed number in this figure). The structure then continues its 161 

generation from its newly activated node if the subspaces structural parameters permit it (c) – 162 

(d). 163 

 164 

In order to perform this node-to-node generation, an initially activated node has to be 165 

specified in the model (starting node in Figure 3). The model geometry in COMSOL is built 166 

as a discrete grid including all network possibilities (a grid of squares and diagonals as 167 

presented in Figure 3). This whole geometry is initially disabled in the COMSOL physical 168 

part. When different network geometries are tested in the inversion process, only the 169 

associated parts in the model grid are enabled for the solver computation. This avoids the 170 

6 1

23

6 1

23

6 1

23

Activated node

a b c

6 1

23

d

5 4 5 4 5 4 5 4

1 2 3 4

Encoding
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creation of a new model geometry for each modification of the network and permits to reduce 171 

the computing time in the inversion. 172 

 173 

Figure 3: Parameterization of a model in the DNDI method. For each subspace of the model 174 

there are six local direction possibilities (see encoding in Figure 2) that are used to 175 

parameterize a network structure in the model (a). The structure (in red) is then generated, 176 

following a node-to-node rule, from the set of structural parameters in (a) and a chosen 177 

starting point at a node between subspaces (b). Finally a set of property values 178 

(transmissivities), also defined for each subspace, is assigned to the structural model (c). 179 

 180 

The parameterization of the whole model is contained in two vectors piloting the subspaces. 181 

(1) The local direction in a subspace is selected among six possibilities (see Figure 3) as a 182 

structural parameter  Dir 1,2,3,4,5,6 . The set of structural parameters for all subspaces in 183 

the model is contained in a  1p  vector Dir
P . It is also possible to generate more than one 184 

network, but this would add more unknown structural parameters. For example if one would 185 

want to generate 3 independent networks in the model, each subspace would need to define 3 186 

local directions instead of one. Thus, the structural vector of direction parameters Dir
P  would 187 

become a  3 1p  vector.  188 
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(2) The local equivalent transmissivity of the structure in a subspace is defined as a property 189 

parameter NT  and the matrix transmissivity as a property parameter MT . The set of property 190 

parameters for all subspaces in the model is contained in a  2 1p  vector 
Prop

P  with the p  191 

parameters NT  followed by the p  parameters MT . The entire model Γ  is thus piloted only 192 

by two parameter vectors: Dir
P  and 

Prop
P , and can be noted  ,Dir PropΓ P P . 193 

2.2.  Inverse problem 194 

The inversion process in the DNDI algorithm consists in retrieving a model of network of 195 

conduit/fracture and of spatial distribution of the transmissivities of the network and matrix 196 

which permits to maximize two probability density functions networkρ  and 
propertiesρ . Following 197 

the theory described by Tarantola and Valette (1982) for a least square criterion resolution of 198 

the inverse problem, we calculate networkρ  and 
propertiesρ  with the Bayes theorem, by considering 199 

Gaussian laws for the probability density functions ρ , and  obsdρ  as certain: 200 

       

         

 

network obs obs obs

T
1

network obs obs d obs

T
1

,prior

, , . /

1
, , ,

2

1

2 Dir

Dir Prop Dir Prop Dir

Dir Prop Dir Prop Dir Prop

Dir Dir P Dir

P d P d P P P d

P d P d Γ P P C d Γ P P

                                          P P C P





 
    

 

  

ρ = ρ ρ ρ

ρ exp f f

exp  ,prior Dir
P

 
 

 

  201 

(3) 202 

       

         

 

properties obs obs obs

T
1

properties obs obs d obs

T

,prior

, , . /

1
, , ,

2

1

2

Prop Dir Prop Dir Prop

Prop Dir Dir Prop Dir Prop

Prop Prop P

P d P d P P P d

P d P d Γ P P C d Γ P P

                                          P P C

 
    

 

  

ρ = ρ ρ ρ

ρ exp f f

exp  1

,priorProp Prop Prop
P P

 
 

 

  203 

(4) 204 
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where   represents a proportionality relation,  network obs,Dir PropP d Pρ  represents the a 205 

posteriori probability density function of the discrete fracture network model for a given 206 

hydraulic observed data obsd  and the transmissivity model of the network and matrix 
Prop

