N

N
N

HAL

open science

Estimation of weak ARMA models with regime changes

Yacouba Boubacar Mainassara, Landy Rabehasaina

» To cite this version:

Yacouba Boubacar Mainassara, Landy Rabehasaina. Estimation of weak ARMA models with regime

changes. 2018. hal-01691099v2

HAL Id: hal-01691099
https://hal.science/hal-01691099v2

Preprint submitted on 4 Nov 2018 (v2), last revised 8 Jul 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01691099v2
https://hal.archives-ouvertes.fr

Estimation of weak ARMA models with regime
changes

Yacouba Boubacar Mainassara and Landy Rabehasaina

Université Bourgogne Franche-Comité,
Laboratoire de mathématiques de Besangon,
UMR CNRS 6623,

16 route de Gray,

25030 Besancon, France.

e-mail: yacouba.boubacar_mainassaraQuniv-fcomte.fr; lrabehasQuniv-fcomte.fr

Abstract: In this paper we derive the asymptotic properties of the least squares estima-
tor (LSE) of autoregressive moving-average (ARMA) models with regime changes under
the assumption that the errors are uncorrelated but not necessarily independent. Relaxing
the independence assumption considerably extends the range of application of the class of
ARMA models with regime changes. Conditions are given for the consistency and asymptotic
normality of the LSE. A particular attention is given to the estimation of the asymptotic
variance matrix, which may be very different from that obtained in the standard framework.
The theoretical results are illustrated by means of Monte Carlo experiments.
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1. Introduction

Since the works of [32, 33] and [41], the time series models with time-varying coefficients have
become increasingly popular. In statistical applications, a large part of the literature is devoted to
the non-stationary autoregressive moving-average (ARMA) models with time-varying parameters
(see [5, 6, 9, 15]), see also the class of ARMA models with periodic coefficients (for instance [2, 7]).
But the most popular class deals with the treatment of regime shifts and non-linear modeling
strategies. For instance, a Markov-switching model is a non-linear specification in which different
states of the world affect the evolution of a time series (see, for examples, [22, 34, 36]). The
asymptotic properties of Markov-switching ARMA models are well known in the literature (see,
for instance, [10, 23, 25, 26, 39] or [35]).

The fact that changes in regimes may be very important for the evolution of interest rates has
been emphasized in a number of recent studies. Our attention here is focused on the class of ARMA
models with regime changes (ARMARC for short); for instance, ARMA models with recurrent
but non necessarily periodic changes in regime. We consider a time series (X;)iez exhibiting
changes in regime at known dates and we suppose that we have finite regimes. Contrarily to the
famous Markov-switching approach, we assume that the realization of the regimes is observed.
Such a situation may be realistic, and would correspond e.g. to time series with periods of harsh
and mild weather which are observed in practice. This model could also be applied to economic
time series whose behaviour depends on worked days and public holidays, which are known in
advance. Another motivating example would be financial times series, where regimes corresponding
to typical known major events leading to high and quiet (low) volatility subperiods are observed,
see e.g. Figure 1.2 p.7 in [29] where the high volatility clusters corresponds to largely famous
events such as September 11th 2001 or the 2008 financial crisis. Other examples may be found for
instance in [21].

For such models, [20, 21] gave general conditions ensuring consistency and asymptotic normality
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of least squares (LS) and quasi-generalized least-squares (QGLS) estimators under the assumption
that the innovation processes is independent. This independence assumption is often considered
too restrictive by practitioners. Relaxing the independence assumption considerably extends the
range of applications of the ARMARC models, and allows to cover general nonlinear processes.
Indeed such nonlinearities may arise for instance when the error process follows an autoregressive
conditional heteroscedasticity (ARCH) introduced by Engle [19] and extended to the generalized
ARCH (GARCH) by [11], all-pass (see [3]) or other models displaying a second order dependence
(see [1]). Other situations where the errors are dependent can be found in [27], see also [42]. This
paper is devoted to the problem of estimating ARMARC representations under the assumption
that the errors are uncorrelated but not necessarily independent. These are called weak ARMARC
models in contrast to the strong ARMARC models above-cited, in which the error terms are
supposed to be independent and identically distributed (iid). Thus, the main goal of our paper is
to complete the above-mentioned results concerning the statistical analysis of ARMARC models,
by considering the estimation problem under general error terms. We establish the asymptotic
distribution of the LS estimator of weak ARMARC models, under strongly mixing assumptions.

The paper is organized as follows. Section 2 presents the ARMARC models that we consider
here. In Section 3, we established the strict stationarity condition and it is shown that the LS
estimator (LSE) is asymptotically normally distributed when linear innovation process (¢;) satisfies
mild mixing assumptions. The asymptotic variance of the LSE may be very different in the weak
and strong cases. Particular attention is given to the estimation of this covariance matrix. Modified
version of the Wald test is proposed for testing linear restrictions on the parameters. In Section
4, we present two examples of weak ARMARC(1,0) models with iid and correlated realization of
the regimes. Numerical experiments are presented in Section 5. The proofs of the main results are
collected in the appendix.

2. Model and assumptions

Let (A¢)tez be a stationary ergodic observed process with values in a finite set S of size Card(S) =
K. We consider the ARMARC(p, q) process (X¢)tez defined by

P q
Xt - Za?(At)Xt,i = €t — Z b?(At)thj (].)
i=1 j=1

where the linear innovation process € := (€;)tez is assumed to be a stationary sequence satifies
E(e:) = 0, E(eer) = 0211[,5:,5/]. Under the above assumptions, the process € is called a weak
white noise.

This representation is said to be a weak ARMARC(p, q) representation under the assumption
that € is a weak white noise. For the statistical inference of ARMA models, the weak white noise
assumption is often replaced by the strong white noise assumption, i.e. the assumption that € is an
iid sequence of random variables with mean 0 and common variance. Obviously the strong white
noise assumption is more restrictive than the weak white noise assumption, because independence
entails uncorrelatedness. Consequently weak ARMARC representation is more general than the
strong one.

The unknown parameter of interest denoted 6 := (af(s),0%(s), i=1,...,p, j=1,...,q, s €
S) lies in a compact set of the form

O C {(ai(s)vbj(s)a i = 1)"'ap7 ,7: 1;"';‘17 S GS) GR(erq)XK}a

with non empty interior, within which we suppose that 6y lies. The parameter o2 is considered as
a nuisance parameter. In order to estimate 6y, one thus has at our disposal observations (X, A;),
t =1,...,n, from which one aims at building an strongly consistent and asymptotically normal
estimator 6,,. We now introduce, the strong mixing coefficients (avz (h))nez of a stationary process
(Zt)tEZ defined by

az(h) = sup [P(AN B) —P(A) -P(B)], (2)

AeFt , BEFXY,
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measuring the temporal dependence of the process and where F¢__, and Fyp, be the o-fields
generated by {Z,, u < t} and {Z,, u >t + h}, respectively. We will make an integrability as-
sumption on the moment of the noise and a summability condition on the strong mixing coefficients
(az(h)),>q- Let us suppose the following assumptions.

(A1) The processes (€;)icz and (Ay)iez are ergodic sequences, strictly stationary,
independent from each other.

(A2) For some v > 0, the processes (¢;)iez and (A¢)iez satisfy S50, ac(h) 72 < 400
and Y27 aa(h)7F2 < 4oo.

(A3) The process (€;)icz also satisfies E[|e;|?* 4] < +o0.

(A4) We have 6, 6(2)7 where © denotes the interior of ©.

Note that the strong white noise assumption entails (A1), but the weak white noise assumption
is not sufficient for (A1).

We introduce the following notation so as to emphasize dependence of unknown parameter 6
in (1). For all 0 = (a;(s),bj(s), i=1,...,p, j=1,...,q, s €S) € ©, we let a; := (a;(s),s € S),
t=1,...,pand b; := (bj(s),s € S), j =1,...,q. Let e(s) be the row vector of size 1 x K such
that the ith component is I(s=;. Then one notices that Vt € Z

a’i(At) =< e(At)ﬂﬂ >i= g’?(Atao)v bj(At) =< e(At)a& >i= g?(At,G), 1= ]-7 s Dy .7 = ]-a - g,

where < - > denotes the scalar product between vectors of appropriate dimension. Thus (1)
reads
P q
Xo =Y gi (AL 00) X =& — > g2(Ar,00)er;. (3)
i=1 j=1

Let us furthermore note that for all i, j and s, gf(s,0) and g%(s,0) are linear in 0. We thus
introduce matrices

91(s,00) -+ -+ gp(s,bo) 91(s,0) - gu(s,0)
0 0
A(s) == . , B(s,0) =
Ip—l : Iq—l .
0 0

for all s € S, 6 € ©. A remark that will prove useful later on is that 6 — B(s,0) is, for all s € S,
an affine function.
We next introduce the residuals corresponding to parameter § € © as the stationary process

(et(0))tez satisfying

q p
er(0) = Y gl(A0)e;(0) = Xy =Y gt (A, 0) X, VEEL (4)
j=1

i=1

This process is unique in L2, as explained in Proposition 3.1. In particular, one has (e;(0o))icz =
(ét)tez, the initial white noise. We next define the approximating residuals as the process (e(0))tez
verifying

=1

q P
e(0) = > g5 (A, 0)er;(0) = Xi = Y g (A, 0) Xy, VEELZ, (5)
i=1

where values corresponding to negative indices are set to zero, i.e. processes (e;(0))icz and (X )iez
verify
(&3 (9) = 07 t S 07

Xy = th[t21]7 vVt € Z.
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The basic idea behind definition of (e;(#)):cz is that, given a realization X1, Xs, ..., X,, of length
n, €(0) is approximated, for 0 < t < n, by e;(0). Next, we define the cost function

Qul®) = =36 0). ©

Finally, we let for all n € N the random variable 0,, the least squared estimator that satisfies,
almost surely,

We finish this section by giving some notation. In the following, ||.|| will denote the norm of

matrices or vectors of appropriate size, depending on the context, whereas ||.||, will denote the L?

norm defined by || X]||, = [E(|X |p)]1/ P for all random variable X admitting a p—th order moment,
p > 1. For all matrix M, M’ will denote its transpose. For all three times differentiable function f :

R ill 1 — (2 2 _(_o*
0 — R, we will let Vf(e) ( f(e))kzl,...,(p-i-q)}(’ \Y f(e) (agiaej ( ))i,j=1,...,(p+q)K

06,

V3f(0) = (#&3-80 f (9)) respectively the first, second and third order derivatives
e L,4,j=1,....(p+aq) K

with respect to the variable 6.

and

3. Case of general correlated process (A¢)icz

In this section, we display our main results.

