
HAL Id: hal-01691217
https://hal.science/hal-01691217v3

Preprint submitted on 12 Mar 2018 (v3), last revised 4 Jan 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Bayesian Network Structure Learning using
Quasi-Determinism Screening

Thibaud Rahier, Sylvain Marié, Stéphane Girard, Florence Forbes

To cite this version:
Thibaud Rahier, Sylvain Marié, Stéphane Girard, Florence Forbes. Fast Bayesian Network Structure
Learning using Quasi-Determinism Screening. 2018. �hal-01691217v3�

https://hal.science/hal-01691217v3
https://hal.archives-ouvertes.fr

Fast Bayesian Network Structure Learning using Quasi-Determinism
Screening

Thibaud Rahier
Univ. Grenoble Alpes, Inria

& Schneider Electric
Grenoble, France

Sylvain Marie
Schneider Electric
Grenoble, France

Stephane Girard
Univ. Grenoble Alpes, Inria

Grenoble, France

Florence Forbes
Univ. Grenoble Alpes, Inria

Grenoble, France

Abstract

Learning the structure of Bayesian networks
from data is a NP-Hard problem that involves
optimization over a super-exponential sized
space. In this work, we show that in most
real life datasets, a number of the arcs con-
tained in the final structure can be pre-screened
at low computational cost with a limited im-
pact on the global graph score. We formalize
the identification of these arcs via the notion of
quasi-determinism, and propose an associated
algorithm that narrows the structure learning
task down to a subset of the original variables.
We show, on diverse benchmark datasets, that
this algorithm exhibits a significant decrease in
computational time and complexity for only a
little decrease in performance score.

1 INTRODUCTION

Bayesian networks are probabilistic graphical models
that present interest both in terms of knowledge discov-
ery and density estimation. Learning Bayesian networks
from data has been however proven to be NP-Hard by
Chickering (1996).
There has been extensive work on tackling the ambitious
problem of Bayesian network structure learning from ob-
servational data. Algorithms fall under two main cate-
gories: constraint-based and score-based.

Constraint-based structure learning algorithms rely on
testing for conditional independencies that hold in the
data in order to reconstruct a Bayesian network encoding
these independencies. The PC algorithm by Spirtes et al.
(2000) was the first practical application of this idea, fol-
lowed by several optimized approaches as the fast incre-
mental association (Fast-IAMB) algorithm from Yara-
makala and Margaritis (2005).

Score-based structure learning relies on the definition
of a network score, then on the search for the best-
scoring structure among all possible directed acyclic
graphs (DAGs). The number of possible DAG structures
with n nodes is of order 2O(n2) , which prevents exhaus-
tive search when n is typically larger than 30, even for the
most recent algorithms Silander and Myllymaki (2012)
or Yuan et al. (2013)).
Most of the score-based algorithms used in practice
therefore rely on heuristics, as the original approach from
Cooper and Herskovits (1992) which supposed a prior
ordering of the variables to perform parent set selection,
or Bouckaert (1995) who proposed to search through
the structure space using greedy hill climbing with ran-
dom restarts. Since these first algorithms, different ap-
proaches have been proposed: some based on the search
for an optimal ordering as Chen et al. (2008) or Teyssier
and Koller (2012), others on optimizing the search task in
accordance to a given score (BIC or BDe) as de Campos
and Ji (2011) or Scanagatta et al. (2015).

Meanwhile, data itself may contain determinism, for
example in the fields of cancer risk identification
(de Morais et al. (2008)) or nuclear safety (Mabrouk
et al. (2014)). Moreover, data is increasingly collected
and generated by software systems whether in social net-
works, smart buildings, smart grid, smart cities or the
internet of things (IoT) in general (Koo et al. (2016)).
These systems in their vast majority rely on relational
data models or lately on semantic data models (El Kaed
et al. (2016)) which cause deterministic relationships
between variables to be more and more common in
datasets. Determinism has been shown to interfere with
Bayesian network structure learning, notably constraint-
based methods as mentioned by Luo (2006).

In this paper, we focus on score-based algorithms. After
reminding the background of Bayesian network structure
learning in section 2, we state some theoretical results in
section 3, that enable to bridge the gap between deter-

minism and Bayesian network scoring.
In section 4, exploiting the intuition brought by these
theoretical results, we propose and study the complex-
ity of the quasi deterministic screening algorithm. The
idea is that some of the arcs contained in the desired
Bayesian network can be learned during a quick screen-
ing phase where quasi-deterministic relationships are de-
tected, thus narrowing the learning task down to a subset
of the original variables.
In practice, not only does this algorithm accelerate the
overall learning procedure with very low performance
loss, but it also leads to sparser and therefore more in-
terpretable graphs than state of the art methods, as pre-
sented using benchmark datasets in section 5.
Finally, section 6 is dedicated to a discussion and to nu-
merous perspectives emerging from this work. Proofs of
all lemmas and propositions are available in the supple-
mentary material.

2 BAYESIAN NETWORK STRUCTURE
LEARNING

2.1 Bayesian networks

Let X = (X1, . . . , Xn) be a n-tuple of cate-
gorical random variables with respective value sets
V al(X1), . . . , V al(Xn). The distribution of X is de-
noted by, ∀ x = (x1, . . . , xn) ∈ V al(X),

p(x) = P (X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = {Xi}i∈I , and the no-
tation p(·) and p(·|·) is extended to the marginals and
conditionals of any subset of variables: ∀(xI ,xJ) ∈
V al(XI∪J), p(xI |xJ) = P (XI = xI |XJ = xJ).
Moreover, we suppose that D is a dataset containing M
i.i.d. instances of (X1, . . . , Xn). All quantities empir-
ically computed from D will be written with a .D ex-
ponent (e.g. pD refers to the empirical distribution with
respect to D). Finally, DI refers to the restriction of D
to the obsevations of XI .

A Bayesian network is an object B = (G, θ) where

• G = (V,A) is a directed acyclic graph (DAG) struc-
ture with V the set of nodes and A ⊂ V ×V the set
of arcs. We suppose V = J1, nK where each node
i ∈ V is associated with the random variable Xi,
and πG(i) = {j ∈ V s.t. (j, i) ∈ A} is the set of
i’s parents in G. The exponent G may be dropped
for clarity when the referred graph is obvious.