P . 207 

 properties obs,Prop Dir
P d Pρ  is the a posteriori probability density function of the spatial 208 

distribution of the transmissivity parameters for a given hydraulic observed data obsd  and 209 

network model Dir
P .  obs ,

Dir Prop
d P Pρ  and  obs ,

Prop Dir
d P Pρ  represent the probability 210 

density functions of the network structure and property models, which permit to evaluate the 211 

ability of the network structure and property models to reproduce the observed data via the 212 

use of the forward operator.  DirPρ  and  Prop
Pρ  represent prior distributions for the 213 

unknown parameters. It is well known that, on one hand, the piezometric data are insufficient 214 

to cope with the non-uniqueness of the solution of an inverse process, and on another hand, 215 

that a deterministic inversion process leads to a single local solution dependent to the initial 216 

model. For these reasons, and in order to additionally constrain the inversion to a more 217 

realistic solution in relation to the field knowledges, it can be interesting to incorporate prior 218 

distributions for the unknown parameters in  DirPρ  and  Prop
Pρ . 219 

The maximization of the a posteriori probability density functions networkρ  and 
propertiesρ  is 220 

equivalent to a minimization of the arguments of the exponentials in Eq.3 and 4. This is what 221 

we aim to minimize during the inversion process in the following objective functions Ψ : 222 

         

   

T
1

network obs d obs

T
1

,prior ,prior

1
, ,

2

1

2 Dir

Dir Dir Prop Dir Prop

Dir Dir P Dir Dir

P d Γ P P C d Γ P P

                         P P C P P





  

  

Ψ f f
            (5) 223 
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         

   

T
1

properties obs d obs

T
1

,prior ,prior

1
, ,

2

1

2 Prop

Prop Dir Prop Dir Prop

Prop Prop P Prop Prop

P d Γ P P C d Γ P P

                         P P C P P





  

  

Ψ f f
          (6) 224 

where obsd  is a vector of observed data  1n , Dir
P  and 

Prop
P  are the unknown parameters to 225 

estimate for imaging the geometry of the network (in Dir
P ) and the hydraulic properties 226 

(defined here by the equivalent transmissivity of the conduits/fractures and the transmissivity 227 

of the matrix in 
Prop

P ). 
,priorDirP   1p  and 

,priorProp
P   2 1p  are the prior information on the 228 

geometry and on the property parameters employed to constrain the inverse problem for 229 

overcoming the unrealistic solutions, dC   n n  is a covariance matrix on the observed data 230 

that permits to include the uncertainties of the hydraulic data in the inversion process. 
DirP

C  231 

 p p  and 
PropPC   2 2p p  are the covariance matrices on the structural and property 232 

parameters respectively. 233 

This separated formulation of the probability density functions between network and 234 

properties permits to sequentially estimate the two dependent unknown models Dir
P  and 235 

Prop
P . In a first step, we focus on the characterization of the network with the piezometric data 236 

by fixing the model of the transmissivity distributions in the conduits/fractures and matrices. 237 

The model of network resulting from the first step will then be used in a second step as known 238 

parameter to infer the transmissivity pattern. 239 

2.3.  Optimization and uncertainty analysis 240 

The minimization of Eq. 5 and Eq. 6 can be done by optimizing the network geometry and the 241 

property values during two sequential iterative processes. These optimizations consist in 242 

successively modifying the structural and property parameters Dir
P  and 

Prop
P . 243 

The inversion process is led as a sequential optimization (Figure 4) of 244 
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(1) the structural geometry (considering as fixed the initially chosen property values), 245 

(2) and the property values N MT ,T  (considering as fixed the previously inverted structural 246 

geometry). 247 

 248 

Figure 4: A flowchart of the inversion steps used in the DNDI algorithm. After the 249 

initialization of the parameters, a sequential iterative optimization is led on the structure 250 

geometry and on the property values in order to minimize both objective functions (Eq. 5 and 251 

Eq. 6). An eventual re-run of the inversion process (multi-scale option) using the result as new 252 

initial model can be performed in order to improve this result. 253 

 254 

The structural optimization is performed iteratively by modifying the structural parameter Dir
P  255 

through a structural sensitivity analysis and by considering the hydraulic properties 
Prop

P  as 256 

fixed. At a given iteration step k, the sensitivity analysis of the network geometry toward the 257 

observed data is recorded into a  6 p  sensitivity matrix k

n
J . For a local direction  i 1,6  258 

and for a subspace  j 1, p  the element of the matrix k

n
J  is calculated as: 259 

Initialization
Chosen starting node

Chosen initial geometry (Dir)
Chosen initial property values (TN,TM)

