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Application of the Proper Generalized Decomposition to Solve
MagnetoElectric Problem

T. Henneront and S. Clénet!
1Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP, F-59000 Lille, France

Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large
number of engineering problems. In this article, the PGD approach is applied to solve a multi-physics problem based on a
magnetoelectric device. A reduced model is developed to study the device in its environment based on an Offline/Online approach. In
the Offline step, two specific simulations are performed in order to build a PGD reduced model. Then, we obtain a model very well
fitted to study in the Online stage the influence of parameters like the frequency or the load. The reduced model of the device is

coupled with an electric load (R-L) to illustrate the possibility offered by the PGD.

Index Terms— Finite element method, Magnetoelectric problem, Proper Generalized Decomposition.

I. INTRODUCTION

T O reduce the computational time of numerical models in
the time or frequency domain, Model Order Reduction
(MOR) methods have been developed and presented in the
literature. These approaches have been mainly used to study a
large number of devices in mechanics. In this field, the Proper
Generalized Decomposition method has been largely
developed since the early 2000°s [1][2]. In computational
electromagnetics, the PGD approach has been applied with a
fuel cell polymeric membrane model [3]. In static
electromagnetism, the nonlinear behavior of a Soft Magnetic
Composite Material and of a three phase transformer has been
studied [4][5]. In magneto-quasistatics, the skin effect in a
rectangular slot or in a conducting plate and a squirrel cage
induction machine at standstill have been addressed [6][7].
Multi-physic problems have been also considered like a
magneto-thermal problem [8], a piezoelectric energy harvester
[9] or a magnetoelectric device at no-load [10].

The principle of the PGD method consists in expressing the
solution by a sum of functions depending on each parameter
of the problem, so-called modes. Each mode is determined by
an iterative procedure and depends on the previous modes. In
the case of systems of partial differential equations in the
frequency domain, the PGD approach approximates the
solution by a sum of functions separable in frequency and
space. In this paper, we propose to apply the PGD approach to
study a magnetoelectric device coupled with any electrical
circuit. An Offline/Online approach is introduced. In the
Offline step, two specific configurations of the problem
without electric load are solved with the PGD in order to build
a reduced model. The PGD formulation proposed is different
to this presented in [10]. In fact, the global quantities like the
voltage, the magnetic flux and the electric charge appear
explicitly in the formulation. In the Online step, the reduced
model of the device is coupled with an electric load (R-L).
This model is very well fitted to study the influence of
parameters like the frequency or the load. The results obtained
with the PGD reduced model are compared in terms of
accuracy and of computational time with the full model.

II. MAGNETOELECTRIC PROBLEM

Let us consider a domain D with its boundary 7" holding a
2D sensor composed of magnetostrictive (MM) and
piezoelectric (PZT) materials (Fig. 1). An external harmonic
magnetic flux @ is imposed. The sensor is clamped in 2 points
where the displacement is imposed to zero in the two
directions. Due to the symmetry of the studied problem, the
electric potential is equal to vo on 71 and to - v on 1.
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By neglecting the external forces, the eddy and displacement
currents, the system of equations to be solved, based on the
mechanical equilibrium equation as well as the magnetostatics
and electrostatics ones, becomes

Fig. 1. Magnetoelectric sensor

divT +po’u=0, 1
curl E=0(a), divD=0(b), 2
curlH=0 (a), divB=0 (b), 3)

with T the stress tensor, u the displacement, D the electric
induction, E the electric field, H the magnetic field, B the
magnetic flux density, p the mass density and @ the angular
frequency. As we consider a 2D problem, we have curl X =
(6y Xz -0x X2). Therefore, in the following, the curl equations
can be modified in order to introduce the gradient operator
gradg. The constitutive laws of MM and PZT materials are:

T=cS—-t'E-h'B, 4
D=¢E+1S, (5)
H=vB-hS, (6)



with S the strain tensor, c the stiffness tensor, t the
piezoelectric coefficients, ¢ the electric permittivity, v the
magnetic reluctivity and h the relative piezomagnetic
coefficients defined by h=e-v with e the piezomagnetic
coefficients . To solve the problem, a formulation in terms of
potentials can be used. From (2-a) and (3-b) and by assuming
small deformations, we have