• θ = {θi}i∈V is a set of parameters. Each θi defines
the local conditional distribution P (Xi|Xπ(i)).
More precisely, θi = {θxi|xπ(i)

} where for i ∈

V, xi ∈ V al(Xi) and xπ(i) ∈ V al(Xπ(i)),

θxi|xπ(i)
= p(xi|xπ(i)).

A Bayesian network B = (G, θ) encodes the follow-
ing factorization of the distribution of X: for x =
(x1, . . . , xn) ∈ V al(X),

p(x) =

n∏
i=1

p(xi|xπG(i)) =

n∏
i=1

θxi|xπG(i)
.

Such a factorization notably implies that each variable is
independent of its non-descendents given its parents.

2.2 Score-based approach to Bayesian network
structure learning

Suppose we have a scoring function s : DAGV → R,
where DAGV is the set of all possible DAG structures
with node set V . Score-based Bayesian network struc-
ture learning comes down to solving the following com-
binatorial optimization problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1)

It can be shown that 2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1)

where |V | = n. There are therefore 2O(n2) possible
DAG structures containing n nodes: the size of DAGV
is said to be super-exponential in |V |.
Most scoring functions used in practice are based on the
likelihood function. The most straightforward being the
Max log-likelihood sore, that we now present.

The Max log-likelihood score Let l(θ : D) =
log(pθ(D)) be the log-likelihood of the set of parame-
ters θ given the dataset D.
For a given DAG structure G ∈ DAGV , we define the
Max log-likelihood (MLL) score of G associated with a
dataset D as:

sMLL(G : D) = max
θ∈ΘG

l(θ : D).

where ΘG is the set of all θ’s such that B = (G, θ) is a
Bayesian network.
The MLL score is very straightforward and intuitive, but
it favorizes denser structures: if G1 = (V,A1) and G2 =
(V,A2) are two graph structures such that A1 ⊂ A2, we
can show that: sMLL(G1 : D) ≤ sMLL(G2 : D).
There are two main (non-exclusive) approaches to solve
this problem:
• Constrain the structure space to avoid learning

overly complex graphs, which is the idea of hy-
brid structure learning algorithms such as the sparse
candidate algorithm presented by Friedman et al.
(1999), or the Max-Min Hill Climbing (MMHC) al-
gorithm introduced by Tsamardinos et al. (2006).

• Use a score that induces a goodness-of-fit versus
complexity tradeoff, such as:

– BIC (Schwarz et al. (1978)), which is a penal-
ized version of the MLL score.

– BDe (Heckerman et al. (1995)), which is de-
rived from the marginalization of the likeli-
hood, implying a prior implicitly penalizing
the model’s complexity.

The BDe score In this paper, we will use the BDe score
to evaluate a BN structure’s quality, as it is done in sev-
eral recent papers as Teyssier and Koller (2012), or Nie
et al. (2016). This score is known to be a good indicator
of generalization performance.

The BDe score ofG ∈ DAGV is defined as the log of the
marginal likelihood, integrated against a Dirichlet prior.
Assuming a uniform prior over all network structures, we
have

sBDe(G : D) = log

∫
θ∈ΘG

p(D|θ,G)︸ ︷︷ ︸
Likelihood

p(θ|G)︸ ︷︷ ︸
Dirichlet prior

dθ

In practice, we often use the BDeu score, introduced by
Buntine (1991), which is a particular case of BDe where
the Dirichlet prior assigns the same probability to all con-
figurations of Xi ∪Xπ(i) for each i.

3 DETERMINISM AND BAYESIAN
NETWORKS

3.1 Definitions

We propose the following definitions of determinism and
deterministic DAGs using the notion of conditional en-
tropy. In this paper, determinism will always be meant
empirically, with respect to a dataset D.

Definition 1 Determinism wrt D
Given a dataset D containing observations of variables
Xi and Xj , the relationship Xi → Xj is deterministic
with respect to D iff HD(Xi|Xj) = 0,
where

HD(Xi|Xj) = −
∑
xi,xj

pD(xi, xj) log(pD(xi|xj))

is the empirical conditional Shannon entropy.

It is straightforward to prove that Definition 1 relates to a
common and intuitive perception of determinism, as the
one presented by Luo (2006). Indeed,

HD(Xi|Xj) = 0

⇔ ∀xj ∈ V al(Xj),∃!xi ∈ V al(Xi) s.t. p
D(xi|xj) = 1.

This definition is naturally extended to XI and XJ for
I, J ⊂ V , i.e. XI → XJ is deterministic with respect to
D iff HD(XJ |XI) = 0.
Definition 2 Deterministic DAG wrt D
G ∈ DAGV is said to be deterministic with respect toD
iff ∀i ∈ V s.t. πG(i) 6= ∅, XπG(i) → Xi is deterministic
wrt D.

3.2 Deterministic trees and MLL score

We first recall a lemma that relates the MLL score pre-
sented in section 2 to the notion of empirical conditional
entropy. This result is well known and notably stated by
Koller and Friedman (2009).

Lemma 1 For G ∈ DAGV associated with variables
X1, . . . , Xn observed in a dataset D,

sMLL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

where by convention HD(Xi|X∅) = HD(Xi).

The next proposition follows then straightforwardly. We
remind that a tree is a DAG in which each node has ex-
actly one parent, except for the root node which has none.

Proposition 1 If T is a deterministic tree with respect to
D, then T is a solution of (1):

sMLL(T : D) = max
G∈DAGV

sMLL(G : D).

It is worth noticing that complete DAGs also maximize
the MLL score. The main interest of Proposition 1 re-
sides in the fact that, under the (strong) assumption that
a deterministic tree exists, we are able to explicit a sparse
solution of (1), with n − 1 arcs instead of n(n−1)

2 for a
complete DAG.

3.3 Deterministic forests and the MLL score

The deterministic tree assumption of Proposition 1 is
very restrictive. In this section, it is extended to deter-
ministic forests, defined as follows:

Definition 3 Deterministic forest wrt D
F ∈ DAGV is said to be a deterministic forest with

respect to D iff F =
p⋃
k=1

Tk, where T1, . . . , Tp are p

disjoint deterministic trees wrt DVT1
, . . . , DVTp

respec-

tively and s.t.
p⋃
k=1

VTk = V .

In the expression
p⋃
k=1

Tk, ∪ is the canonical union for

graphs: G ∪G′ = (VG ∪ VG′ , AG ∪AG′).

For a given deterministic forest F wrt D, we define

R(F) = {i ∈ V | πF (i) = ∅}

the set of F ’s roots (the union of the roots of each of its
trees).