Iterative structural optimization

Structure generation

Compute sensitivity matrix

Update of PDir

Iterative minimization
of Eq. 5

Iterative property optimization

Compute sensitivity matrix

Update of PProp

Iterative minimization
of Eq. 6

Ending

Structural uncertainty estimation

Property values standard deviation calculation
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 
   
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


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                    
         

  

f f
  (7) 260 

with 
 

k

j iDir
DirP

P


 the structural geometry parameter at the iteration k considering a modified 261 

local direction in the subspace j, and   ,prior j iDirP   the gap between the prior local direction 262 

of subspace j and the modified local direction. 263 

Thus, the sensitivity matrix guides the evolution of the objective function in Eq. 5 by testing 264 

successively the modification of the network with all possible local direction in each 265 

subspace. The minimal value in the matrix  k

min mini , j
n

J  designates the local direction mini  in 266 

the subspace minj  which would produce the best decrease in the objective function.  267 

Then the parameters set k

Dir
P  is updated from the previous set k k 1

Dir DirP P
  by taking into 268 

account the sensitivity analysis minimum  k

min minj i
Dir

P   in order to minimize the objective 269 

function at each step of the optimization. 270 

Once the sensitivity analysis cannot find any more Dir
P  configuration decreasing the objective 271 

function, the iterative structural optimization is stopped. The last structural iteration represents 272 

the local solution, dependent to the initial model. The uncertainty analysis of the inverted 273 

network geometry can be inferred from the computation of the posterior covariance matrix as: 274 

     
1

6
1

i 1

1
j i, j j, j

6Dir DirP n PC J C







 
   
 
post post post

networkΨ  ,                         (8) 275 

where  j
DirP

C
post  is the posterior structural uncertainty value for the local direction in the 276 

subspace j, 
n

J
post  is the last iteration structural sensitivity matrix and post

networkΨ  is the value of 277 

the minimized structural objective function. If the structural uncertainty value is low, then 278 



16 
 

another direction in the subspace would lead to a deterioration of the reproduction of the data. 279 

On the other hand if the structural uncertainty value is high, then the structure in the subspace 280 

could have another local direction without significantly degrading the reproduction of the 281 

observed data. 282 

Following the network geometry optimization, the property parameters optimization will 283 

iteratively modify the transmissivities with the previously inverted geometry in order to 284 

minimize the objective function in Eq. 6. The network equivalent transmissivities and the 285 

matrix transmissivities are optimized simultaneously. At a given iteration step k, the 286 

parameters set 
Prop

P , which contains the transmissivities for both the network and the matrix, 287 

is updated by linearizing Eq. 6, which can be formulated as: 288 

        
 

1
T T

k 1 k k 1 k 1 k 1 k

d d obs

1 k

,prior

. . . . . ,

.

Prop

Prop

Prop Prop p p P p Dir Prop

P Prop Prop

P P J C J C J C d Γ P P

             C P P


   



   

 

f
     (9) 289 

where k

p
J  is the Jacobian matrix  2n p  that holds the sensitivity for each modeled data if  290 

(at the positions of the observed data) toward the property values in the matrix and the 291 

network. This Jacobian matrix can be calculated by using a finite difference approach, with a 292 

finite difference step 
PropP : 293 

 
   

k i

k

k kj j

i, jp

Prop
Prop Prop PropP P P

J
P

 





f
 .                                  (10) 294 

Finally, once the objective function has iteratively converged to a minimum, the property 295 

optimization is stopped. The posterior covariance matrix on the inversion of the property 296 

values can be calculated as: 297 

  
1

T
1 1

d. .
Prop PropP p p PC J C J C


  post post post  ,                                 (11) 298 
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where 
PropP