3.1. Stationarity

A first step consists in giving sufficient conditions such that processes (Xi)iez and (e:(0))iecz
defined in (1) and (4) are stationary and admits moments of order 2. Let ||.|| be any norm on the
set of matrices, and let us introduce the following notation

er = (1,0,...,0) € RPTY,
epr1 = (epy1,i)im=l,prqr Cpr11 =1, epy1i= limpta), 1 =2,...,p+q,
M = (mij)z',j:L,,,,erq, mi g = ]]-[i:q+1,j:1 or i=1,j=1]s
91(s,0) -+ gp(s,0)
B(s,0) 0
O(s,0) = , s€8,0c0,
0 0
0 Iy :
0
g}l)(svoo) 92(&90)
A(s) 0
U(s) = , seS§
0 0
0 Iyq :
0

As for B(s, ), one also notices in particular that 6 — ®(s,0) is an affine function for all s € S.
One has the following result.
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Proposition 3.1. Let us suppose that

t 8 t 8
1 1
limsup —~InE | sup H(I)(Ai,e) <0, limsup-InE H\II(Ai) <0, ()
t—oo t 0€0 ||: t—oo 1 i=1
then for all t € Z and 0 € ©, the unique stationary solution to (4) is given by
(o]
e(0) = (0, A, A ig1)e—s,  where (9)
i=0
i k=1 i—1
(0, Ay i) =Y e [[ (A5, 00M [ ®(Aj)ep, (10)
k=0  j=0 §'=k
with the usual convention Hf = 1ifi > j. Furthermore, for eacht € Z, sequence (¢;(0, Ay, ..., Ar_i11))ieN

is unique in the set of sequences of random variables

H = {(di)ieN independent from (€;)icz s.t. E (Z df) < +oo} .

i=0

Let us note that decomposition (9) is a slight generalization of the Wold decomposition of
stationary processes which are squared integrable, see Theorem 5.7.1 p.187 of [14]. Also note that
stability condition (8) is reminiscent of the one in [25, Theorem 1] (see also [13]); it is however
stronger as we need integrability conditions for process (€;(0)):cz (as well as on its derivatives),
uniformly on 6§ € ©.

Corollary 3.2. The process (e:(0))iez defined by (5) has the following decomposition

[ee]
et(0) = Zcf(t, 0, N, .., Ar_it1)er—i, t>p+1, where (11)
i=0
min(t—1,7) k—1 i—1
cf(t,G,At,...,At_iH) = Z €1 H @(At_j,H)M H ‘II(At—j/)e;H-h (12)
k=0 =0 j'=k

where the matriz M and vectors e1, epv1, are defined at the beginning of the section.

Lemma 3.3. Random coefficients c;(0, Ay, ..., Ni_it1), i € Z, t € Z, verify the following proper-
ties:
o O cz-(ﬁ, At, ey At,iJrl), 0 — V[Cz(e, At, ey At,iJrl)]Q and 6 — VQ[CZ'(Q, At, ey At,iJrl)]Q
are a.s. polynomial functions,
o Let us assume, instead of (8), the stronger assumption

1 t 4p+8 1 t 4v+8
(A5)limsup = InE | sup H D(A;,0) <0, limsup-InE H T(A;) <0
t—oo 1 0o ||i t—oo 1 i=1
holds. Then one has
limsup, . 1 InE (supgeplci(f, As, ..., A)]* ) < 0,
. ; v 1
hmsupiﬁoo%lnEGque@ ||V][ci(9,Ai,...,A1)]H2 +4) 0, 7=2,3 (13)
Furthemore, coefficients c§(t,0,N¢_1,...,0¢;), 1 € Z, t > 0, satisfy
lim sup,_, .o % Insup,~o E (supeee[cf(t, 0,A,..., At_i+1)]2”+4) < 0, A
. - ; v . 1
limsup;_, %1nsuptZOIE (SUpee@ HV] [cS(t, 0, A, ..., At,i+1)]||2 +4) < 0, 7=23 (14)
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3.2. Preliminary results

We define the cost function

On(0) = €; (0). (15)

t=1

S|

Similarly to én, let us introduce estimator 6, the least squared estimators corresponding to the
cost function O, (6):

On(f) = min 0u(0). (16)

The follgwing results are necessary in order to prove the asymptotic properties for the estimators
0, and 6,, defined in (16) and (7). We first justify that e;(f) asymptotically behaves as e;(0) as
t — oo for all @ as follows:

Lemma 3.4. Let us suppose that (A1) and that Stationarity condition (8) hold. Sequences
(€e(0))iez and (e4(0))iez satisfy

1. |lsupgee l€o(0)][l; < +00 and sup;>g [[supgee le:(0)]]l, < +oo,

2. ||supgee |€:(0) — ei(0)]], tends to O exponentially fast as t — oo,

3. For all o > 0, t* supyee |€:(8) — e:(0)] — 0 a.s. as t — oo,

4. For all j = 1,2,3, ||supyee ||V (0)]||, < +o0, sup,g ||supgeo ||Vjet(9)||‘|4 < 400 and
one has #° [fsupgee V(e — ) (O)llgj5 —> 0 . £ ||supyce V(e - ) )][], 5 — 0 and

t HSUpaee [|V3(er — et)(9)|||‘1 — 0 ast — oo for all a > 0.
We then show that the LSE is asymptotically equivalent to @, (6):
Proposition 3.5. Under the same assumptions in Lemma 3.4, we have that, for all o € (0,1),

1. supgeg |Qn(0) — On(0)| converges a.s. to 0, and n® |[supgeg |Qn () — On(0)|||, tends to 0 as
n — oo,

2. supgeo ||[V(Qn(0) — 0, (0))|| and supyce ||V (Qn(0) — O, (0))||, for j = 2,3 converge a.s. to
0,
8. n®|lsupgeg [V(Qn — On)(0)|]|; — 0 as n — oo.

3.3. Asymptotic properties
We now turn to the main results of the paper, i.e. the strong consistency and normality of the
estimator 6,,.

Proposition 3.6. Let (A1), (A4) as well as stationarity condition (8) hold. Estimator 0,, defined
by (16) converges a.s. towards 6.

Theorem 3.7 (Consistency of estimator). Let (A1), (A4) as well as stationarity condition (8)
hold. Estimator 0,, defined by (7) converges a.s. towards 6.

Theorem 3.8 (Asymptotic normality for the estimator). Let us suppose that assumptions (A1)
to (A5) hold, and let 6, defined in (7). We have the following Central Limit Theorem

ﬁ(énfeo) PyN(0,Q:= T LY, s oo, (17)
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matrices I and J being defined as

7= J(60) = 2E (V) Vet (18)
I = I(bo) —4kz (e¢(00)et—k(00) Ver(0o)[Ver—k(00)])

_ +§ Cov(Ts, Te_s), where (19)
Yo i Yu(l) = 2660l (20)

Remark 3.9. In the strong ARMARC case, i.e. when (A1) is replaced by the assumption that (e;)
is iid, we have I = 2.J, so that 2 = 2J~'. In the general case we have I # 2.J. As a consequence the
ready-made software used to fit ARMARC do not provide a correct estimation for weak ARMARC
processes.

3.4. Estimating the asymptotic variance matrix

Theorem 3.8 can be used to obtain confidence intervals and significance tests for the parameters.
The asymptotic variance {2 must however be estimated. The matrix J can easily be estimated by
its empirical counterpart,

In the standard strong ARMARC case Q) = 2jn_ lis a strongly consistent estimator of €. In the
general weak ARMARC case this estimator is not consistent when I # 2J (see Remark 3.9). So we
need a consistent estimator of I, defined by (19). The estimation of this long-run variance I is more
complicated. In the literature, two types of estimators are generally employed: the nonparametric
kernel estimator, also called Heteroskedasticity and Autocorrelation Consistent (HAC) estimators
(see [4] and [40] for general references, and [28] for an application to testing strong linearity in
weak ARMA models) and spectral density estimators (see e.g. [8] and [18] for a general references
and [12] for estimating I when 6 is not necessarily equal to 6).

In the present paper, we focus on an estimator based on a spectral density form for I.

Interpreting (27)~'I as the spectral density of the stationary process (Y;) evaluated at fre-
quency 0 (see [14], p. 459) of the process (20). This approach, which has been studied by [8] (see
also [18]), rests on the expression

I= )%, & (1) (21)

when (T}) satisfies an AR(oc0) representation of the form

[e.¢]
®(L)Y, =T, + Z QT = uy, (22)

i=1

where u; is a (p 4 ¢) K-variate weak white noise with variance matrix 3. Let T; be the vector
obtained by replacing 6y by 6, in Y; and ® (z) = I(p+q)K + ZZ 1 (I)M,z where <I>,1, e (I)M
denote the coefficients of the least squares regression of Tt on Tt 1y Tt r. Let 4, be the
residuals of this regression, and let f]u be the empirical variance of 4, 1,. .., Uy .

In the framework of linear processes with independent innovations, Berk [8] showed that the
spectral density can be consistently estimated by fitting autoregressive models of order r = r(n),
whenever r — oo and r3/n — 0 as n — oco. It can be shown that this result remains valid for the
linear process (T}), though its innovation (u:) is not an independent process. Another difference
with [8], is that () is not directly observed and is replaced by (T).

We are now able to state the following theorem.
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Theorem 3.10. In addition to the assumptions of Theorem 3.8, assume that the process (Yy)
defined in (20) admits an AR(co) representation (22) in which the roots of det ®(z) = 0 are
outside the unit disk, ||®;|| = o(i=2), and 2, = Var(u;) is non-singular. Moreover we assume that
Ele|*™ < 0o and 352 {ae(k)}/CH) < oo and 332 {aa(k)}/ ) < oo for some v > 0.
Then the spectral estimator of T

PP =@ 1 (1), 71 1) - 1
in probability when r = r(n) — co and r®/n — 0 as n — oco.

The matrix €2 is then estimated by a "sandwich" estimator of the form

OSP = ISP PP = @1 (1)8,, @071 (1).

3.5. Testing linear restrictions on the parameter

It may be of interest to test sg linear constraints on the elements of 6y. Let R be a given matrix
of size sg X (p + ¢)K and rank sg, and let 7o and r; be given vectors of size sy such that r1 # rg.
Consider the testing problem

HO : R90 =170 against H1 : R90 =7T. (23)

The Wald principle is employed frequently for testing (23). We now examine if this principle
remains valid in the non standard framework of weak ARMARC models.

Let Q@ = J-11J~!, where J and I are consistent estimator of J and I, as defined in Section
3.4. Under the assumptions of Theorems 3.8 and 3.10, and the assumption that I is invertible, the
modified Wald statistic

Wr := n(Roby, — 79) (RoQR)) " (Robn — 70)

asymptotically follows a Xgo distribution under Hy. Therefore, the standard formulation of the
Wald test remains valid. More precisely, at the asymptotic level «, the modified Wald test consists
in rejecting Hy when W, > Xso (1—a). It is however important to note that a consistent estimator

of the form Q = J11J 1 is required. The estimator Qg :=2J" !, which is routinely used in the
time series softwares, is only valid in the strong ARMARC case. Thus standard Wald statistic
takes the following form

W :=n(Rob, —10) (RoQs Ry) " (Roby — 70),

which asymptotically follows a Xgo distribution under Hy.

4. Examples

In this section, we give examples of weak ARMARC(1,0) model with iid and correlated process
(At)iez.