Proposition 2 Suppose F is a deterministic forest wrt
D. Let G∗R(F) be a solution of the structure learning
optimization problem (1) for XR(F) and the MLL score
i.e.

sMLL(G∗R(F) : DR(F)) = max
G∈DAGR(F)

sMLL(G : DR(F)).

Then, G∗ = F ∪G∗R(F) is a solution of (1) for X, i.e.

sMLL(G∗ : D) = max
G∈DAGV

sMLL(G : D).

As opposed to Proposition 1, the assumptions of Propo-
sition 2 are always formally verified: if there is no de-
terminism in the dataset D, then R(F) = V , and every
tree Tk is formed of a single root node. In that case,
solving problem (1) for G∗R(F) is the same as solving it
for G∗. Of course, we are interested in the case where
R(F) < n, as this enables us to focus on a smaller struc-
ture learning problem while still having the guarantee to
learn the optimal Bayesian network with regards to the
MLL score.

As seen in section 2, the main issue with the MLL
score is that it favors complete graphs. However, a
deterministic forest F containing p trees is very sparse
(n − p arcs), and even if the graph G∗R(F) is dense,
the graph G∗ = F ∪ G∗R(F) may still satisfy sparsity
conditions.

4 STRUCTURE LEARNING WITH
QUASI-DETERMINISM SCREENING

4.1 Quasi-determinism

When it comes to Bayesian network structure learning al-
gorithms, even heuristics are computationally intensive.
We would like to use the theoretical results presented in
section 3 to simplify the structure learning problem.

Our idea is to narrow the structure learning problem
down to a subset of the original variables: the roots of
a deterministic forest, in order to significantly decrease
the overall computation time. This is what we call deter-
minism screening.

However, in many datasets, one does not observe real
empirical determinism, although there are very strong

relationships between some of the variables. We there-
fore propose to relax the aforementioned determinism
screening to quasi-determinism screening, where quasi
is meant with respect to a parameter ε: we talk about
ε−quasi-determinism.

There are several ways to measure how close a relation-
ship is from deterministic. Huhtala et al. (1999) con-
sider the minimum number of observations that must be
dropped from the data for the relationship to be deter-
ministic. Since we are in a score-maximization context,
we will rather use ε as a threshold on the empirical con-
ditional entropy. The following definition is the natural
generalization of Definition 1.

Definition 4 ε−quasi-determinism (ε−qd)
Given a dataset D containing observations of variables
Xi and Xj , the relationship Xi → Xj is ε−qd wrt D iff
HD(Xj |Xi) ≤ ε.

It has been seen in Proposition 2 that a deterministic for-
est is the subgraph of an optimal DAG with respect to
the MLL score, while still satisfying sparsity conditions.
Such a forest is therefore very promising with regards to
the fit-complexity tradeoff (typically evaluated by scores
such as BDe or BIC).

Combining this intuition with the ε−qd criteria pre-
sented in Definition 4, we propose the quasi-determinism
screening approach to Bayesian network structure learn-
ing, defined in the next subsections.

4.2 Quasi-determinism screening algorithm

Algorithm 1 details how to find the simplest ε−qd
forest Fε from a dataset D and a threshold ε. Here
simplest refers to the complexity in terms of number of
parameters.

This algorithm takes for input:

• D: a dataset containing M observations of X,
• ε: a threshold for quasi-determinism.

The next proposition states that Algorithm 1 is well de-
fined.

Proposition 3 For any rightful inputD and ε, the output
of Algorithm 1 is a forest (i.e. a directed acyclic graph
with at most one parent per node).

4.3 Learning Bayesian networks using
quasi-determinism screening

We now present Algorithm 2, which uses quasi-
determinism screening to accelerate Bayesian network
structure learning. This algorithm takes the following in-
put:

Algorithm 1 Quasi-determinism screening (qds)
Input: D , ε

1: Compute empirical conditional entropy matrix
HD =

(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do #identify the set of potential ε−qd
parents for each i

3: compute πε(i) = {j ∈ J1, nK \ {i} | HDij ≤ ε}
4: for i = 1 to n do #check for cycles in ε−qd relations
5: if ∃j ∈ πε(i) s.t. i ∈ πε(j) then
6: if HDij ≤ HDji then
7: πε(j)← πε(j) \ {i}
8: else
9: πε(i)← πε(i) \ {j}

10: for i = 1 to n do #choose the simplest among all
potential parents

11: π∗ε (i)← argmin
j∈πε(i)

|V al(Xj)|

12: Compute forest Fε = (VFε , AFε) where
VFε = J1, nK and AFε = {(π∗ε (i), i) | i ∈
J1, nK s.t. π∗ε (i) 6= ∅}
Output: Fε

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism,

• sota-BNSL: a state of the art structure learning al-
gorithm, taking for input a dataset, and returning a
Bayesian network structure.

Algorithm 2 Bayesian network structure learning
with quasi deterministic screening (qds-BNSL)

Input: D, ε, sota-BNSL
1: Compute Fε by running Algorithm 1 with input D

and ε
2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set

of Fε’s roots.
3: Compute G∗R(Fε)

by running sota-BNSL on DR(Fε)

4: G∗ε ← Fε ∪G∗R(Fε)

Output: G∗ε

The extension of the definition of determinism to quasi-
determinism (Definition 3) prevents us to have ‘hard’
guarantees as those presented in Proposition 2. How-
ever, we are able to explicit bounds for the MLL score
of a graph G∗ε returned by Algorithm 2, as stated in the
following Proposition.

Proposition 4 Let ε, D and sota-BNSL be rightful input
to Algorithm 2, and G∗ε the associated output.
Then, if sota-BNSL is exact (i.e. always returns an op-
timal solution) with respect to the MLL score, we have

the following lower bound for sMLL(G∗ε : D):

sMLL(G∗ε : D) ≥
(

max
G∈DAGV

sMLL(G : D)

)
−Mnε.

In practice, this bound is not very tight and this re-
sult therefore has few applicative potential. However, it
shows that:

sMLL(G∗ε : D) −→
ε→0

max
G∈DAGV

sMLL(G : D).

In other words, ε 7→ sMLL(G∗ε : D) is continuous in 0,
and Proposition 4 generalizes Proposition 2.

Algorithm 2 is promising, notably if for small ε we
can significantly decrease the number of variables to be
considered by sota-BNSL. We would in this case have
a much faster algorithm with a controlled performance
loss.