C
post

 is the posterior covariance matrix and 
pJ

post  is the Jacobian matrix of the last 299 

iteration step. The diagonal entries of the posterior matrix represent the variances on the 300 

property values of each subspace. 301 

3. Validation of the DNDI algorithm on hypothetical study cases 302 

The DNDI inversion algorithm has been tested on three hypothetical and simplified confined 303 

karstic fields with network of conduits: 304 

 in a first case, we treat a simple network case with heterogeneity in the equivalent 305 

transmissivity of the conduits and a homogenous transmissivity assigned to the matrix,  306 

 a second case is similar to the first one but adding a transmissivity variability also in 307 

the matrix,  308 

 in a third case, we seek to image a complex network geometry with the use of two 309 

different initial models to start the inverse problem. 310 

We considered in the forward problem (Eq. 1) a unit thickness for the matrix (2D modeling) 311 

and a unit aperture for the network (but with a variable equivalent transmissivity). The buffer 312 

zone boundaries were associated to a bound. h 0 m Dirichlet condition and the hydraulic heads 313 

were set to 0 h 0 m initially over the model. These theoretical study cases were used to 314 

produce 2,401 hydraulic drawdown data from 49 pumping/measurement boreholes (a 315 

pumping test is performed alternatively in each borehole) distributed homogeneously over the 316 

100 100 m² models. The pumping rates were set to 0.6 L/min for a borehole in the matrix 317 

and 5 L/s for one in the conduit network.  318 

In these different cases, for the inversion of the geometry of the network, no a priori 319 

information has been added. On the other hand, we have constrained the inversion of the 320 

hydraulic properties with a priori values. The a priori models on the properties are used also 321 
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as initial model to launch the inversion process. For the property optimization, for the matrix 322 

we took the –log10(T) as transmissivity parameter MT  (for example a transmissivity parameter 323 

equal to 6 represents in the model a 10-6 m²/s transmissivity value) and for the network we 324 

took directly the T value as transmissivity parameter NT . The covariance matrices d
C  and 325 

PropPC  are built as diagonal matrices with a constant variance value 
2  (in the case of the 326 

matrix transmissivity the variance value 
M

2

T  applies to the exponent of the transmissivity, in 327 

the case of the network transmissivity the variance value 
N

2

T  applies to the transmissivity). 328 

The partitioning of the models and the chosen inversion parameters values for each study case 329 

are given in Table 1. The different study cases inversions were led on a 64Go RAM PC on 2 330 

processors of 16 cores. 331 

Table 1: Parameters used in the inversion study cases  332 

 Study case 1 Study case 2 Study case 3 

Partitioning 4x4 4x4 8x8 

A priori TN 0.06 m²/s 0.04 m²/s 0.1 m²/s 

A priori TM 10-6 m²/s 10-6 m²/s 10-6 m²/s 

Data cov. matrix 

 2

data.d
C  Id n  data =10-2 m data =10-2 m data =10-2 m 

Property cov. matrix 

 
N M

2

T /T .
PropP

C  Id 2p  

NT =10-6 m²/s 

MT =10-6 

NT =10-6 m²/s 

MT =10-1 

NT =10-6 m²/s 

MT =10-6 

 333 

3.1.  Study case 1 334 

In a first study case, we have tested the ability of the inversion method to reproduce a network 335 

geometry with variable conduit equivalent transmissivities in a homogeneous matrix. We 336 

generated drawdown data from a theoretical model with a 10-6 m²/s matrix transmissivity and 337 

a principal conduit associated to a 0.1 m²/s transmissivity and secondary conduits associated 338 
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to a 0.01 m²/s transmissivity. Firstly we tested an inversion with a small set of data (100 339 

drawdown data from 10 boreholes, see the ‘True model’ in Figure 5). 340 

We started the inversion from a simple initial model with a single horizontal 0.06 m²/s conduit 341 

and a homogeneous 10-6 m²/s matrix transmissivity. The structural optimization converged in 342 

10 iterations and the properties optimization in 1 iteration.  343 

 344 

Figure 5: Initial and inverted models for an inversion using drawdown data produced from a 345 

true model (on the right) with a homogeneous matrix. The red dots on the true model 346 

symbolize the pumping/measurement boreholes for the hydraulic data. The inverted model 347 

permits to localize approximatively the karstic network connections but in this case the 348 

amount of data is insufficient to have a proper imagery. 349 

 350 

The inverted model reproduces the data set (R² = 0.97) and approximately the connectivity 351 

between the points in the network, however this reconstruction remains distant from the true 352 

geometry. This is due to a lack of data to correctly identify the shape of the conduit network. 353 

Therefore, the efficiency of the inversion for mapping the heterogeneity of the hydraulic 354 

parameters and retrieving the principal karstic conduits is highly dependent to the number of 355 

wells and their locations. In the next test, we used a denser distribution of wells (49 wells) for 356 

providing a better spatial resolution in order to image the heterogeneity of the aquifer 357 

presented for the same ‘True model’ in Figure 6. 358 
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 359 