4.1. Independent and identically distributed process (At)icz: the ARMARC(1,0)
model

We provide here some results that show that one obtains very neat results in the particular case
where (A¢)iez is i.i.d. and centered. We consider a particular AR(1) model where (1) reads

Xt - aOAtXt_l = €4, (24)

i.e. a%(s) = a’s for all s € S, where a” = 6 is here the unknown (scalar) parameter and belongs
to some compact set ©® C R, and the state space S is a finite subset of R. It is easy to check
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that, with notation defined in Section 3.1, one has that B(s,#) is not defined (as here ¢ = 0),
A(s) = g{(s,00) = a’s and W(s) = A(s) = a’s. Stationarity condition (8) in Proposition 3.1 is
translated as

| [E(JAoH® < 1 e - L , ! ) 25
2| (40P - E( E(BoP )7 (207 29)

Let us note that (25) allows some interesting cases where one has [a®A;| > 1, which is a non stable
state case and is somewhat a paradox to the usual stability condition in the classical AR(1) model
where it is standard that process (Xi):cz defined by X; = aX;_ 1 + € is stable iff |a] < 1. One
simple example is when (A¢)iez is iid with distribution A; ~ 5_1 —|— Ly 5+1, in which case

(25) reads |a’| < 2, so that [a’A;| = 3 > 1 if we pick for example a® when Ap=1.
Furthermore, one computes easily that for all a = 0 € ©, ¢(a) = aA +X¢_1, where X; has
the classical decomposition obtained from (24):
oo 1—1
X = Z H(GOAt—j)Gt—i- (26)
i=0 j=0

Since Assumption (A2) is trivially satisfied here, we only need suppose that (A1), (A3) and (A4)
hold for some v > 0. In that case, Theorems 3.7 and 3.8 translate as

Theorem 4.1. 0,, defined as (7) converges a.s. towards 6y = a°. Besides, one has the asymptotic
normality

N (én - a0> PyN(0,9), n— +oo, (27)
where 2
—— ) e Z N EEE). (28)

1=

o

Proof. Strong consistency and asymptotic normality are straigtforward consequences of Theorems

3.7 and 3.8. In order to compute 2, we need to compute J = J(a") and I = I(a") in (17). Since

%et(a) = —A;X;_1, and since E(X?) is equal to W thanks to (26) and the fact that
0

(e1)tez 1s a weak noise, independent from (A¢);cz. Hence we have, by independence of A; from

X1,

5 2 E(A})
J(a*) =E ([%et(a(ﬂ] ) = A = T paagy

There then remains to get I = I(a®). From Theorem 3.8 we need to compute the expectation of

Dei(a®) Oer—1(a®)

Gt(ao)ﬁt—k(ao) (A AN, CEEVAVEN'D, CH NS )

da da
oo i—1 oo i'—1
0 0
S N 7AY E H(a Ap 1 j)e—1-i| Dik E H(a A po1—jr )€ —k—1—ir
i=0 j=0 #'=04'=0

for all k£ € N. Using independence of processes (€;)icz and (A¢)iez, we have

E <et(a0)et_k(a0)a€t(“0) aet’“(ao)) = > ViRl 1 ik + 1+ 7) (29)

da da
ii'=0

where d(n, m,r) := E(epe_pneé_me_,) for all n, m, r in N, and

i =1

Vi,i’,k — (aO)i+i’+2E H Ap_q_ —j- H AV —j’

Jj=—1
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Since A, is centered, one checks immediately that Vi is non zero if and and only if £ = 0
and i = 4/, in which case one has V#*0 = [(aO)QE(Ag)]Hl. Hence (29) is in that case equal
to (a®)?E(A3) 320, [(a°)?E(A3)]"E(e?e? ,_;), which is also the expression for I(a®), yielding
(28). O

4.2. Modulating Markov chain

We now give an example of process (A¢):cz with correlated trajectories by considering a discrete
time stationary ergodic Markov chain with state space S = {1,2} and transition probabilities
matrix

P = (p(i,j))ij=12 = ( 2 1ip ) ’

where p lies in (0,1), and with stationary distribution

(P(A; = 1), P(A; = 2)) = (m1,7) = (ﬁ, ﬁ) . (30)

We also consider, as in the previous section, an ARMARC(1,0) model of the form
Xt - aO(At)Xt_l = €4, (31)

where parameter 6y = (a”(1),a"(2)) verifies a’(1) = 0, in order to have nice expressions later
for asymptotic normality. In order to establish the stationarity condition (8) we need to compute

E {|| H};:l aO(Ak)HS} which, because of a’(1) = 0, simplifies to

E = |a0(2)|8tP(A1 =.=A;=2)= |a0(2)|8t772(1 —p)t_l7

t
I T el
k=1
so that stationarity condition (8) here reads

1 1
0 < (~p ) (32)

Here again, as in the i.i.d. case for (A¢);ez, and since m > 1, one can allow |a®(2)| to be larger

than 1 so that state 2 € S is non stable, although the process is stationary. Let us furthermore note
that the Markov chain (A;):cz verifies the Doeblin condition so is geometrically ergodic, hence
has exponentially fast strong mixing property (see [38]), so that (A2) is satisfied. We furthermore
suppose that (A1), (A3) and (A4) hold for some v > 0. As in (26), one has

co i—1

X =Y J[a"Aa)es, (33)

i=0 j=0

and e;(a) = Xy—a(Ay) X for all @ = (a(1),a(2)) € ©. We introduce matrices Q(1),l € S = {1, 2}
as well as vector 7y defined by

av=(g ) eo=(] %) w-wm (31)
Theorems 3.7 and 3.8 read

Theorem 4.2. 0,, defined as (7) converges a.s. towards 0y = (a°(1),a%(2)). Besides, one has the
asymptotic normality

Jn (én . 90) PLN(0,Q), n— too, (35)
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where Q = J1IJ 7Y, matrices J = (J(I,I))pes2 and I = (I(1,1));es2 being defined by

_ 1+a°(2)*
J(1,1) = oy aU‘(IQ) =t
J(1,2) = J(2,1) = (36)
J(2,2) = “%h%

and I(1,1') =I(1,1',0)+2> 72, I(l,I', k), where

S0V [Sick a2 QUQE)I P QUIQ2) (i + 1,k 41+ 1)
S pcicrrr @) QWQ2)M d(k,i + 1,k +i +1)

0.1 k) = ks 0@ QUQEY A, i+ 1,k + i + )] 7, =2,
SV [k a2 QUQEIPH T QUNQR) Ak i+ 1k + i+ )| v, 1 =1,
(37)

where d(i,i',1") .= E(erer—ier—irer—in), i, ¢, i"" in N.

Proof. It is not hard to check that, for all i € S = {1,2} and a = (a(1),a(2)), %(i)et(a) =
—1ja,=i)X¢—1. One computes easily

Lia, 11 X7 0
Veu(60)[Ver(bo)) = ( Ma=nXina )
albn)(Taton) = (Mgt 0

so that it suffices to compute E(Lja,—yX7 ;) for all [ = 1,2, in order to compute .J. By the usual
argument of independence of the Markov chain from the weak white noise, and since a°(1) = 0,
we get, for [ = 1,2,

E(lja, X7 ) = 0> E|Lja,—y[Ja®(Ai1))?

= o’m+o° Za 2y (1 —p)tp(2,1) = o%m + o? p(2,1),

1—a%2)*(1—-p)

so that those quantities along with (30) yield the expression for the for matrix J in (36).

In order to compute I, we need to take the expectation of et(Ho)et_k(Go)%(l)et(Go)%(l,)et_k(t%) =
eret—klia, = Xe—11a,_ =) Xt—1-x forall [, I’ in S and k € N. As in (29) in the proof of Theorem
4.1, this expectation is equal to Y5, _, V" A1 1Y d(k, 1 + 4,k + 1 +4') where

6,4 =

i —1
ECCTNOPEEY FUNY | PPV F O H“ (Arr-1-5)
Jj=0 =0

This quantity can be obtained straightforwardly using e.g. Lemma 1 of [20]. Remembering that
Q(1), Q(2) and 7y are defined by (34), we then have the following expression for V&i" k(1)
according to whether t —i >t —k < i<k, t—k>t—i>t—k—i <— k<i<k+1or
t—k—i>t—i < k+i <i:

a2y UQQER) PFTTIQUNQR) Ty, i <k,

, a®(2)*1'QQ(2) M 7y, k<i<k+i, I'=2,
VEER(Q) = 0, k<i<k+i, U =1,
a®(2) ' 1'Q)Q(2) 'y, k+i <i, ' =2,
0, k+1d <i, I' =1,

yielding (37). O
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5. Numerical illustrations

We study numerically the behaviour of our estimator for strong and weak ARMARC models. We
consider the following ARMARC(1,1) model

Xt = a(l)(At)thl + €¢ + bcl)(At)etfly (38)

where the innovation process (e;) follows a strong or a weak white noise. The process (A¢) is
simulated (independently of (¢;)) according to the law of a stationary Markov chain with state-
space S = {1,2} and transition probabilities matrix

p(1,1) 1-p(1,1) \ [ 095 0.05
1-p(2,2) p(2,2) L 005 095 /-
This Markov chain is geometrically ergodic, so that Condition (A2) is satisfied. We first consider

the strong ARMARC case. To generate this model, we assume the innovation process (e;) in (38)
is defined by an iid sequence such that

e 2 N(0,1). (39)
Following [42], we propose a set of two experiments for weak ARMARC with innovation processes
€; in (38) defined by

ee = m(|me—1| +1)7", (40)
€ =M1, (41)

where (7;):>1 is a sequence of iid standard Gaussian random variable. Note that the innovation
process (40) is a martingale difference, as opposed to (41).

The numerical illustrations of this section are made with the free statistical software R (see
http://cran.r-project.org/). We simulated N = 1,000 independent trajectories of size n = 2,000
of Model (38), first with the strong Gaussian noise (39), second with the weak noise (40) and third
with the weak noise (41).

Recall that the regimes (A;) are supposed to be known. For each of these N replications, we
estimate the coefficient 6y = (a?(1),a(2),9(1),59(2))" = (0.90, —0.45,0.10,0.85)".

Figures 1 and 2 display the realization of length 400 of Model (38) in the strong (39) and weak
(41) noises cases. Note that here stationarity condition (8) in Proposition 3.1 is trivially satisfied
as all coefficients a{(1), a$(2), b(1), b9(2) are all less than 1 in modulus.

Figure 3 compares the distribution of the least squares estimators (LSE) in the strong and
the two weak noises cases. The distributions of @%(1), a2(2) and 9(2) are similar in all cases,
whereas the LSE of 59(1) is more accurate in the weak case with noise (40) than in the strong
one. Similar simulation experiments reveal that the situation is opposite, that is the LSE is more
accurate in the strong case than in the weak case, when the weak noise is defined by (41). This is in
accordance with the results of [42] who showed that, with similar noises, the asymptotic variance
of the sample autocorrelations can be greater (for noise (41)) or less (for noise (40)) than 1 as well
(1 is the asymptotic variance for strong white noises).

Figure 4 compares the standard estimator = 2J ! and the sandwich estimator Q = J~1/SF -1
of the LSE asymptotic variance Q. We used the spectral estimator I := ISP defined in Theo-
rem 3.10, and the AR order r is automatically selected by AIC, using the function VARselect () of
the vars R package. In the strong ARMARC case we know that the two estimators are consistent.
In view of the two top panels of Figure 4, it seems that the sandwich estimator is less accurate
in the strong case. This is not surprising because the sandwich estimator is more robust, in the
sense that this estimator continues to be consistent in the weak ARMARC case, contrary to the

R 2
standard estimator. It is clear that in the weak cases nVar {b?(l) - b?(l)} is better estimated

by Q5P (3,3) (see the box-plot (c) of the right-middle and right-bottom panel of Figure 4) than
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by 2J71(3,3) (box-plot (c) of the left-middle and left-bottom panel). The failure of the standard
estimator of € in the weak ARMARC framework may have important consequences in terms of
identification or hypothesis testing and validation.