4.4 Complexity analysis

Complexity of the state of the art algorithm The
number of possible DAG structures being super expo-
nential in the number of nodes, state of the art algo-
rithms do not entirely explore the structure space but use
smart caching and pruning methods to have a good per-
formance & computation time trade-off.
Let sota-BNSL be a state of the art Bayesian network
structure learning algorithm andCsota(M,n) be its com-
plexity.
Csota(M,n) should typically be thought of as linear in
M and exponential, or at least high degree polynomial,
in n for the best algorithms.

Complexity of Algorithm 1 We have the following de-
composition of the complexity of Algorithm 1:

1. Lines 1-3: O(Mn2). Computation of HD: we need
counts for every couple (Xi, Xj) for i < j (each
time going through all rows of D), which implies
M n(n−1)

2 operations.
2. lines 4-9: O(n2). Going through all elements of

HD once.
3. lines 10-12: O(n2). Going through all elements of

HD once.

Overall one has that CAlg1(M,n) = O(Mn2).

Complexity of Algorithm 2 For a given dataset D, we
define:

∀ε ≥ 0, nr(ε) = |R(Fε)|.

The function nr(·), associates to ε ≥ 0 the number of
roots of the forest Fε returned by Algorithm 1. The com-
plexity of Algorithm 2 then decomposes as:

1. Line 1: O(Mn2). Run of Algorithm 1.

2. Lines 2-4: Csota(M,nr(ε)). Run of sota-BNSL on
reduced dataset DR(Fε) with nr(ε) columns.

This yields CAlg2(M,n) = O(Mn2) +
Csota(M,nr(ε)).
We are interested in how much it differs from
Csota(M,n), which depends mainly on:

• how nr(ε) compares to n,

• how Csota(M,n) varies with respect to n.

It is hard to obtain a theoretical differenceCsota−CAlg2,
since it is not clear how to estimate the complexity of
state of the art learning algorithms, often based on local
search heuristics. However, we know that all Bayesian
network structure learning algorithms are very time-
intensive, which lets us expect an important decrease in
computational time for Algorithm 2 compared to a state
of the art algorithm.
In the next section, we run a state of the art struc-
ture learning algorithm and Algorithm 2 on benchmark
datasets in order to confirm this intuition.

5 EXPERIMENTS

5.1 Experimental setup

Data Table 1 summarizes the data used in our exper-
iments. We considered the largest open-source cate-
gorical datasets among those presented1 by Davis and
Domingos (2010) and available on the UCI repository
(Dheeru and Karra Taniskidou (2017)): 20 Newsgroup,
Adult, Book, Covertype, KDDCup 2000, MSNBC,
MSWeb, Plants, Reuters-52 and USCensus. Moreover,
as it was done by Scanagatta et al. (2016), we chose the
largest Bayesian networks available in the literature2, for
each of which we simulated 10000 observations: Andes,
Hailfinder, Hepar 2, Link, Munin 1-4, PathFinder and
Win95pts.

Programmation details and choice of sota-BNSL
Most of the code associated with this project was done
in R, enabling an optimal exploitation of the bnlearn
package from Scutari (2009), which is a very good
reference among open-source packages dealing with
Bayesian networks structure learning.
We need a state of the art Bayesian network structure
learning algorithm to obtain a baseline performance. Af-
ter carefully evaluating several algorithms implemented
in the bnlearn package, we chose to use Greedy Hill

1http://alchemy.cs.washington.edu/
papers/davis10a/

2http://www.bnlearn.com/bnrepository/

Table 1: Datasets presentation

name short name n M
20 newsgroups 20ng 930 11293
adult adult 125 36631
book book 500 8700
covertype covertype 84 30000
kddcup 2000 kddcup 64 180092
msnbc msnbc 17 291326
msweb msweb 294 29441
plants plants 69 17412
reuters 52 r52 941 6532
uscensus uscensus 68 2458285
andes andes 223 10000
hailfinder hailfinder 56 10000
hepar 2 hepar2 70 10000
link link 724 10000
munin 1 munin1 186 10000
munin 2 munin2 1003 10000
munin 3 munin3 1041 10000
munin 4 munin4 1038 10000
pathfinder pathfinder 109 10000
windows 95 pts win95pts 76 10000

Climbing with random restarts and a tabu list, as it con-
sistently outperformed other built-in algorithms both in
time and score, in addition to being also used as a bench-
mark algorithm in the literature, notably by Teyssier and
Koller (2012). In this section, we refer to this algorithm
as sota-BNSL.

Choice of ε for qds-BNSL An approach to choosing
ε in the case of the qds-BNSL algorithm is to pick val-
ues for nr(ε), and manually find the corresponding val-
ues for ε. For a given dataset and x ∈ [0, 1], we define
εx = n−1

r (bxnc). In other words, εx is the value of ε for
which the number of roots of the qd forest Fε represents
a proportion x of the total number of variables.
The computation of εx is not problematic: once HD is
computed and stored, evaluating nr(ε) is done in con-
stant time, and finding one of nr(·)’s quantiles is doable
in O(log(n)) operations (dichotomy), which is negligi-
ble compared to the overall complexity of the screening.

Algorithm evaluation The algorithms are evaluated
using 3 axes of performance:

• Bayesian network BDeu score presented in sec-
tion 2 with equivalent sample size (ESS) equal to
5, inspired from Teyssier and Koller (2012).

• Number of arcs of the learned Bayesian network.
The BDeu score naturally penalizes overly complex
models (in terms of number of parameters), it is

http://alchemy.cs.washington.edu/papers/davis10a/
http://alchemy.cs.washington.edu/papers/davis10a/
http://www.bnlearn.com/bnrepository/

however interesting to look at the number of arcs, as
it is a straightforward way to evaluate how complex
a Bayesian network structure appears to a human
expert (and therefore how interpretable this struc-
ture is).

• Computing time trun (all algorithms were run on
the same machine).
It is essential to remark that sota-BNSL is used both
to obtain a baseline performance and inside qds-
BNSL. In both cases, it is run with the same settings
until convergence. The comparison of computing
times is therefore fair.

We present the obtained results for our selected
state of the art algorithm sota-BNSL, and 3 versions
of qds-BNSL. For each dataset, we selected ε ∈
{ε0.9, ε0.75, ε0.5}), corresponding to a restriction of sota-
BNSL to 90%, 75% and 50% of the original variables
respectively.
The results are shown in Tables 2-4, one per evaluation
criterion. In each table, the actual value of the criterion
is displayed for sota-BNSL (sota), and the relative dif-
ference is displayed for the three versions of qds-BNSL
we consider (qdsε0.9 , qdsε0.75 and qdsε0.5).