Figure 6: Initial (a) and inverted (b) models for an inversion using drawdown data produced 360 

from a true model with a homogeneous matrix, and associated map of the conduit properties 361 

posterior standard deviations (c). The inverted model in (b) permits a good localization the 362 

true karstic network. It also reduced locally the initial transmissivity (0.06 m²/s to 0.01 m²/s) 363 

of the conduits connected to the primary drain in the bottom right part of the model (the 364 

conduit thickness is proportional to its transmissivity value). The red dots on the true model 365 

symbolize the pumping/measurement boreholes for the hydraulic data. 366 

 367 

The structural optimization converged in 11 iterations and the properties optimization in 1 368 

iteration. The inverted model reproduces now the data set (R² = 0.95) and also a very good 369 
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representation of the true geometry (Figure 6). The property optimization permitted to correct 370 

the initial equivalent transmissivity of 0.06 m²/s to 0.01 m²/s for the conduits connected in the 371 

bottom right area of the network. It permits to reduce the flow rates coming to this zone and 372 

enhance the reproduction of the true cones of depression. The flows in this zone are mainly 373 

conditioned by the properties of the conduits connected directly to the primary drain. This 374 

affirmation can be supported by the conduit transmissivity standard deviation map produced 375 

from Eq. 11 (Figure 6), that shows that the properties of the conduits directly connected to the 376 

primary drain have lower uncertainties than the primary drain itself in the center of the 377 

inverted model. The conduit in the bottom right periphery of the inverted model does not 378 

image correctly the true model. But as the data reproduction is perfect, this periphery zone 379 

might not be sufficiently described by the data to permit a very good reproduction. The 380 

uncertainty map confirms that this part of the network has a more uncertain transmissivity 381 

value than the rest of the network. 382 

We have also tested another configuration with more available boreholes than in the case in 383 

Figure 5, but in which only two boreholes intersect the true karstic network. The true model 384 

and the inversion result are presented in Figure 7. 385 

 386 

Figure 7: Initial and inverted models for an inversion using drawdown data produced from a 387 

true model (on the right) with a homogeneous matrix. The red dots on the true model 388 

symbolize the pumping/measurement boreholes for the hydraulic data, primarily located in 389 
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the matrix. The inverted model permits to almost reproduce the karstic network even if only 390 

two measurement points are located in the true network. 391 

 392 

The inverted model can almost reproduce the true network geometry, which shows that 393 

boreholes, even in the matrix, can provide information about the localization of nearby 394 

conduits. This is especially true for the thin conduits which appear in the inverted model 395 

although no boreholes are intersecting them. Therefore the DNDI method can be used with 396 

dataset with only a few boreholes intersecting the conduits as long as there are a sufficient 397 

number of other boreholes, in the matrix, in suitable locations for characterizing the nearby 398 

conduit network. 399 

3.2.  Study case 2 400 

A second study case was led to test the ability of this inversion method to reproduce the data 401 

in a case of a karstic network with various conduit properties developed in a heterogeneous 402 

matrix. We simulated the piezometric data from a theoretical model with the same karstic 403 

network than in study case 1, but in a matrix with a transmissivity varying from 5.10-6 m²/s to 404 

5.10-7 m²/s (Figure 8). 405 

We started the inversion from a simple initial model with a single horizontal 0.04 m²/s conduit 406 

and a homogeneous 10-6 m²/s matrix transmissivity. The structural optimization converged in 407 

10 iterations and the properties optimization in 3 iterations (Figure 8a).  408 
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 409 

Figure 8: Initial and inverted models for an inversion using drawdown data produced from a 410 

true model (on the right) with a heterogeneous matrix. The red dots on the true model 411 

symbolize the pumping/measurement boreholes for the hydraulic data. A first inverted model 412 

(a) permits to localize the true karstic network but also generates conduits to simulate the 413 

more transmissive part of the true model. A second inversion (b) starting from the previous 414 

inverted model permits to correct the geometry and produces an inverted model matching 415 

more accurately the true model. 416 

 417 

The structural optimization permitted to retrieve the true geometry of the conduits network, 418 

but it also added conduits in the bottom left part of the model to reproduce the drawdown data 419 

of the more transmissive area of the matrix. Then the property optimization could reproduce 420 

the true transmissivity values distribution in the matrix. In the end the inverted model can 421 

reproduce the true drawdowns data, but its network geometry incorporates parts, inexistent in 422 

the true model, that has been generated in order to simulate a more transmissive area of the 423 

matrix before the matrix transmissivity values could be optimized. 424 

We started a second inversion using the previously inverted model (indicated in Figure 4 as 425 

the ‘multi-scale option’). The structural optimization converged in 2 iterations and the 426 
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parameter property optimization in 1 iteration (Figure 8b). The only changes were made 427 

during the structural optimization step, with an important improvement in the identification of 428 

the shape of the conduits. In this case the inverted model reproduces the drawdowns data (R² 429 