Table 1 displays the relative percentages of rejection of the standard and modified Wald tests
(W and W) proposed in Section 3.5 for testing the null hypothesis Hy : b9(1) = 0. We simulated
N = 1,000 independent, trajectories of size n = 500, n = 2,000 and n = 10,000 of the strong
ARMARC(1, 1) model (38)—(39) and of two weak ARMARC(1, 1) model (38) with first noise (40)
and second (41). The nominal asymptotic level of the tests is @ = 5% and the empirical size
over the N independent replications should vary between the significant limits 3.6% and 6.4%
with probability 95%. The line in bold corresponds to the null hypothesis Hy. For the strong
ARMARC model (38)-(39), the relative rejection frequencies of the Wg and W, tests are close
to the nominal 5% level when (1) = 0, and are close to 100% under the alternative when n is
large. In this strong ARMARC example, the W g and W, tests have very similar powers under the
alternative for all sizes. As expected, for the two weak ARMARC models (38)—(40) and (38)—(41),
the relative rejection frequencies of the standard W g Wald test is definitely outside the significant
limits. Thus the error of first kind is well controlled by all the tests in the strong case, but only
by the W, modified version test in the weak cases (Model (38)—(40)) and (Model (38)-(41), for
n large) when b9(1) = 0. Note also that for Models (38)—(40) and (38)—(41), the relative rejection
frequencies of the W, test tend rapidly to 100% as n increases under the alternative. By contrast
the empirical powers of the standard W test is hardly interpretable for Models (38)—(40) and
(38)—(41). This is not surprising because we have already seen in Table 1 that the standard version
of the W test does not correctly control the error of first kind in the weak ARMARC frameworks.

From these simulation experiments and from the asymptotic theory, we draw the conclusion
that the standard methodology, based on the LSE, allows to fit ARMARC representations of a
wide class of nonlinear time series. This standard methodology, including in particular the signifi-
cance tests on the parameters, needs however to be adapted to take into account the possible lack
of independence of the errors terms. In future works, we intend to study how the existing identi-
fication and diagnostic checking procedures should be adapted in the weak ARMARC framework
considered in the present paper.

Appendix A: Proofs
A.1. Proofs of Proposition 3.1 and Lemma 3.3

Proof of Proposition 3.1. Let us first note that Condition (8) is equivalent to

8 8

t

[To.0)

i=1

t

[Tw)

i=1

E | sup <Cp', E < Cp, (42)

0cO

for some constant C' > 0 and 0 < p < 1 (independent from 6), and is akin to Condition (A2) in
[20]. Let us first introduce processes (Z;)icz and (@¢)tez by

Zt = (Xta . 'atherlaeta . '7€t7q+1)/ € ]R(erq)Xla ajt = (etaoa sy €y '70)/ € R(erq)Xl

where ¢; in the latter is in (p + 1)th position in &;. Then it is clear that one has the following
equation for Z;: B B
Zy =V(A)Z1 + &, VEEZ,
of which a candidate for the solution of the above equation is, with the usual convention H;=10 =1,
co k—1

Z = Z H V(A )@k, tETZL, (43)

k=0 j=0
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Simulation (X;) of a strong ARMARC
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Fic 1. Simulation of length 400 of Model (38)-(39) with 6o = (a9(1),al(2),09(1),49(2)) =

(0.90, —0.45,0.10,0.85)", . The process (Xt) is drawn in full line, the Markov chain (A¢) is plotted in dotted
line.
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Simulation (X;) of a weak ARMARC
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Time t
Fic 2. Simulation of length 400 of Model (38)-(41) with 6o = (a9(1),af(2),b9(1),b9(2))

(0.90, —0.45,0.10,0.85)". The process (X¢) is drawn in full line, the Markov chain (A¢) is plotted in dotted line.



Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak ARMARC models 16

Strong ARMARC Weak 1 ARMARC Weak 2 ARMARC

(<]

_8_-9-
1+5=%

e

==

-04 0.0

-04 0.0
-04 0.0

estimation errors for n=2000 estimation errors for n=2000 estimation errors for n=2000

Strong case: Q-Q Plot Weak 1 case: Q-Q Plot Weak 2 case: Q-Q Plot

Al
= w0 = 38 = ©°
5 3 5 ©° 3 o
~ A w ] L o7
Z o = < 4 = i
s T s 9 3 N |
| 1T T T 1T 1771 o| 1T T 17T 17T 11
-3 -1 1 3 -3 -1 1 3 -3 -1 1 3
Normal quantiles Normal quantiles Normal quantiles
Strong case Weak 1 case Weak 2 case
) ©
> > >
5 ° B o B ¥
) ) )
a ¥ a < o o
o T T o T T T o T T
-0.10 0.00 0.10 -0.10  0.00 0.10 -0.2 0.0 0.2

Distribution of bs(1) —b;(1) Distribution of b(1) - b;(1) Distribution of b(1) - b;(1)

Fia 3. LSE of N = 1,000 independent simulations of the model (38) with size n = 2,000 and unknown parameter
0o = (af(1),af(2),b9(1),69(2))" = (0.90, —0.45,0.10, 0.85)", when the noise is strong (39) (left panels) and when the
noise is the weak noise (/1) (right panels). Points (a)-(d), in the boz-plots of the top panels, display the distribution
of the estimation errors é(z) —00(t) fori=1,...,4. The panels of the middle present the Q-Q plot of the estimates
9(3) = 13(1)(1) of the last parameter. The bottom panels display the distribution of the same estimates. The kernel
density estimate is displayed in full line, and the centered Gaussian density with the same variance is plotted in

dotted line.
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Strong ARMARC: estimator 2J”" Strong ARMARC: estimator of J™'IJ™
[Te] [Te] 8
o | 8 o ., Ao
- —= - i ==
. R e —
I I I I I I I I
(a) (b) (©) (d) (@) (b) (©) (d)
Estimates of diag(Q) Estimates of diag(Q)
Weak 1 ARMARC: estimator 2J™ Weak 1 ARMARC: estimator of J7'IlJ”"
- i -
_ _
1 5 4+ = 4 v .
e _ T _?_ ? _?_ e _ T T T T
(a) (b) (©) (d) (@) (b) (© (d)
Estimates of diag(Q) Estimates of diag(Q)
Weak 2 ARMARC: estimator of 2J™ Weak 2 ARMARC: estimator of J™'IJ™
o _] o _| ©
[ee] [ee]
o o °
< < °

(a) (b) (c) (d) (a) (b) (c) (d)
Estimates of diag(Q) Estimates of diag(Q)

Fia 4. Comparison of standard and modified estimates of the asymptotic variance QQ of the LSE, on the simulated
models presented in Figure 3. Weak 1 ARMARC corresponds to Model (38)—(40) and Weak 2 to Model (38)—(41).
The diamond symbols represent the mean, over the N = 1,000 replications, of the standardized squared errors

n{ad(1) — 0.90}2 for (a) (0.5 in the strong case and 0.60 (resp. 0.59) in the weak 1 case (resp. weak 2 case)),
n{ad(2 —‘,—0.45}2 for (b) (1.06 in the strong case and 0.91 (resp. 2.24) in the weak 1 case (resp. weak 2 case)),

)
. 2
n {b?(l) — 0.10} for (c) (2.25 in the strong case and 1.36 (resp. 8.05) in the weak 1 case (resp. weak 2 case)) and
)

. 2
n {b(l)(Q - 0.85} for (d) (1.04 in the strong case and 0.90 (resp. 1.41) in the weak 1 case (resp. weak 2 case)).
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TaBLE 1
Percentages of rejection of standard W and modified W s Wald tests for testing the null hypothesis
Ho :bY(1) = 0, in the ARMARC(1,1) model (38). The nominal asymptotic level of the tests is a = 5%.
The number of replications is N = 1,000. The line in bold corresponds to the null hypothesis Ho.

n = 500 n = 2,000 n = 10,000
Wan Wg Wy Wy Wy Wg Wy

Strong ARMARC-Model (38)—(39)

0.9 100.0  100.0  100.0  100.0 100.0 100.0
0.4 100.0  100.0  100.0  100.0 100.0 100.0
0.2 84.7 84.5 100.0 100.0 100.0 100.0
0.1 34.6 36.4 85.5 85.2 100.0  100.0
0.0 5.9 8.6 4.7 5.2 5.8 6.0
-0.1 27.4 29.4 78.8 79.2 100.0  100.0
-0.2 73.6 74.0 100.0 100.0 100.0 100.0
-0.4 99.1 98.9 100.0  100.0  100.0  100.0
-0.9 86.7 86.6 99.6 99.6 100.0 100.0

Weak ARMARC-Model (38)—(40)

0.9 100.0 100.0 100.0 100.0 100.0 100.0
0.4 99.7 100.0 100.0 100.0 100.0 100.0
0.2 57.4 96.2 100.0 100.0 100.0 100.0
0.1 3.5 52.4 50.3 98.0 100.0 100.0
0.0 0.2 5.8 0.0 4.7 0.0 5.6
-0.1 2.8 39.5 37.6 93.8 100.0 100.0
-0.2 34.1 89.6 99.9 100.0 100.0 100.0
-0.4 96.0 99.6 100.0 100.0 100.0 100.0
-0.9 86.1 89.7 99.7 99.7 100.0 100.0

Weak ARMARC-Model (38)—(41)

0.9 100.0 100.0 100.0 100.0 100.0 100.0
0.4 99.7 96.9 100.0  100.0  100.0  100.0
0.2 86.4 63.7 99.6 92.4 100.0  100.0
0.1 62.4 31.5 85.0 48.3 99.8 92.5
0.0 46.8 14.1 53.6 9.5 54.2 5.3
-0.1 60.2 26.2 84.1 44.1 99.9 92.0
-0.2 80.9 52.9 97.8 87.6 100.0 99.9
-0.4 98.9 89.2 100.0 99.4 100.0  100.0
-0.9 74.0 67.3 95.7 93.1 100.0  100.0

a stationary process, provided that the series converges, which we strive to prove now. Let us
pick for [|.|| a subordinate norm on the set of matrices. By independence of processes (A;)iez and
(et)tez, and using the fact that the latter is square integrable, we easily get, for k& > 1,

E(|12(A) . 9(A k)@ 4l?) <E (I19(A) . (A )l o)

= E (1) WA i)I*) B (Jl2r-l*) < CE (JIol ) o,

the last inequality stemming from (42), so that series (43) converges in L?. Note that one proves
that Z; (hence X;) is in L* by replacing ||.||? by ||.||* in the above inequality, using again (42) and
the fact that (¢);cz is in L*, see assumption (A3). Similarly, defining

Zt(Q) = (et(e);-~-7€t7q+1(9);Xt;-~-7Xt7p+1)/; wt:(Xt,O,...,Xt,...,O)’ (44)
where X in the latter is in (¢ 4+ 1)th position, one also gets that Z;(0) satisfies

Zt(ﬂ) = (I)(At, G)thl(o) —+ we.
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A solution candidate to the above solution is
oo k—1

= Z H (I)(At_j, G)wt_k, teZ. (45)

k=0 5=0

Similarly to the proof leading to (43), convergence of (45) is obtained thanks to (42) as well as
stationarity of (X;);cz and the fact that X; € L%