5.2 Results

Score It appears in Table 2 that the decrease in BDeu
score is smaller than 5% for all the considered datasets
when 90% of the variables remain after the pre-screening
(qdsε0.9), and for most of them when 75% of the vari-
ables remain (qdsε0.75). This is also observed with ε0.5
for datasets that contain a lot of very strong pairwise re-
lationships as kddcup, msweb, or munin2-4.

Computing time Table 3 shows a significant decrease
in computational time for qds-BNSL, which is all the
more important that ε is large. In the best cases, we
have both a very small decrease in BDeu score, and
an important decrease in computational time. For ex-
ample, the algorithm qds-BNSL with ε = ε0.5 is 55%
faster for msweb, and 54% for munin 3, while imply-
ing ony around 1% decrease in score compared to sota-
BNSL. If we allow a 5% score decrease, qds-BNSL can
be up to 70% faster (20 newgroups, book, msnbc, kdd-
cup, hepar2, pathfinder).
These results confirm the complexity analysis of the pre-
vious section, in which we supposed that the screening
phase had a very small computational cost compared to
the standard structure learning phase.

Complexity As showed by Table 4, Bayesian networks
learnt with qds-BNSL are consistently less complex than
those learnt with sota-BNSL. Several graphs learnt with

Table 2: BDeu score averaged by observation. Every
result that is less than 5% smaller than sota-BNSL’s score
is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng -142.71 -0.66 -2.13 -4.78
adult -12.86 -0.16 -0.05 -4.01
book -34.81 -0.80 -1.69 -4.64
covertype -13.60 -0.21 -1.23 -11.7
kddcup -2.38 -0.31 -1.04 -3.83
msnbc -6.19 -0.14 -2.62 -4.64
msweb -9.77 +0.03 -0.07 -0.99
plants -13.03 -2.57 -7.56 -20.92
r52 -95.48 -0.76 -1.96 -6.11
uscensus -23.20 -0.27 -1.75 -10.39
andes -93.23 -0.49 -6.22 -16.57
hailfinder -49.63 -0.06 -2.71 -10.21
hepar2 -32.60 -0.28 -1.36 -3.22
link -215.68 +0.10 +1.10 -16.99
munin1 -41.15 -0.09 -0.16 -9.95
munin2 -171.82 -0.02 -0.02 -1.83
munin3 -165.09 0.00 0.00 -1.10
munin4 -186.11 -0.02 -0.02 -3.86
pathfinder -26.65 -0.66 -0.70 -4.88
win95pts -9.22 +0.06 -1.08 -9.15

qdsε0.5 are more than 30% sparser while still scoring less
than 5% below state of the art: 20 newsgroups, book,
kddcup 2000, msnbc, msweb and hepar 2.

Figure 1 and 2 display two Bayesian networks learnt
on the ‘msnbc’ dataset. They provide an interest-
ing example of the sparsity induced by qds-BNSL. After
the qdε0.5 -screening phase, half of the variables (corre-
sponding to the nodes in white) are considered to be suf-
ficiently explained by V 1. They are therefore not taken
into account by sota-BNSL, which is run only on the vari-
ables corresponding to the nodes in gray.
In the case of msnbc, this restriction of the learning prob-
lem implies only a small decrease in the final graph’s
generalization performance (as reflected by the BDeu
scores), while being 7 times faster to compute and en-
abling a significantly better readability.

In this processed version of the msnbc dataset (Davis
and Domingos (2010)), each variable contains a binary
information regarding the visit of a given page from the
msnbc.com website3. The Bayesian network displayed
in Figure 2 shows in a compact way the influence be-

3more details: http://archive.ics.uci.edu/
ml/machine-learning-databases/msnbc-mld/
msnbc.data.html

msnbc.com
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html

Table 3: Computation time (seconds). Every result that
corresponds to a BDeu score less than 5% smaller than
sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(seconds) (%) (%) (%)

20ng 21, 495 -1.62 -42.66 -72.94
adult 1, 02 -6.61 -22.03 -61.20
book 7, 600 -23.61 -40.33 -71.30
covertype 565 -6.80 ‘ -33.22 -71.13
kddcup 2, 167 -11.49 -32.85 -73.59
msnbc 252 -20.66 -60.61 -85.65
msweb 4, 701 -6.29 -9.86 -55.08
plants 455 -46.93 -61.93 -84.07
r52 18, 630 -13.58 -38.47 -76.71
uscensus 21, 782 -0.44 -31.54 -77.68
andes 898 -2.23 -27.42 -69.91
hailfinder 46 -5.31 -17.46 -54.71
hepar2 76 -4.05 -42.56 -70.00
link 7, 240 -12.03 -10.58 -61.30
munin1 497 -7.42 -17.23 -59.14
munin2 7, 093 -20.46 -21.66 -43.68
munin3 11, 558 -36.91 -29.20 -54.19
munin4 8, 550 -7.87 -13.08 -39.06
pathfinder 231 -14.01 -35.38 -69.48
win95pts 132 -6.05 -31.41 -69.07

tween the different variables. For instance, we see that
visits of the website’s pages corresponding to nodes in
white (e.g. ‘weather’ (V 8), ‘health’ (V 9) or ‘business’
(V 11)) are importantly influenced by whether the user
has also visited the frontpage (V 1). For example, learnt
parameters show that a user who did not visit the web-
site’s frontpage (V 1) is about 10 times more likely to
have visited the website’s ‘summary’ page (V 13) than
a user who did visit the frontpage. Such information
is much harder to read from the graph learnt with sota-
BNSL displayed in Figure 1.

6 DISCUSSION

We have seen that, both in theory and in practice,
the quasi-determinism screening approach enables a de-
crease in computational time and complexity for a small
decrease in graph score. This tradeoff is all the more
advantageous that there actually are strong pairwise re-
lationships in the data, that can be detected during the
screening phase, thus enabling a decrease in the num-
ber of variables to be considered by the state of the art
structure learning algorithm during the second phase of
Algorithm 2.