= 0.99) but is also a good representation of the true network geometry.  430 

 431 

Figure 9: Maps of the conduit and matrix transmissivities posterior standard deviations. The 432 

matrix higher transmissivity zones in the inverted model (bottom left) have a higher 433 

uncertainty value than the lower transmissivity zones (top right). On the contrary, the 434 

uncertainty on the transmissivities of the conduits of the primary drain is higher than the 435 

secondary conduits. 436 

 437 

The posterior standard deviation maps produced from Eq. 11 (Figure 9) show, for the conduit 438 

property values, a smaller uncertainty for the secondary conduits and a higher uncertainty for 439 

the primary drain, especially for the part of the network on the left of the model. Concerning 440 

the matrix transmissivity property values, the highest uncertainty are located mostly in the 441 

most transmissive areas. 442 

3.3. Study case 3 443 
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Finally, a third study case was led to test the ability of this inversion method to reproduce the 444 

data in a case of a complex karstic network geometry. We generated drawdown data from a 445 

theoretical model with a karstic network with a constant equivalent transmissivity of 0.1 m²/s 446 

in a homogeneous matrix with a transmissivity of 10-6 m²/s (Figure 10). 447 

We started an inversion from a simple initial model with a single vertical 0.1 m²/s conduit and 448 

a homogeneous 10-6 m²/s matrix transmissivity. The structural optimization converged in 33 449 

iterations and the parameter optimization in 1 iteration (Figure 10a). The inverted model 450 

permits to fit the data set approximately (R² = 0.78) and represents the global geometry of the 451 

conduits network of the true model. Regarding the simplicity of the initial model, the result 452 

model remains satisfying. 453 

 454 

Figure 10: Initial and inverted models for an inversion using drawdown data generated from a 455 

true model (on the right) with a homogeneous matrix. The red dots on the true model 456 

symbolize the pumping/measurement boreholes for the hydraulic data. A first inverted model 457 

(a), starting from a simple initial model, permits to localize approximately the true network 458 

geometry. A second inversion (b), starting from a more detailed initial model, permits to 459 

produce a more precise network geometry. 460 
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 461 

We also started an inversion from a more complex initial model with two vertical 0.1 m²/s 462 

conduits diverging in the upper part of the model in a homogeneous 10-6 m²/s matrix 463 

transmissivity. This initial model geometry (representing a simple approximation of the true 464 

geometry) can be associated to a priori field knowledge information. The structural 465 

optimization converged in 17 iterations and the parameter optimization in 1 iteration (Figure 466 

10b). In this case, the inverted geometry of the discrete network permits a good reproduction 467 

of the data (R² = 0.97) and is closer to the real network than the case in Figure 10a.  468 

 469 

Figure 11: Maps of the posterior uncertainties of the network local directions for the Cases a 470 

and b. In the Case a, started from a simple initial model, the highest uncertainties are 471 

distributed uniformly over the inverted network. In the Case b, started from a more detailed 472 

initial model, the highest uncertainties are located in the periphery of the model. 473 

 474 

The structural posterior uncertainty maps produced from Eq. 8 are presented in Figure 11. 475 

These maps show that, in the Case a, the highest uncertainties are distributed relatively 476 

uniformly among the inverted model, while in Case b, they are mostly located in the periphery 477 



27 
 

of the model. Here, the structural posterior uncertainties are giving important information 478 

about the local validity of the different inverted networks. 479 

4. Discussion 480 

We have successfully tested the DNDI method on three theoretical and simplified study cases 481 

with steady state drawdowns. However as we have seen, an inversion process is limited by the 482 

non-uniqueness of its solution. Therefore using the DNDI method requires several 483 

prerequisites and the modeler needs to be critical toward the result. 484 

As we have seen in the first study case, the efficiency of the inversion is dependent to the 485 

hydraulic data set, and in particular the number and the localization of observation wells on 486 

the field. We note that even wells in the matrix can provide information on nearby conduits 487 

for the inversion. Globally it appears that the most important point about a steady-state dataset 488 

is to have a homogeneous and sufficiently dense distribution of wells on the site, in order to 489 

characterize successfully the network. 490 

Concerning the inversion process itself, we note, in the third study case, the ability of the 491 