One checks that w; = M Z; and €,(0) = e, Z;(0), which, plugged into (43) and (45) yields (9) with
coefficients ¢; (0, Ay, ..., Ay—;+1) given by (10). Finally, let us verify that (¢; (0, A¢, ..., Ar—i11))ien
is the unique sequence verifying (9). Let us then pick a sequence of r.v. (d;);en in H such that
e(0) =Y o ci(0, A, oo, Avit1)er—i = Do di€r—;. One then gets, by independence from (e )¢ez
as well as by the fact that the latter is a weak white noise:

oo 2 oo
0=E Z(Ciw, Ay Apigr) — di)eti] =o’E <Z(Ci(9; Agy oo A iyr) — di)Q)
i=0 i=0

hence (¢;(0, A, ..., A¢—it1))ien = (di)ien a.s. O

Proof of Lemma 3.3. The fact that the 0 — ¢; (0, Ay_1,...,Ar—;), 0 V]ci(0,A¢—1, ..., Ar)]?
and 0 — V2[c;(0,Ar—1,...,A;)]? are polynomial functions (of several variables) can be verified
easily using the fact that, for all s € S, 6 — ®(s,0) and § — V() are affine functions. We turn to
(13). Using Minkovski’s inequality, the fact that matrix norm ||.|| is submulitplicative entails

i
sup |¢; (0, Agy ..., AY)|
6ce

<
2v+4 k=0

sug |€1(I)(Ai, 9) “ee (I)(Ai_k+1,9)M\I/(Ai_k) ce W(A1)€;+1|
€

2u+4

1/(204+4)
<CZ[ (500 19(8,0) . (A s O 08 WA (46)

for some constant C' > 0. The Cauchy Schwartz inequality as well as (8) yields

) A ) A 1/(2V+4)
[E (gug||¢<ai,o>...<1><Aik+1,9>|| (A (AP )}
S

< [E (Sug |®(A:,0). .. @(Ai_k+1,9)||4”+8)] [E (||\I/(Ai_k) . \P(Al)||4”+8)} @F < gprD
€

which, plugged in (46), yields inequality (13) for ¢;(0, A;, ..., A1). The inequalities for V7 [c; (0, A;, ..., A1)],
j = 2,3, are proved similarly. As to ¢§(¢,0, A¢, ..., A¢—;11), (12) yields the upper bound

sup |¢f (8,0, Ay, .o ANy_itq)]
0€o

2v+4

S sup |€1¢(At, 9) . @(At7k+1, G)M\I/(Atfk) . \I/(At,i+1)€;+1|

0O

)
2v+4

k=0

so that upper bound (14) for ¢§(¢,60,A;_1,...,A,_;) follows again by a Cauchy Schwartz argu-
ment. The upper bound (14) for Vg (¢,0, A¢—1,...,Ar—;) is obtained similarly. O

A.2. Proofs of Lemma 3.4 and Proposition 3.5

Proof of Lemma 3.4. We first prove Point 1. Using decomposition (9) of €,(#), independence of
the white noise from the modulating process, as well as stationarity of the former, we obtain

Z

4 =0

sup|cz 9 At7---;At—i+1)| .||€0||4

4

sup |eo (6
0co
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which is a converging series because of (13). As to e4(), we use this time decomposition (11) as
well as (14) in order to get

sup
t>0

sup |C (0 Ata AR At7i+1)|
0€O

.H€0H4 < +o0.
4

sup e (0)
0ce

Z sup

4 i— Ot>0

In order to prove Point 2, we remind the following notations. From (4) and (5), we have
Zt(ﬂ) = w + @(At, Q)thl(e) Vit € Z,
and
Z7(0) = wi + (A, 0)Z7_1(0) t=1,...,n

where Z¢(0) := (e(0), ..., et—qr1(0), Xty oo, Xe—pr1),  w§ = (Xt,0,...,X;,...,0), so that wf =
wy for t > r 4+ 1 (where r = max(p,q)), wi(f) = 0py, for t < 0. We recall that processes
(Xt)tez and (e;(0))sez verify (5). Note that ||supyeq let(0) — e4(0)]]l, — 0 is equivalent to
l[supgee || 25 (0) — Z:(0)]]||, — 0 as t — oo. Now, since X, = X, for t > 1, one easily sees
that

Z{(0) = Zy(0) = ©(As, 0)[Z7_1(0) — Ze—1(0)], Vi=r+1, (47)
Z8(0) — Z4(0) = wf — wy + B(Ag, 0)[Z_(0) — Zo_1(0)), for t =1,...,7. (48)

Now, using (47) and (48) we obtain

t—r—1
Z;(0) — Z,(0) = O(A;—;,0)[Z7(0) — Z,(0)], VE=r+1,
7=0
t—r—1 r—1i—1 r—1
=[] @A;.0 (A, 0)ws; —wri] [T (A5, 0)wo | - (49)
7=0 =0 j7=0 7=0

Let us furthermore note that

sup |)~(t — Xy
feO

= sup|Zgl (A, 0) X 1+ZQJ Ay, 0)e—i(0)||| <+ocofort=1,....r

4 S
Jj=t 4

as indeed X; € L* (as proved in the proof of Proposition 3.1) and ||supyce €:(6)|]4 < +o00 as
proved in Point 1. In view of (49), using Minkowski’s and Holder’s inequalities and (8), we thus
have

<oy,

sup || Z{ (0) — Zi(0)
0c6

for some constant C' > 0 and 0 < p < 1 (independent from 6).
Let us turn to Point 3. This is due to

§2+2a 0) — ec(0)|ll5 1
P (1% sup |ex(8) — ex(0)] > 1) < "S“p‘)E@Q'E;( ) —eOlll; _, =), >0,
€O t*n l

the last equality thanks to Point 2, and using Borel Cantelli’s lemma.

We now turn to Point 4. The fact that ||supyee |[V7eo(0)]]||, and sup,sq |[supgee |[V7er(0)]]]],
are finite is proved similarly to Point 1 and using estimates (13) and (14). We then pass on to
the limit of t* |[supycg ||V (er — €)(0) as t — oo. Let i € S. Deriving (47) with respect to 0;
yields

0
00;

s

2 120 (0)=24(0)] = (A, 0) -2 1(0) = 21 (0)] 4+ o5~ @ (A, 0)[ 271 (0) = 21 (0)], V> p+1,

(50)

0
00,

0;
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hence we may write

P . t—p k—1 o
50 126(0) = 24(0) :ggmm, 0) 5@ (Bt O)ZE(0) = Zi-1 (0],

hence, using Minkovski’s and Holder’s inequalities, and letting Mg := maxscs oco ‘ 50 -D(s,0)|,
get

t—p k—1
Sup||—[Ze( ) = Z:(0)] <MYy ||sup| [T @(Aj,0)|
0coO 8/5 =0 0cO j=0 .
| swplize0) - zw@)l|| . 1)
0cO

Now, since HSUpaee I Hf;ol O(A—j,0)]] ‘ ‘8 < kp* for some k > 0 and p < 1 thanks to (8), and since

t || suppee 11251, (0) — Zi—k(0)]]||, is uniformly bounded in ¢ and k < ¢, and tends to 0 as t — oo,

the dominated convergence theorem yields that ¢

supgeo 175 2 (0) = ZWOI||, . — 0 as
t — oo, proving t* [[supyce ||V (er — €)(0)][llg/5 — 0 as t — oo in Point 4. Let us now prove that
t ||supgee [|V2(er — ) (0)]]] |4/3 — 0. Deriving again (50) with respect to 6;, £ € S, we obtain
2 2
S 2O~ Z1(0)] = (8, 0) 5
+ i(l)(At 0)— 0 (Zs 1(0) — Zi—1(0)] + 8—2<I>(A 0[Z; 1 (0) — Zi—1(0)], Vt>p+1, (52)
a9 90, ! 00,00, R

4

125 1(6)— Zoo (6)]+ 23

a@é (Ata 9)

[Z8-1(0) = Z:-1(0)]

0;

so that, in the same spirit as (50), one obtains

82
e | |sup 5 266) = ZiO| | < M¢Z wup | T #(8 1.0
€ 4/ 7=0 3
||| sup 12 (0) = Ze-r(O)I}| || sup |0 [ —k(0) = Ze—k(0)]]]
0cO 8/5 0cO 8/5
+ || sup [l 5o [fok(G) — Zk(0)]]] ] , (53)
C) 8/5
for some positive constant M. Using Point 2 (so that t* || supgee || 27, (0) — Zi—r(0)]]] |8/5 tends
to 0 as t — oo, since 8/5 < 2) and the previous estimate
£ ||sup || 50- [ $(0)—z:0llj| —0
0co 8/5
for all i € S, we conclude by a dominated convergence theorem that
9? 0?
t* | sup || 52—=--[Z7(0) — Ze(O)]]]|| , hence t* ||sup || o7—--(er — &) (O)]||
peo 00,00, ! i oco | 00,00, ! i3
tends to 0.

We finish by sketching the proof leading to t* ||supgee ||V (er — et)(9)||}|1 — 0. The starting
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point is again deriving (52) with respect to 6, ¢/ € S, which yields, as in (53), the following
estimate:

83 t—p k—1
sup || ==—=—-[27(0) — Z(0 MY s D(A_;,0
968”89/89@89 [ ( ) t( )] @];) 0€g|j];[) ( t—j )|
8
-t“l sup [|Z;_(0) — Z—1(0) + || sup |l 55 [fok(ﬁ’)—Zt—k(ﬁ’)]H
=) 4/3 0o 4/3
[ sup -2 12200 - Zewol]| o+ || s ||a—2[ © o (0)— Ze kO]
veo 90, Ik e PR P TR R
2 82
+ || sup || =—=—=—1[27_,.(0) — Z;_1(0 + || sup || ==12¢_.(0) — Z;_1(0 ,
963”892891[ t k() t k’( )] 4/3 968”89286[ t k‘() t k’( )]” 4/3

for some constant MY, so that one concludes similarly. O

Proof of Proposition 3.5. Let us start with Point 1. The fact that Q,(f) converges a.s. to
O (0) =E(eo(0)) as n — oo is a consequence of the fact that supgcg |e:(0) — e:(0)|> — 0 (itself
a consequence of Point 3 of Lemma 3.4) and is justified by the same exact proof of Lemma 7 in
[24]. We now prove that n®[|supgcg [@n(0) — On(0)||,. Let a € (0,1). Using the upper bound
supgee [e(0)” —€(0)?] < [supgee led(0)] + supgee € (0)|] - supgee le:(0) — € ()], as well as Cauchy
Schwartz and Minkovski’s inequality, we get the following

)

1 n
..l
N nl « tz::l
Since ||supgyeg |e:(0)]]], is upper bounded by Point 1 of Lemma 3.4, and [|supyeg |€:(0)]||, is con-
stant in ¢ and finite, there thus exists some constant C' > 0 such that

+
2

sup [e¢(6)]
0c6

sup |Qn (9) —On (9)|
6O

sup [e(6)] sup e:(0) — e(6)]
0co 0O

2

n

O 2

=1

sup le:(0) — e:(0)] (54)

sup |Qn(0) — O, (0)]
[2SC]

2

Let us write the right hand side of the above inequality in the form —t= >  [t'® — (¢t —
D'~ s=a—y== [Isupgeo lee(8) — et (0)]|l,. Since

1
tl—a _ (t _ 1)1—a

1

~t—o00 (1 — Oé)t_a

sup [e (6) — e (6)]
)

sup [e¢(6) — e¢(6)]
0c6

)
2

2

which tends to 0 as t — oo (a consequence of Point 2 of Lemma 3.4), Toeplitz’s lemma implies
that the right hand side of (54) tends to 0 as n — oo, and this proves Point 1.
We now prove Point 2. One has for all § € ©

1V]ee(0) — €(0)?]] = [12€4(0) Vier(6) — er(0)] + 2[ex(0) — e(0)]Ver ()]
< 2|le¢(0)V]e«(0) — ex(O)]]] + 2lec () — €(O)]./|Ver(D)]].  (55)

so that
sup [|V(Qn(0) — On(0))]] < = Zsup le+(0 Sup [[Vet(0) — e ()]
0co co

+ - Zsuplet ) — €(0)]. zggllVGt(@IL (56)

169
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Lemma 3.4, Points 2 and 4, along with Borel Cantelli’s lemma, yields that supgeg |€:(0) — €+(6)]
and supgee ||V (er — €¢)(6)]] a.s. tend to 0 as ¢ — oco. The second term on the right hand side of
(56) if then a.s. upper bounded thanks to Cauchy Scwhartz inequality by

1/2 1/2
l Zsup|€t ) — €0 )|2] l ZSUPHVet ||2] :
=1 0€© 1—19€9

which tends to zero thanks to Cesaro’s Lemma and the ergodic theorem. And since, by Minkowski’s
inequality,

1/2
[ ZSUP|€t 1 l ZSUP|€t ) — e (0)?