Table 4: Networks’ number of arcs. Every result that
corresponds to a BDeu score less than 5% smaller than
sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng 3136 -4.50 -14.89 -31.89
adult 371 3.23 7.01 -13.75
book 2196 -10.66 -19.17 -40.30
covertype 337 -0.89 -11.28 -37.69
kddcup 285 -5.26 -18.95 -38.95
msnbc 102 -7.84 -33.33 -63.73
msweb 1, 264 -2.53 -3.56 -34.97
plants 320 -6.25 -18.44 -42.50
r52 2713 -3.65 -9.14 -25.14
uscensus 220 -10.45 -20.45 -37.73
andes 336 -0.89 -7.14 -22.92
hailfinder 64 -1.56 +6.25 -15.62
hepar2 92 -3.26 -21.74 -30.43
link 1, 146 -1.83 -0.44 -22.43
munin1 208 0.00 +0.96 -9.62
munin2 879 0.00 0.00 -13.31
munin3 898 0.00 0.00 -7.80
munin4 903 0.00 0.00 -8.53
pathfinder 161 -4.35 -8.70 -24.22
win95pts 115 0.00 -0.87 -12.17

Optimal cases for this algorithm take place when nr(ε) is
significantly smaller than n for ε reasonably small com-
pared to the variable’s entropies. In practice this is rea-
sonably frequent (e.g 20 newsgroup, msnbc, munin2-4,
webkb among others).

Experiments presented in this paper were only conducted
on opensource datasets that are frequently used by the
community. However, we have also tested our algorithm
on industrial descriptive metadatasets from the IoT do-
main, for which many variables possess (empirically) de-
terministic parents: we have nr(ε = 0) very small with
respect to n (typically nr(ε = 0) ≈ 10 for n ≈ 100).
In this context qds-BNSL is up to 20 times faster than
sota-BNSL, with equivalent or even better learned graphs
in terms of BDeu score. This is a specific case (data
stored in relational databases in almost perfect third nor-
mal form), but it is still interesting since an important
amount of data accessible today contains determinism,
as previously noted.

Besides, we still have potential to improve the qds-BNSL
algorithm, by paralellizing the computation of HD, and
implementing it in C instead of R.

Our main research perspective is to be able to anticipate

BN learnt on dataset 'msnbc' with sota−BNSL

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15V16

V17

Figure 1: Bayesian network learnt on dataset ‘msnbc’
with sota-BNSL. BDeu score: -6.19, Nb of arcs: 102,
Time until convergence: 252s

how good the tradeoff may be before running any algo-
rithm all the way through, saving us from trying qds-
BNSL on datasets in which there are absolutely no strong
pairwise relationships, and enabling us to choose an op-
timal value of ε on datasets for which there is a lot of
potential for computational time win with controlled per-
formance loss.
The bound presented in Proposition 4 concerns the MLL
score and is far from tight in practice. However, if we
could find a tight bound on the BDeu score of the graphs
generated by qds-BNSL, it would be much easier to esti-
mate the most promising value of ε for a given dataset.

Finally, we have some insights on ways to generalize our
quasi-determinism screening idea.
The proof of Proposition 2 suggests that the result still
holds when F is any kind of deterministic DAG (and not
only a forest). We could therefore use techniques that de-
tect determinism in a broader sense than only pairwise,
to make the screening more efficient. For this purpose we
could take inspiration from papers of the knowledge dis-
covery in databases (KDD) community, as Huhtala et al.
(1999), or more recently Papenbrock et al. (2015) who
evaluate functional dependencies discovery methods.
We also could broaden our definition of quasi-
determinism: instead of considering the information-
theoretic quantity HD(X|Y) to describe the strength of
the relationship Y → X , one could choose HD(X|Y)

HD(X)
,

which represents the proportion of X’s entropy that is
explained by Y . Moreover, H

D(X|Y)
HD(X)

≤ ε can be rewrit-

ten as MID(X,Y)
H(X) ≥ 1 − ε, which gives another in-

sight to quasi-determinism screening: for a given vari-
able X , this comes down to finding a variable Y such

BN learnt on dataset 'msnbc' with qds−BNSL (eps_0.5)

V1

V10 V11

V12

V13

V14

V15 V16 V17

V2

V3

V4

V5

V6

V7

V8 V9

Figure 2: Bayesian network learnt on dataset ‘msnbc’
with qds-BNSL(ε0.5). BDeu score: -6.48, Nb of arcs: 37,
Time until convergence: 36s

that MID(X,Y) is high. This is connected to the idea
of Chow and Liu (1968), and later Cheng et al. (1997),
for whom pairwise empirical mutual information is cen-
tral. This alternate definition of ε−quasi-determinism
does not change the algorithms and complexity consid-
erations described in section 4. Lastly, we could con-
sider other definitions of entropy as the ones presented
by Rényi et al. (1961).

References

Bouckaert, R. (1995). Bayesian belief networks: from
inference to construction. PhD thesis, Faculteit
Wiskunde en Informatica, Utrecht University.

Buntine, W. (1991). Theory refinement on Bayesian net-
works. In Uncertainty Proceedings 1991, pages 52–
60. Elsevier.

Chen, X.-W., Anantha, G., and Lin, X. (2008). Improv-
ing Bayesian network structure learning with mutual
information-based node ordering in the K2 algorithm.
IEEE Transactions on Knowledge and Data Engineer-
ing, 20(5):628–640.

Cheng, J., Bell, D. A., and Liu, W. (1997). Learning be-
lief networks from data: An information theory based
approach. In Proceedings of the sixth international
conference on Information and knowledge manage-
ment, pages 325–331. ACM.

Chickering, D. M. (1996). Learning Bayesian networks
is NP-complete. Learning from data: Artificial intelli-
gence and statistics V, 112:121–130.

Chow, C. and Liu, C. (1968). Approximating discrete
probability distributions with dependence trees. IEEE
transactions on Information Theory, 14(3):462–467.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9(4):309–347.

Davis, J. and Domingos, P. (2010). Bottom-up learning
of Markov network structure. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), pages 271–278.

de Campos, C. P. d. and Ji, Q. (2011). Efficient structure
learning of Bayesian networks using constraints. Jour-
nal of Machine Learning Research, 12(Mar):663–689.

de Morais, S. R., Aussem, A., and Corbex, M.
(2008). Handling almost-deterministic relationships in
constraint-based Bayesian network discovery: Appli-
cation to cancer risk factor identification. In European
Symposium on Artificial Neural Networks, ESANN’08.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI ma-
chine learning repository.

El Kaed, C., Leida, B., and Gray, T. (2016). Building
management insights driven by a multi-system seman-
tic representation approach. In Internet of Things (WF-
IoT), 2016 IEEE 3rd World Forum on, pages 520–525.
IEEE.