DNDI method to image complex networks. However, as the inversion is deterministic, the 492 

precision of the result model is dependent to the initial model. The inversion process will 493 

converge to a local solution dependent to the initial model. In fact, in Figure 10 we show that 494 

a simple initial model permitted to reproduce a satisfying global representation of the true 495 

model, but with local approximations, while a more complex initial model permitted a more 496 

accurate reproduction of the true model and a faster convergence. Therefore an inverted 497 

model using the DNDI method should be analyzed critically, like any deterministic inverse 498 

methods, depending from the initial model. The study of the computed structural and property 499 

uncertainty values (with Eq. 8 and Eq. 11) can supply this critical analysis on the result 500 

model. 501 
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The second study case also illustrates some limits of the sequential optimization of the 502 

method, especially when starting from a too simple initial model. Therefore the amount of a 503 

priori information introduced in the initial model is important for the accuracy of the result 504 

model. Otherwise, as we demonstrate in Figure 8, a simple possible operation would be to re-505 

run the inversion with a first inversion result to slightly improve the result. We would also 506 

recommend the coupling of this inversion method to a multiscale method (Grimstadt et al. 507 

2003) which consists in a re-run of the inversion starting from a previous result with a 508 

refinement of the partitioning. It permits to lead several inversions with an initial model each 509 

time more precise while saving time as we initially start with a coarsely partitioned model. 510 

5. Conclusion 511 

We present in this paper a novel deterministic inversion method that permits to characterize, 512 

in a partitioned model, the karst conduits and fractures network geometry and their hydraulic 513 

properties, including the transmissivity distribution of the matrices. The DNDI method let the 514 

modeler choose the partitioning of the model for the inversion. This ‘cursor’ permits to define 515 

either an inversion with a coarse partitioning for a quick approximation model, or with a fine 516 

partitioning and a longer computation time for a better fitting model. The use of a discrete 517 

network model permits to associate a specific behavior to the flows in the network and thus, 518 

produces more realistic models than an equivalent porous media model. This method can be 519 

easily adapted for channels or fractures network models by modifying the properties 520 

associated to the discrete network (these properties can also be directly linked to an aperture 521 

value, by choosing an adapted law). Therefore we believe that the DNDI method is an 522 

interesting new imagery tool for the distributed modeling associated to a set of data from an 523 

investigation in a karstic and/or fractured aquifer. 524 



29 
 

We have realized different tests in three theoretical and simplified study cases with an 525 

increasing complexity, and the DNDI could always produce satisfying results, both on the 526 

reproduction of the generated data and on finding the network geometry and property values 527 

from the true model. As we have seen in the first study case, the result of the structural 528 

inversion is dependent on the positioning and the amount of observed data. This is true for 529 

any inversion, but is especially important in the case of highly heterogeneous aquifers for 530 

delineating the position of the heterogeneities. Therefore, the result of the inversion has to be 531 

interpreted critically regarding the set of data used for it. A first critical analysis can be 532 

performed from the maps of posterior uncertainties on the structure or on the property values 533 

that can be produced by using the formulas we propose in this paper. The a priori information 534 

on the geometry of the network and on the property values is also a way to constrain the 535 

inversion in addition to the data. This information can be inferred from general field 536 

knowledges (geological and geophysical information, conduits observation in wells through 537 

video camera, other studies, etc.) 538 

Because this method is deterministic, the choice of the initial model should be based on a 539 

relatively coherent possibility and should not be too far from the real solution in order to 540 

produce a good result. Therefore, we propose to couple the DNDI method to a multi-scale 541 

method. This consists in a first inversion started from an initial model which is followed by a 542 

new one that starts from the first inversion solution with a refined partitioning. This strategy 543 

permits to start from a simple initial model and to progressively make the model more 544 

complex and improve the solution.  545 

An application of this method for mapping the conduits and fractures network with real data 546 

from a karstic field is planned for future works. These works will be more specifically 547 

focused on the sensitivity of the method to the spatial distribution of the measurement 548 

boreholes and on delineating the preferential flow paths in the network. 549 
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