1—1 9€© 1 0€0©

1/2

1/2
Zsup|e(9 1 ,

1 0€0©

one has that [L 31" supycg |er(6)]?] 172 is a.s. upper bounded in n > 1, again by a Cesaro and
ergodic theorem argument. The first term on the right hand side of (56) if then again a.s. upper
bounded thanks to Cauchy Scwhartz inequality by

n 1/2 1/2
1
21— sup ||[V(e; — 0)||? sup |e ,
ln;%gll (er —ex)( )II] l Z pl ¢( ]

1—10€©

which tends to zero as t — co. Hence (56) implies that supgeg ||V(Qn(0) — O, (0))]| a.s. tends to 0
as n — 00. Proof of a.s. convergence of supycg ||V/ (Qn(8) — O,,(0))|| to 0 for j = 2,3 is obtained
similarly, using arguments related to Points 3 and 4 from Lemma 3.4.

Let us now prove Point 3. Let a € (0,1). We deduce from (55), using Minkowski and Holder
inequality, that

n

Z

sup [|V(Qn(0) — On(0))||
6co

sup ||Vies(0) — e:(0)]]|
6co

sup le+(6)
4/3
n

Z

sup le (0) — e (0)] (57)

sup ||Ve (6)]
)

2

Using Point 1 of Lemma 3.4, one has that |[supycg |e+(0)]|[, is upper bounded by some constant
C'. The first term in the righthandside of (57) may thus be upper bounded by

n

1
QCnl—a Z

t=1

sup ||V[e:(6) — e (0)]]]

0co

4/3

Noting that [[supyee [[Ve:(0) — e (O)]llll,/3 < C"[lsuppee |[Vier(d) — e (0)]]]l]g,5 for some con-
stant C’, the above expression is, similarly to the argument in (54), a quantity that tends to 0 as
n — oo thanks to Point 4 in Lemma 3.4 coupled with Toeplitz’s lemma. Hence the first term in
the right hand side of (57) tends to 0 as n — oo. Again using Point 1 and Point 2 of the same
lemma, and with the same argument, one also has that the second term in the right hand side of
(57) tends to 0 as n — oo, which proves Point 2. O

A.3. Proofs of Proposition 3.6 and Theorem 3.7

Proof of Proposition 3.6. Independence of processes (A;)cz and (€;)¢cz as well their ergodicity
yields that, for fixed j € N, process ((Ai—1,...,A¢—;,€—;)) is ergodic. One thus deduces from
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Expression (9), and using the fact that (e;)tcz is a weak white noise, that O, (6) defined by (15)
verifies
On(0) — O (0) := 0> > E ([c;(0, Ao, ..y Aj)*) = 0” +0* Y _E ([ (0, Ao, ..., AH)P)  aus.
j=0 j=1

(58)
as n — oo (remember that ¢o(6, Ag) = 1). By uniqueness of decomposition (9) in Proposition 3.1,
and since €:(0y) = €, one has that (¢;(0, A¢—1,...,A:;))ien = (1,0,...) if and only if § = 6y, and
that Oo(0) given in (58) is minimum at 6 = 6, with minimum given by O () = 0. Let us then
deduce that estimator 6, defined in (16) converges a.s. towards 6. For this we let a subsequence
(énk)keN converging to some #* in the compact set © and we prove that 8* = 6y. Indeed, by
definition of estimator f,,, one has

Onk (90) 2 Onk (énk) (59)
for all kK € N. A Taylor expansion yields the inequality

) * ) * 1 L
Oy (On,) = Oy (07)] < |0y, — 07[1:2— D supllex()].[|Ves (0))]]- (60)
Nk =1 0cO

But, using the ergodic theorem, one has

2 ng 1 N
23 suplle@)LIVe @) < — 3 [sup el (®)]2 + sup ||Vet<9>||2]
Nk 4= 0o Nk i Loecoe 6co
2 2
— ||sup |eo(8)]|| + ||sup |[|[Veo(0)]]|| < +oo,
e 2 0O 2

so that one gets from (60) that Oy, (0,,) — O, (6*) — 0 as k — oco. Since O,,, (6*) — Ou (%),
we obtain, passing to the limit in (59), that

Ooo(b) = Oco(67),

hence 6* = 6, thank to uniqueness of the minimum of O (0). O
Proof of Theorem 3.7. Similarly to the proof of the previous theorem, we let a subsequence

(0, )ken converging to some 6, in the compact set © and we prove that 6, = 6y by proving that
O (60p) = Oso(0.). By definition of 6,,, we have

Now, a Taylor expansion yields, for all #” and ¢ in ©, similarly to the argument in the proof of
Proposition 3.6,

1 &
@i (6) = Quu (O < 116" = 6”1l > [sup lec(®)? + sup ||Vet<e>||2} . (62)
Ng 1=, Loeco 0€©
Using inequality (a+b)? < 2(a?+b?) for all a and b, we deduce that supyce |e:(0)]? < 2(supgeg |e:(0)—
€:(0)|%)+supgee |€:(6)]?. Since a consequence of Point 3 of Lemma 3.4 is that supgcg |e+(6) —€:(6)]?
tends to 0 as ¢ — oo, the ergodic theorem yields that

2

+
2

1 Nk 2
—Z [sup|et(9)|2+sup||Vet(9)||2} e < 400
Ng 1=, Loeco 6€o 2

sup [€o(0)] sup || Veo (6)]
0€o 0co
as k — oo. Thanks to (62) and Point 1 of Proposition 3.5, we thus deduce that @, (6o) — Oso(6o)

and Qn, (0,,) — Ouo(0,) as k — oo, and we conclude in the same way as in proof of Theorem
3.6. O
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A.J. Proofs of Theorem 3.8

Let us introduce the following matrices and vectors

I,(0) Var (vaV0,(6)) = (In(1,7)(0)), ,—1 . (prqic € RPFVEXPFIE 0 e N, (63)
Vi(0) = ex(0)Ver(d) = Ya()(0)im1. (prgx € RPTDEA k7, (64)

Theorem 3.8 can be established using the following lemmas.

Lemma A.1 (Davydov (1968)). Let p, g and r three positive numbers such that p~'4+q 1 +r~1 =
1. Davydov [17] showed that

| Coo(X,Y)| < Kol X|pl[Y lly [ {o(X), o (¥)}]'/" (65)

where || X||P = E(X?), Ko is an universal constant, and a{o(X),0(Y)} denotes the strong miz-
ing coefficient between the o-fields o(X) and o(Y') generated by the random variables X and Y,
respectively.

Lemma A.2. Let the assumptions of Theorem 3.8 be satisfied. For all l, r in 1,...,(p+ ¢)K and
0 € © we have

I,(l,r)(0) — I(1,7)(0) := Z ex(l,r)(0), n— 4oo,

k=—o0
where ci(1,r)(0) = Cov (Y (1)(0),Yi—i(r)(0)), k € Z, the former being a convergent series.

Proof of Lemma A.2: Let us write

~ (0e(0) e (0) '
Vet(é’) = ( 891 geeey ao(p+q)K s

where €,(6) is given by (9). The process (Y3 (6)), is strictly stationary and ergodic. Moreover, we
have

1,(6) = Var (ﬁ%onw)) ~ Var %Zn(f))) = 23" Cov (¥u(0), Y+(6)
= LY (- kCov (4(6), Vi k).
k=—n+1

From Proposition 3.1 and Lemma 13, we have

e(0) = Zci(ea A1y, Api)ér—; and ;él ) = Zci,l(t?, ANpqyoo, Ay)e—y, forl=1,..., (p+q)K,

i=0 =0

where we recall that ¢;(0, A¢_1,...,A;—;) is defined by (10), and

0
Cig(0, A1, ., Ny) = 8_910i(9’ Apo1,., Ay)

a i
— a—el <Z e1P(A¢—1,0) ... P(A4—gy1, ) MU (As_y) ... \I/(Ati)e;;_g.l) ,
k=0

with the following upper bound holding thanks to (14):

Esup(ci(ea Atfla R Atfi))Q < sz and Esup(ci,l(oa Atfl; AR Atfi))2 § Cpla Vi.
0cO® 0co
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Let

B )(0) = E[ei(0 Aty D)0 Auvy s Ai)ew (0, Dpioots s Aypir)

Cir (0, A1y A )| E €r—i€r—jer—p—ir€r—p—jr]

CE [0 Arrs sy D)0 Arrs s DAry)]

RE [ (8, Attty s Depit )y (0 Dot ooy Dty ) E [er—sérs]

XE [€;—p—ir€t—k—j']

— B0, Ay D) (0, Ders ey Ay )eir (0, Aty Ay
Cirp (0, Ap—p—1, -, Dy )] Cov (€1—i€r—j, €4 —p—it €4——j1)
+Cov (i (0, A1y, Ap—i)ci (0, A1, oy A ) e (0, D1, o Dy p—ir)
Cir (0, D¢ 1y Ay ) Eler—ier— | E e —p—ir€r—p—jr] .