E =-gradv-v,(grada,, +grada,,) (7
B =-grad,A-dgrado, (8)
S= %(gradu +grad'u) =2u ©
with v the electric potential defined in D-7-731-132, Vo (resp. -
Vo) the electric potential on 731 (resp. 712), av: and ow scalar
functions equal to 1 and -1 on 731 and 7, respectively and 0
elsewhere, A the magnetic potential defined on D-7ai-/ a2 and
oa a scalar function equal to 1 on [a1, -1 on Ix and O
elsewhere. Then, we seek for the solutions v, A and u in the
space domain D and in the angular frequency interval
[Cl)min:ahax]-

I1l. PROPER GENERALIZED FORMULATION

The PGD method consists in approximating the solutions by
a sum of separable functions in frequency and space. Then, v,
A and u are approximated by separated forms of space and
frequency functions,

VziR}/(X)S}/ (a)),Azin(x)Sf (o) and u:iR;‘(x)S;' (o) (10)

with xeD, we [@min: @max] and M the number of modes of
the expansions. To apply the PGD approach, we consider a
weak formulation on Dx[ @min: wmax] Of (1), (2-b) and (3-a). In
the following, we suppose that the electric charge Q is

imposed. Then, we have:
J. Iu‘.[divT+p(02u]dde=O an

D

Dmin

(Tx [ vdivD dDdw=0 12)
Wppin D
UTX jA'-cu rIHdDdw= 0 (13)
omin D
j [ -divD dDdeo= jQ doo (4
o b (15)

[ Jo.,-divDdDde=- [Qdw
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with u’,v’ and A’ test functions defined in the same spaces of
the functions u, v and A respectively. To compute the
functions R'J. and S} for je[1:M] and I={v, A, u} and vo, an
iterative enrichment approach is used. At the n' iteration, v,
A, and u, are expressed as functions of R! and S and of the
known previous approximations Vn.a, Ana and uni such as

1+ jo, 0 [PRY DR —0,” [RypRY  [DRYt'gradR]
D

V, =Ry (X)S; (@) +V,e0 A, =R7(X)S] (@) + A, and

u, =RY(X)S!(w)+u,,. Then, to compute the unknown
functions R, S| and vo, two sets of equations deduced from
(11-15) are solved iteratively. In a first step, we assume that
the functions S'n with I={v, A, u} and v, are known in order to

calculate the functions R'n. In 2D, the functions are

discretised in the nodal element space such as R}, = W'R! for
I={v, A, u} with W the vector which entries are the nodal
functions and R! the vector of the values at the nodes. Then,
we solve
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Where o is the damping coefficient and X* denotes the
conjuguate of X. In a second step, the functions S'n and vo are
recomputed with the functions R'n supposed to be known.
Then, for each axe[ @min: wmax], We have:

IDR:*h‘gradRRf
D
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The two steps are repeated until convergence of all
functionsR!, S' and vo with 1={v, A, u}. The number of

modes M used to approximate the solutions is not known a-
priori by the user. Then, a criterion is defined to stop the
enrichment process. For example, this criterion can be based
on the norm of the n'" mode with respect to the norm of the
first mode [1] or on quantities of interest [5][7][10]. The
convergence of the enrichment process can be improved by
introducing an update step of the frequency functions after
each calculation of the new mode. This step enables to
recompute an optimal subspace of functions orthogonal to the

BAA_[V(gradRWA)'gradRWA



residual [1]. It consists in recomputing the functions S'].for

je[l:n] with I={v, A, u} and v, with respect to the functions
R!.
J

IV. APPLICATION

In term of application, we consider the device presented in
Fig. 1 and detailed in [10]. The 2D mesh is composed of 3283
nodes and 6525 triangles. The frequency interval is fixed at
[10%410%]Hz with 401 equidistributed values. The aim is to
study the device coupled with an electrical load when the
magnetic flux @ is imposed. The quantities of interest are the
voltage between the two electrodes (i.e. equal to 2vg) and the
maximal deformation along x and y. Then, an Offline/Online
approach is used. On the Offline step, a reduced model of the
device without load is built applying the PGD presented in
section I1l. On the Online step, the reduced model is coupled
with an electrical load in order to study the influence of the
load parameters on the quantities of interest.