Friedman, N., Nachman, I., and Peér, D. (1999). Learn-
ing Bayesian network structure from massive datasets:
the ‘sparse candidate ‘algorithm. In Proceedings of the
Fifteenth conference on Uncertainty in artificial intel-
ligence, pages 206–215. Morgan Kaufmann Publish-
ers Inc.

Heckerman, D., Geiger, D., and Chickering, D. M.
(1995). Learning Bayesian networks: The combina-
tion of knowledge and statistical data. Machine Learn-
ing, 20(3):197–243.

Huhtala, Y., Kärkkäinen, J., Porkka, P., and Toivonen, H.
(1999). Tane: An efficient algorithm for discovering
functional and approximate dependencies. The com-
puter journal, 42(2):100–111.

Koller, D. and Friedman, N. (2009). Probabilistic graph-
ical models: principles and techniques. MIT press.

Koo, D. D., Lee, J. J., Sebastiani, A., and Kim, J.
(2016). An internet-of-things (iot) system develop-
ment and implementation for bathroom safety en-
hancement. Procedia Engineering, 145:396–403.

Luo, W. (2006). Learning Bayesian networks in semi-
deterministic systems. In Canadian Conference on AI,
pages 230–241. Springer.

Mabrouk, A., Gonzales, C., Jabet-Chevalier, K., and
Chojnacki, E. (2014). An efficient Bayesian network
structure learning algorithm in the presence of deter-
ministic relations. In Proceedings of the Twenty-first
European Conference on Artificial Intelligence, pages
567–572. IOS Press.

Nie, S., de Campos, C. P., and Ji, Q. (2016). Learn-
ing Bayesian networks with bounded tree-width via
guided search. In AAAI, pages 3294–3300.

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T.,
Rudolph, J.-P., Schönberg, M., Zwiener, J., and Nau-
mann, F. (2015). Functional dependency discovery:
An experimental evaluation of seven algorithms. Pro-
ceedings of the VLDB Endowment, 8(10):1082–1093.

Rényi, A. et al. (1961). On measures of entropy and
information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probabil-
ity, Volume 1: Contributions to the Theory of Statis-
tics. The Regents of the University of California.

Scanagatta, M., Corani, G., de Campos, C. P., and
Zaffalon, M. (2016). Learning treewidth-bounded
Bayesian networks with thousands of variables. In
Advances in Neural Information Processing Systems,
pages 1462–1470.

Scanagatta, M., de Campos, C. P., Corani, G., and Zaf-
falon, M. (2015). Learning Bayesian networks with
thousands of variables. In Advances in Neural Infor-
mation Processing Systems, pages 1864–1872.

Schwarz, G. et al. (1978). Estimating the dimension of a
model. The Annals of Statistics, 6(2):461–464.

Scutari, M. (2009). Learning Bayesian networks with the
bnlearn R package. arXiv preprint arXiv:0908.3817.

Silander, T. and Myllymaki, P. (2012). A simple ap-
proach for finding the globally optimal Bayesian net-
work structure. arXiv preprint arXiv:1206.6875.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000).
Causation, prediction, and search. MIT press.

Teyssier, M. and Koller, D. (2012). Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. Proceedings of the 28th confer-
ence on Uncertainty in artificial intelligence.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006).
The max-min hill-climbing Bayesian network struc-
ture learning algorithm. Machine Learning, 65(1):31–
78.

Yaramakala, S. and Margaritis, D. (2005). Speculative
Markov blanket discovery for optimal feature selec-
tion. In Fifth IEEE international conference on Data
Mining, pages 4–pp. IEEE.

Yuan, C., Malone, B., et al. (2013). Learning optimal
Bayesian networks: A shortest path perspective. Jour-
nal of Artificial Intelligence Research.

7 Supplementary material

Proof of Lemma 1: First let us rewrite the MLL score
in terms of data counts. We denote xi [m] the mth ob-
servation of variable Xi in the dataset D. For a given
G ∈ DAGV and θ ∈ ΘG,

l(θ : D) =

M∑
m=1

log(pθ(x1 [m] . . . , xn [m])︸ ︷︷ ︸∏n
i=1 θxi[m]|xπ(i)[m]

)

=

M∑
m=1

n∑
i=1

log(θxi[m]|xπ(i)[m])

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θxi|xπ(i)
)

where CD(·) is the count function associated with D:

∀I ⊂ V , CD(xI) =
M∑
m=1

IxI [m]=xI = MpD(xI).

Moreover, it is well known that for categorical variables,
the maximum likelihood estimator θMLE is given by the
local empirical frequencies i.e.

θMLE
xi|xπ(i)

= pD(xi|xπ(i)) =
CD(xi,xπ(i))

CD(xπ(i))
.

Therefore we get:

sL(G : D) = max
θ∈ΘG

l(θ : D)

= l(θMLE : D)

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θMLE
xi|xπ(i)

)

=

n∑
i=1

∑
xi,xπ(i)

MpD(xi,xπ(i)) log(pD(xi|xπ(i)))

= −M
n∑
i=1

HD(Xi|Xπ(i)).

�

Proof of Proposition 1: Let G ∈ DAGV with V =
J1, nK and D containing observations of X1, . . . , Xn re-
spectively associated with nodes in V .
First, we notice that sL(G : D)is upper-bounded by the
score of a dense DAG. We have shown in Lemma 1 that:

sL(G : D) = −M
n∑
i=1

HD(Xi|Xπ(i)).

It is commonly known that all DAGs are compatible with
at least one ordering of the nodes, i.e. that ∃σ ∈ Sn such
that

∀i, j ∈ V s.t. j ∈ πG(i), σ(j) < σ(i).

In other words, σ represents an ordering in which each
node comes after its parents.
Let σ ∈ Sn be an ordering compatible with G. Using
the fact that for any variables X,Y, Z, HD(X|Y) ≥
HD(X|Y,Z) we then get that ∀i ∈ V \ {σ−1(1)},

HD(Xi|Xπ(i)) ≥ HD(Xi|Xσ−1({1,...,σ(i)−1})).

Plugging this inequality in the first equation, reordering
the sum according to σ, and using the chain rule for en-
tropies, we get:

−s
L(G : D)

M
≥

n∑
i=1

HD(Xi|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+

n∑
σ(i)=2

HD(Xσ−1(σ(i))|Xσ−1({1,...,σ(i)−1}))

= HD(Xσ−1(1))

+HD(Xσ−1(2)|Xσ−1(1)) + . . .