We then obtain

oo oo 0 o0

a(l,r)(0) =D > 3N Bijuixlir)0), ke

i=0 j=0i'=0 j'=0
The Cauchy Schwarz inequality implies that
IE[ci(0, Ar—1, .oy Api)cja(0, A1y, A )i (0, Ap g1y D gir)

1/2
X (0, Aty Do)l < (Elei(0, Apvy ooy Ay—i)eja(0, Avr, ., D)) /

< (Blew (0 Ar 1y Ay g )0, Dy p1y s Dok )2) P < (Blei(O, Ay, Ari)]

4 4
< Eleja(0 A1y D )Y (Bl (0, A0 k1, D i) Eley (0, D1,y Dy 1N
< CpiJerri'Jrj" (66)

First, suppose that k > 0, for all [, 7 in 1,...,(p+¢)K and 0 € O, in view of (66) it follows that

oo oo 0 o0

jcov (Ye(D)(0), Yeer(r) () = 4D DD D Bigurrelr)(6)

1=0 j=01i'=0 j5'=0
4(g1 + g2 + g3+ 9a + g5 + h1 + ha + h3),

lex (L) (0)]

IN
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where
9 SO kI [ Cov (ermier g, et koivern—g)|
i>[k/2] j=01i’=0 j’'=0
g2 = D0 D0 YD R (Cov (ermier— cohmicraiy)
i=0 j>[k/2] i'=0j'=0
93 > > kp T Cov (eri€r gy e k—ier—k—yr)]
i=0 j=0 z’>[k/2] =0
o= ) Z Z Y wp T Cov (rmiei—j, €hi k)]
1=0 =0j">[k/2]
[k/2 ][k/2] [k/2] [k/2]
95 = YD D I Cov (epmiigy ekt t—kyr)] 4
i=0 j=0 =0 5/=0
h,l 0'4 Z Z |COV(C¢(9, Atfl, ey At,i)cm(& At,h ceey At,i),
i>[k/2]i'=0
Cyt (97 At—k‘—17 ey At—k—i')c’i’ﬂ'(ea At—k—17 I At—k‘—’i’))| )
00
hg = 0'4 Z Z |COV(C¢(97 At—l, ey At_i)ci,l(e, At—h ey At—i);
i=0 > [k/2]
Cyt (97 At—k‘—17 ey At—k—i/)c’ilﬂ'(ea At—k—17 ey At—k‘—’i’))| )
[k/2] [k/2]
h,g O'4 Z Z |COV(C¢(9, Atfl, ey At,i)cm(& At,h ceey At,i),
=0 /=0
Ci (97 At—k‘—17 RS At—k—i')c’i’ﬂ'(ea At—k—17 RN At—k‘—’i/))| .
Because

|Cov (€r—i€t—j, €t—k—ir €t—k

by Assumption (A3), we have It

oo oo X0

*j’)| § \/E [et,iet,j]QE

follows that

let—n-vet—r—jr)’ <Ele* < 00

Z ZZZKPZ—HH +5’ |Cov (€r—i€t—js €t—k—ir€t—k—j')| <I€1p

i>[k/2] j=014'=0 j'=0

for some positive constant 1. Using the same arguments we obtain that g;

27

(i = 2,3,4) is bounded

by #;p®/?. Furthermore, (A3) and the Cauchy Schwartz inequality yields that lei€irllyy, < +oo
for any 7 and ¢’ in Z. Lemma A.1 thus entails that

(k/2] [k/2] [k/2] [k/2]

X {ae (min [k + 5 — i k+d —ik+75 — 4, k+4d

g5 =
i=0 j=0 /=0 j'=0
[k/2] [k/2] [k/2] [k/2]
<
i=0 j=0 i’=0 j'=0
Since

[Cov(ci(8, Ar—1, ...
X Ci/,T(Q;Atfkfla-"a

)i (0, A1,
Aipi))| < Cp7,

7At—’i)a Ci (05 At—k—h s

DT DT Y ke Cov (et eonivernio)]
Z Z Z Z K PH]H 7 ller—i€t— ]H2+u (| €t—k—i €t—1—; ||2+1/

— DY) < wak/ ) ([k/2)).

) At—k‘—’i’)
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we have

= 04 Z Z |COV(C'L’(97 Atfl; cee Atfi)ci,l(ea Atfla ceey Atfi)a

i>[k/2] i’ =0
Cir (0, A1y oo Dy )i (0, g1, o, Dy—pir))| < K pR/2,
for some positive constant ). Using the same arguments we obtain that hs is bounded by x}p*/2.

The a—mixing property (see Theorem 14.1 in [16], p. 210) and Lemma A.1, along with (13), entail
that

[k/2] [k/2]
hs = ot Z Z |Cov(ci(0,A¢—1, ..., At—z‘)cz',lw, Apye D),
i=0 /=
cir (0, At—k—la o Dy ) (0, A1y D —ir))]
[k/2] [k/2]
< > Z Ko llei(0, A, Avi)ein(0, A1, Ay,
=0 7/

X ||C’L" (97 At—k‘ 1y-- At k— i')ci' 7‘(97 At—k‘—l; R At—k—i'))||2+y
x {aa (k+1 -0} < kbl ((k/2)).

It follows that

i lex(,7)(6)] < nip““‘” + n'ia:/@*” ([k/2]) + " iaz/ G ([k/2)) < o0
k=0

k=0 k=0 k=0
by Assumption (A2). The same bounds clearly holds for

0

S et r)(6)]

k=—o0

which shows that

Z lek(1,7)(0)] < oo.

k=—o0

Then, the dominated convergence theorem gives

n—1 e}

I,(l,r)(0) = % Z (n—|k])er(l,7)(0) — I(l,r)(0) := Z ex(l,r)(0), n— +oo,

k=—n+1 k=—o00

and completes the proof. O

Lemma A.3. Under the assumptions of Theorem 3.8, one has convergence in distribution of the
random vector

ViV Qn(60) B N(0,1), asn — oo
where we recall that matriz I is given by (19).

Proof of Lemma A.3: In view of Proposition 3.5, it is easy to see that

VnV (Qn — On) (60) = op(1).

Thus VQ,(0y) and VO,,(0y) have the same asymptotic distribution. Therefore, it remains to show
that
VYO, (6) B N(0,1), as n — oo.
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For l,in 1,...,(p+ ¢)K and 6 € O, we have

8€t (9)
00,

o0
= Z Cia(0, Ap—v, .o, Dvi)er—s, (67)
i=1

where the sequence ¢; (60, A¢_1,...,A;—;) is such that Esupycg [(ci,i (0, A¢—1, ..., A i))? — 0 at
a geometric rate as ¢ — 0o (see Lemma 3.3). Moreover, note that

n

o] o]
Z Zci(e, At—l; ey At_i)et_i ch’l(e’ At—h ey At_j)et_j.

t=1 =0 j=1

80n(9)_ 2 < B
VIS = R N0 =

=k

Since Ve (0p) belongs to the Hilbert space H(t — 1), the random variables €;(0y) and Ve (6y) are
orthogonal and it is easy to verify that E [\/nVO,,(6p)] = 0. Now, we have for all m

90,(00) 2 <& 2 &
n—2 = 2 NVY, D)+ =Y Zeml
\/_ aol \/_ tz; t7 ( ) n ; t7 ( )
where
Yim(l) = ch,z(Ho,At—b JAj)erer—j
j=1
Zt,m(l) = Z ch(GO,At_l,...,At_j)etet_j.
Jj=m+1
Let

Yim = Yem(0o) = (Yem(1), .-, Yem((p + ¢)K))" and
Zt,m = Zt,m((%) = (Zt,m,(1)7 ceey Zt7m((p + q)K))I .

The processes (Y; )¢ and (Z;,, )¢ are stationary and centered. Moreover, under Assumption (A2)
and m fixed, the process Y = (Y;,,,); is strongly mixing (see [16], Theorem 14.1 p. 210), with mix-
ing coefficients ay (h) < aa . (max{0,h —m}) < aa (max{0,h —m+1}) + o, (max{0,h —m}),
by independence of (A;)iez and (€;)iez. Applying the central limit theorem (CLT) for mixing
processes (see [37]) we directly obtain

2 n D [ee]
ﬁZYt,mﬁN(o,Im), In=4 " Cov(Yim,Yionm)-
t=1

h=—o00

As in [24] (see Lemma 3), one can show that I = lim,,_, I, exists. Since || Z; |2 — 0 at an
exponential rate when m — oo, using the arguments given in [24] (see Lemma 4), one show that

n—1/2 Zn: Zim

lim limsupP {
t=1

m—o0 n o0

>€} =0 (68)

for every € > 0 (see the following lemma A.4). From a standard result (see e.g. [14], Proposition
6.3.9), we deduce that

1 < 2 < 2 < D
e VO’I’L(GO) = = Y%,m + — Zt,m — N(Oaj)a
> Vi & Y

which completes the proof. O
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Lemma A.4. Under the assumptions of Theorem 3.8, (68) holds, that is

n
n_l/QZZt7m > E} =0.

t=1
Proof of Lemma A.4: For [ =1,...,(p+ ¢)K, by stationarity we have

ar (% Z Zt,m(l)>

lim limsupP {

m—00 n—oo

Ztm Za m(l))

3|4> 3|4>

2 e
Z n — |h)Cov(Ztm (1), Zi—n.m(l))

IN

4 Z |Cov(Zt,m (1), Zi—nm(1))] .

h=—o00

Consider first the case h > 0. Because Esupyee(cji(0o, At—1,...,A:—;))? < kp’ (see 13), using
also E|e;|* < oo, for [h/2] < m, it follows from the Holder inequality that

sup Cov(Zt,m (1), Zt—n.m(1))| = sup [E(Ztm (D) Zt—n.m(D))| < Kp™, (69)

Let h > 0 such that [h/2] > m. Write

Zin = 20 () + 20 (D),

where
) (h/2) . .
Zp (1) = Z (0o, Do, D j)ever—j, ZL (1) = Z cji(0o, g1, Dy j)ererj.
j=mt1 j=[h/2]+1

Note that Zth;n(l) belongs to the o-field generated by {A¢—1,..., A¢_(n/2], €45 €41, - - -, €4—[n/2)} and
that Zy_pn m (1) belongs to the o-field generated by {A¢—p—1,A¢—nh—2,...,€—n,€t—p_1,...}. Note
also that, by (A3), E|Z]",,(1)]*" < oo and E[Z;_pm(l)[*™ < oo. The a—mixing property and
Lemma A.1 then entail that

(h/2] oo

D S S [T () F0A S S TN, VR A7) IS 2 | I

j=m+1 j'=m+1

xlleja(Bo, vy Dg)eer—jlyy, lan,c([h/2)) )

[h/2] oo

< om0 [al/E (/) + O (/2]

j=m+1 j'=m+1

< wp™ [/ ([h/2) + o T ([/2)] (70)

Cov (2, (1), Zi hma))‘

IN

By the argument used to show (69), we also have
|Cov (21,0, ZinamD)| < K" (71)

In view of (69), (70) and (71), we obtain

> 1CV(Zem (1), Zimnn(D)] < wmp™+ Y {thpm +rp™ [ag/<2+v>([h/2]) +a¥/ (2+”)([h/2])] } =0
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as m — 0o by (A2). This implies that

2 n
We have the same bound for h < 0. The conclusion follows from (72). g

Lemma A.5. Under the assumptions of Theorem 3.8, almost surely
V2Qu(00) — J, n— oo,

where J exists (is given by (18)) and is invertible.