A. Offline Step: determination of the PGD reduced model

The reduced model is determined by taking advantage of the
superposition principle. Two specific configurations of the
problem are considered. For each case, approximations of the
solutions under the forms given by (10) are computed. For the
first configuration, the magnetic flux @ is imposed and the
charge Q is fixed to zero. Then, the PGD formulation
presented in the section Il is applied. We obtain the PGD

- . . M M
approximations: Voo, Vo~ Y RY (X0Sk (@) Aq ZZ;'Rj (XS5 (@)
=

j=1
M
and u, ~ Y R}, (9S}, ().
j=1
Figure 2 presents the evolutions of the relative error on the
electric potential voo and the maximal deformations defyo» and
defyo along x and y as functions of the number of modes. The
relative error is given by

e X = ‘X _ngde
’ [Xel,

(18)

ref

with X the vector of discrete values of quantity of interest (i.e.,
Voo, defxo oOr defyo). With a low number of modes, the
magnitude of wvoo versus the frequency is close to the
reference. With M=5, the relative error is close to 0.01% and
the speed up versus the full model is equal to 8. To obtain
good approximations of the maximal deformations, the
number of modes must be greater, for M=16, we have
&defyw<0.01% and edefyv<0.01% with a speed up equal to
2.5. Figures 3 and 4 present the evolutions of the voltage
magnitude and of the maximal deformation along x and y
versus the frequency obtained from the PGD approximations
for M=16. We can observe a phenomenon of resonance on Voo
and defxa or defyo.
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Fig. 2. Relative errors on the electric potential v, and on the maximal
deformations defy and def,q versus the number of modes
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Fig. 3. Magnitude of the voltage versus the frequency.
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Fig. 4. Maximal deformations along x and y versus the frequency.

For the second configuration, the magnetic flux @ is fixed to
zero, the charge Q is imposed and the PGD approach is
applied. The convergence of the PGD is similar to this of the
first configuration. As the electric charge Q depends on the
electrical load connected to the device, the approximations of
the solutions are expressed as functions of Q such as:

VooQ v [ZR,Q (x)S}, (@) jQ A, [ZR (x)Sie ]Q and

qu(ZR;‘Q(X)STQ (w)jQ. From two specific configurations of
j=1

the problem, we can build a reduced model of the device
depending on the electric charge. By applying the
superposition theorem, the voltage U between the two

electrodes, v, A and u are expressed by
U=2V, =2Vp, +2VooQ (@), v=v,+v, (D),

19
A=A, +A, ©and u=u, +uy(©) 9

B. Online Step: PGD reduced model of the device coupled
with electric load

We consider the device coupled with a load composed of a
resistor R and of an inductance L (Fig. 5).



Fig. 5. Magnetoelectric device coupled with an electrical load

The device is modeled by the reduced model depending on
the electric charge Q. Due to the load, a new coupling
equation is added:

U+(R+jLw)l=0 withl=jaQ- (20)

Then, by combining (19-a) and (20), for each
ax € [ @min: amax], Q(ax) is computed by

Qley) = Voo (21)

Voo +(R+jLoy )joy

By using (19-b), (19-c) and (19-d) and Q(ax), we can
calculate v, A and u. E, B and S can be also deduced from (7),
(8) and (9). Figure 6 presents the real part of the deformation
obtained from the reduced model at the mechanical resonance
(f=73.9kHz). Three cases are considered such as the open
circuit, R=4kQ and R=50Q with L=10mH. Figures 7 and 8
present the evolutions of the voltage magnitude and of the
maximal deformation versus the frequency. Then, the maximal
magnitude of the voltage decreases when the modulus of the
load increases. For the last case (R=50Q2, L=10mH), an
electric resonance can be observed on Fig. 7 for a frequency
equal to 27.8kHz. This resonance influences the maximal
deformations. For all cases, the relative errors on vo, defy or
def, between the full and PGD models are smaller than 0.01%
and the speed up is equal to 53. We can see also that, at the
contrary to an equivalent electric circuit based on lumped
parameters, the link with the full model is kept. In fact, the
field distributions can be determined very quickly if necessary
from the reduced model. This is not the case with an
equivalent circuit which requires, if the field distributions are
needed, the solution of the full model.

V. CONCLUSION

The Proper Generalized Decomposition has been applied to
a magnetoelectric problem to build a reduced model (Offline
stage). Then, the PGD reduced model has been coupled with
an electric load in order to study the device in its environment
during an Online stage. The PGD approach and the use of a
reduced model enable to reduce the computational times
compared with a full model while maintaining good accuracy
and an access to any local and global quantity.
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Fig. 6. Real part of the deformation for f=73.9kHz.
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Fig. 7. Magnitude of the voltage versus the frequency for different values
of electrical load.
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Fig. 8. Maximal deformations along x and y versus the frequency for
different values of electrical load.
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