+HD(Xσ−1(n)|Xσ−1(1), . . . , Xσ−1(n−1))

= HD(Xσ−1(1), . . . , Xσ−1(n))

= HD(X1, . . . , Xn),

which gives

sL(G : D) ≤ −M HD(X1, . . . , Xn).

Let T be as in the hypothesis of Proposition 1, we are
now going to prove that this bound is reached for T
which will give us the wanted result.
Without any loss of generality, let us suppose that T ’s
root is 1. Then,

sL(T : D) = −M
n∑
i=1

HD(Xi|Xπ(i))

= −M

HD(X1) +

n∑
i=2

HD(Xi|Xπ(i))︸ ︷︷ ︸
=0

≥ −M HD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�

Proof of Proposition 2: Let F =
p⋃
k=1

Tk and G∗R(F)

be as in the Proposition’s hypotheses. Without loss of
generality, we consider i to be the root of the tree Ti.
Therefore, R(F) = J1, pK.
Let us also define the following root function that asso-
ciates to each node the root of the tree it belongs to:

r :

∣∣∣∣ V −→ R(F)
i 7−→ k s.t. Xi ∈ VTk .

Let G∗R(F) ∈ DAGR(F) such that:

G∗R(F) ∈ argmax
G∈DAGR(F)

sL(G : D)

and G∗ = F ∪G∗R(F) i.e.

• VG∗ = V

• AG∗ = (
⋃p
k=1ATk) ∪AG∗

R(F)

We will show as in the proof of Proposition 1 that

sLDAGV (G∗ : D) ≥ max
G∈DAGV

sLDAGV (G : D)

which implies that G∗ ∈ argmax
G∈DAGV

sLDAGV (G : D).

We write:

sLDAGV (G∗) = −M
n∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(a)

−M
n∑

i=p+1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(b)

We then compute separately the terms (a) and (b):

• Computation of (a)
The first term corresponds to the score of the graph
G∗R(F) as an element of DAGR(F).
Indeed, by construction of G∗,

∀i ∈ R(F), πG
∗
(i) = πG

∗
R(F)(i).

Moreover, G∗R(F) maximizes the MLL score on
DAGR(F). We can now write:

(a) = −M
p∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|X
π
G∗
R(F) (i)

)

= sL(G∗R(F) : D)

= max
G∈DAGR(F)

sL(G : DR(F))

= −MHD(X1, . . . , Xp).

• Computation of (b)
By construction of G∗,

∀i ∈ V \R(F), πG
∗
(i) = πTr(i)(i).

Moreover since the Tk’s are deterministic trees, it
follows that

∀i ∈ V \R(F), HD(Xi|Xπ
Tr(i) (i)

) = 0.

Therefore we can write

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)

= 0.

Collecting the above results yields

sLDAGV (G∗) = (a)

= −MHD(X1, . . . , Xp)

≥ −MHD(X1, . . . , Xn)

= max
G∈DAGV

sL(G : D).

�

In a few words: the idea of the proof relies on the fact
thatHD(X) = HD(XR(F)): the information associated
with all the variables X1, . . . , Xn is entirely contained
in the root variables XR(F).

Proof of Proposition 3: Let D and ε be objects that
satisfy the input constraints of Algorithm 1, and let Fε
be the object that is returned by Algorithm 1 with inputs
D and ε.
Fε is a directed graph, by definition. Moreover, it
is built so that all of its nodes had at most one parent
(line 12).
To conclude, we therefore only have to prove that Fε
does not contain cycles.
Let us suppose that there is a cycle i1, . . . ip in Fε. There
are two cases:

1. Either all associated variables have the same en-
tropy: HD(Xi1) = HD(Xi2) = · · · = HD(Xip).
In which case, there is necessarily two succesive
nodes in the cycle il, il+1 such that il < il+1.
However, HD(Xil |Xil+1

) = HD(Xil+1
|Xil) ≤ ε,

which means that when the algorithm reaches line 4,
il+1 ∈ πε(il) and il ∈ πε(il+1). Since il is treated
before il+1 in the for loop, this would result in il
being removed from πε(il+1), thus preventing for il
to ever be il+1’s parent: we have a contradiction.

2. Either there exist at least two variables in the cycle
that do not have the same entropy: HD(Xik) 6=
HD(Xik′), for k, k′ ∈ J1, pK.

In this case, there also exist two successive nodes
il, il+1 such that HD(Xil) 6= HD(Xil+1

).
Let us suppose that HD(Xil+1

) > HD(Xil). In
that case:

HD(Xil |Xil+1
) = HD(Xil+1

|Xil)

+HD(Xil)−HD(Xil+1
)︸ ︷︷ ︸

<0

< HD(Xil+1
|Xil)

≤ ε.

Therefore when the algorithm reaches line 4,
il+1 ∈ πε(il). But when treating either il or il+1

during the for loop of lines 4-9, the test on line 6
necessarily implies that il is removed from πε(il+1)
(since HD(Xil |Xil+1

) < HD(Xil+1
|Xil)). This

is in contradiction with the fact that il is il+1’s
parent.

Therefore, HD(Xil+1
) < HD(Xil), and arcs

in AFε follow nonincreasing entropies, with at least
one decrease since we suppose that all entropies are
not equal. This is not possible in a cycle: there is a
contradiction.

We conclude that there is no cycle in Fε. �

Proof of Proposition 4: The structure of the proof is
the same as the one from Proposition 2. The only differ-
ence lies in the computation of term (b):

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)︸ ︷︷ ︸
≤ε

≥ −M(n− p)ε
≥ −Mnε.

plugging this in the separated expression of the MLL
score of G∗ in terms (a) and (b) yields the wanted re-
sult.
�

	INTRODUCTION
	BAYESIAN NETWORK STRUCTURE LEARNING
	Bayesian networks
	Score-based approach to Bayesian network structure learning

	DETERMINISM AND BAYESIAN NETWORKS
	Definitions
	Deterministic trees and MLL score
	Deterministic forests and the MLL score

	STRUCTURE LEARNING WITH QUASI-DETERMINISM SCREENING
	Quasi-determinism
	Quasi-determinism screening algorithm
	Learning Bayesian networks using quasi-determinism screening
	Complexity analysis

	EXPERIMENTS
	Experimental setup
	Results

	DISCUSSION
	Supplementary material