Proof of Lemma A.5: For all [, r in 1,...,(p + ¢)K, in view of Proposition 3.5, we have
almost surely

82
06,00,

Thus 02Q,,(00) /060,00, and 920,,(0y)/ 00,00, have almost surely the same asymptotic distribution.
From (9) and (13), there exists a sequence (¢;1,(6, A¢—1,...,A¢—i)),cy such that

(Qn(00) — On,(0p))| — 0, as t — oco.

aalae Zcm (0,0¢ 1, .., Av_i)eri with E(ci (0, ¢ 1,...,0: )2 < Cp', Vi (73)

This implies that 6%¢,(0)/060,00, belongs to L2. In the other hand, we have

820,,(0)
96,00,

2 82 06,5 8€t 9)
Et:f aalaa 42 Z o6, 06,

06,5(9) 8€t (9)
— ( 89180 )—l—ZE( 29, 00, , as n — 00,

by ergodic theorem. Using the uncorrelatedness between €;(6y) and the linear past He(t — 1),
Der(00)/00, € He(t — 1), and 9%e4(00)/00,00, € H(t — 1), we have

9200 (00)\ . (Des(fo) Deu(fo)\
E(Taﬁf) _2E( 8910 o 0 ) = J(l,7). (74)

Therefore, .J is the covariance matrix of v/20¢(y)/00. If J is singular, then there exists a vector
c=(c1,...,¢prq k) # 0 such that ¢’.Jc = 0. Thus we have

(r+a)K
Oe (6
Z Ck €t (%) =0, a.s. (75)
00y,
k=1
Differentiating the two sides of (4) yields
P (r+a) K 8et q (r+a) K er;(60) q
=Y (AL X = D o =Y gh(Anbe) > e ] = (90" (A, bo)er—(6o)
i=1 k=1 j=1 k=1 j=1
where
IR pga(Ay, 0y) #EDK 9 (A, 60)

a\ * _ 7 by * _
(6) (Arnbo) = > ex 2ot and ()" (Brbo) = Y =L

k=1 k=1
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Because (75) is satisfied for all ¢, we have

P q

D G (A 00) X = > (99)" (Ar, fo)er—s(6o)-

i=1 j=1

The latter equation yields a ARMARC(p — 1,¢q — 1) representation at best. The identifiability
assumption (see Proposition 3.1) excludes the existence of such representation. Thus

(r+o) K (r+o) K b
agq(Ataoo) b 69_](At790)
D*(Ay, 00) = 2= =0 and (¢%)*(A¢,0) = —— =0
(gz) ( tsy 0) ; Ck aok an (g_]) ( iy 0) ; Ck aok
and the conclusion follows. O

Proof of Theorem 3.8: For all i, 5,k =1,..., K(p+ ¢) we have

P00 2 O e(0) der(0) D€ (6)

LYY 2 9)— ) z

00,0000, n tz_:l {6 ( )80 00,00 } + n ;{ 00; 00; 09k}

N z n aQGt 8€t 9) + z i aﬁt(e) 826t(0) .
n 00;00; 00, n & 00; 00;00,
t=1 t=1

Using the ergodic theorem, the Cauchy Schwarz inequality and Lemma 3.4, we obtain

830,,(6)
96:00,00,

< +00. (76)

sup sup
n 0€O

In view of Proposition 3.5, we have almost surely

03
00;00;00,

sup
0co

(Qn(0) — On(e))‘ — 0, as n — oo.

Thus 93Q.,,(0)/06,00;00) and 9%0,,(0)/96;00,00), have almost surely the same asymptotic distri-

bution. In view of Theorem 3.6 and (A4), we have almost surely 6,, — 6, G@. Thus VQ,,(0,) =
Opw+ox for sufficiently large n, and a Taylor expansion gives for all r € {1, ..., (p + q) K},

0 0 . A

where 6}, . lies on the segment in R(®P+DK with endpoints 6,, and 6. Using again a Taylor expansion,
Theorem 3.7 and (76), we obtain for all i =1,...,(p+ ¢) K,

¥ (aan )| 1

— 0 a.s. asn — oo.

82@"(9;,?) _ 82Qn(90)
00,00, 00,00,

< supsup
n 0€O

Pl

This, along with (77), implies that, as n — oo

NG (én - 90) = — [V2Qu(00)] fanéQO) +op(1).

From Lemma A.3 and Lemma A.4, we obtain that \/ﬁ(én —0) has a limiting normal distribution
with mean 0 and covariance matrix J~'IJ~t. O
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A.5. Proofs of Theorem 3.10

The proof of Theorem 3.10 is based on a series of lemmas.
Consider the regression of T; on Yy_1,...,T;_, defined by

T
T, = Z D, i Vyi + Urg, Upg L{Yiq-- Ty p}. (78)
i=1
If T4,...,T, were observed, the least squares estimators of ®,. = (®,1---®,,) and ¥, =

Var(u,) would be given by

o . . . 1 <& o g '
i'f = ET,ITET and Eﬂr = E Z (Tt - irlr,t) (Tt - irlr,t>

=

where X, = (T;_;---T;_,),

with by convention Y; = 0 when ¢ < 0, and assuming 2L is non singular (which holds true
asymptotically).

Actually, we just observe Xi,...,X,. The residuals & := et(én) are then available for ¢t =
1,...,n and the vectors T, obtained by replacing 6y by 6, in (20) are available for t = 1,...,n.
We therefore define the least squares estimators of ®, = (9,1 --- ®,.,) and X, = Var(u, ) by

. . . . 1 < /e . . . /
i'f = z'f‘,i e and Ya, = E Z (Tt - irlr,t) (Tt - irlr,t)

where T, , = (T)_, -~ T}_,),

with by convention YT, = 0 when t < 0, and assuming 2?, is non singular (which holds true
asymptotically).
In the sequel, we use the multiplicative matrix norm defined by

Il = Sup, | Az|| = o'/2(A' A), (79)

where A is a C?*2 matrix, ||z||> = 2’ is the Euclidean norm of the vector z € C%*!, and o(-)
denotes the spectral radius. This norm satisfies

| A% < Zaij, when A is a R4*92 matrix (80)
4]

with obvious notations. This choice of the norm is crucial for the following lemma to hold (with
e.g. the Euclidean norm, this result is not valid). Let

Srrx, = ETX,, ¥r=EY,Y}, Ty =EX, Y., ;=

r,t—rt>

S|

t=1

In the sequel, C' and p denote generic constant such as K > 0 and p € (0,1), whose exact values
are unimportant.
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Lemma A.6. Under the assumptions of Theorem 3.10,

A= Il

supmax{HET,IT E}IH} < oo0.
r>1 -

Proof. The proof is an extension of Section 5.2 of [31]. We readily have

1Zx, 2l < [Zx,,, (@, 00 r)Il  and [z 2l < [[Ex ,, (0fpiq k7))l
for any © € RE®*TD" and 0,4 x = (0,...,0) € RPTDK Therefore
0 < [[Var (To)|| = |2, [| < [[Zx,[| <

and
ez ) <22,

)

so that it suffices to prove that sup,-, HEL- H and sup, > HE}I H are finite to prove the result. Let

us write matrix ¥y in blockwise form
Sy, =[Cli — ) o1 Clk) =E(YoY}) € REPTOXKG+) e 7,

Let now f: R — CK(P+a)xK(p+a) he the spectral density of (Yy)iez defined by
1 o :
flw) = Py C(k)e™“* weR.
k=—oc0
A direct consequence of (20) and Lemma A.2 is that f(w) is absolutely summable, and that
sup,cg || f(w)|| < +oo, for any norm ||.|| on CKP+a)*xK(+9) (in particular, one which is indepen-

dent from r > 1). Another consequence is that one has the inversion formula

C(k) = ’ f(x)e~*®dz, Vk € Z. (81)

Last, it is easy to check that f(w) is an hermitian matrix for all w € R, i.e. f(w) = f(w)’, where

/ !
7 is the conjugate of any vector or matrix z with entries in C. Let then 6(") = (5@ s 57@ ) €

RrE@+a)x1 be an eigenvector for Ly , with 5§-T) € REw+ax1 5 — 1 . r, such that [0 =1
and .
6Ty 60 = |Zx || =0 (Zx,), (82)

where || ¥y || is the norm of matrix Xy defined in (79). One then checks that

T / T
(Z 57(77;)61'(771—1)96) f(x)<z 57(;;)@1-("11)1) dz, (83)

m=1 m=1

55y 50 = 37 5 i - o) = /

4,j=1 o

the last equality a direct consequence of (81). f(z) being hermitian, (X,Y) € CKFraxl x
CK+a)x1 s X' f(2)Y defines a semi definite non negative bilinear form, hence one has for
all z € R and X € CK(P+a)x1,

0<X'f(2)X < [If(2)]|.X'X < sgl}gllf(w)ll-X’X

Let us point out that sup,cp ||f(w)| is a quantity which is independent from r > 1. We deduce
from (83) and the previous inequality that

T T / T
5™y 500 < sup || f(w)] (Z 5$:>e“m”””> (Z 5542)6“"11”)@ (84)
w€eR -7

m=1 m=1
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A short computation yields that

s T ! T T
Qi (E 57(;;)61'(771—1)96) (2 : 5577;)61'(771—1);5) dr = § 57(77;)’57(77;) — ||5(r)||2 -1,
T
-7 \m=1

m=1 m=1

which, coupled with (82) and (84), yields that [[Yy || < 27sup,eg || f(w)]| < 400, an upper bound
independent from r > 1. By similar arguments, the smallest eigenvalue of ¥y is greater than a

positive constant independent of r. Using the fact that ||E~}1 |l is equal to the inverse of the smallest
eigenvalue of ¥y , the proof is completed. O

The following lemma is necessary in the sequel.
Lemma A.7. Let us suppose that (A1) and that Stationarity condition (8) for v =16

32 . 32

[T

i=1

t

H (I)(A’L'a 9)

i=1

1
<0, limsup;lnE <0

t—o00

1
(A6)limsup — InE | sup
t—oo 0O

hold. We assume that e, € L* 8. Sequences (e;(0))icz and (e4(0))iez satisfy

1. |[supgee l€0(0)[||;5 < +o00 and sup,>q |[supgee et (0)]|],5 < +o0,

|[supgpee l€:(0) — e:(0)]]|, tends to O exponentially fast as t — oo,

For all oo > 0, t“ supgeg |€:(0) — €:(0)] — 0 a.s. as t — oo,

For all j =1,2,3, ||supgee ||V €0 (0)]]||,, < +00, supis |[supgee [[VIe: (0)]]|], < +oo and
one has t*||supyeg ||V (et — ~st)(6’)||||16/5 — 0, ast — oo for all o > 0.

B Lo e

Proof of Lemma A.7 is similar to the proofs of Lemmas 3.3 and 3.4. [

Denote by T(i) the i-th element of Y.

Lemma A.8. Let (e;) be a sequence of centered and uncorrelated variables, with E|et|8+4y < 0

and Y77 [ag(h)]y/(%”) < oo for some v > 0. Then there exits a finite constant Cy such that for
mi,me=1,...,(p+q)K and all s € Z,

o0

> [Cov{T1(m1)Y1pe(ma), Tisn(my) Trgapn(ma)}] < Ci.

h=—o0

Proof. Recall that

Oe (o)
00,

= Zciyl(ﬂo, A1, A)ey, forl=1,...,(p+ ¢)K, (85)
=0

where ¢; (0o, A1, ..., Ar—;) is defined by (10) and ¢; (6o, Ap—1, ..., Ar—;) = 90c;i (0o, Ap—1, ..., D) /00y,
and with the following upper bound holding thanks to (14):

Esup(ci(ea Atfla R Atfi))Q < sz and Esup(ci,l(oa Atfl; LARE Atfi))2 § Cpla Vi.
0cO 0co

Let

Yigitgt,s.h (M1, m2)(0o) = Elcim, (0o, A1,y Di—i)Cjims (00, Argrs—1, -, Apgs—j)
% ity (00 A1+ s Arsn—ir)irma (B0s Attthots - oy Artsrny)]
x Cov (€t€t7i€t+s€t+sfja €t+h€t+h7i’€t+s+h€t+s+h7j’)
+CoV (Ci,my (B0, Ar—1, .o s At—i)Cjma (00 Atgs—1, oy Digs—j),
Citomy (00s Atgn—1s- s Diphir)Cjrmo (00, Dtpsth—1s - Digstnjr))
XE [er€r—i€t+s€trs—j] E€ttn€ttn—ir€trstn€rsstny]- (86)



Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak ARMARC models 36
The Cauchy Schwarz inequality implies that

[Elcim, (B0, At—1, .o, D) Cjma (00, Digs—1, -y Digs—j)
X it ma (00, D15 - - s Dth—it)Cjrma (00, Disin—ts- -, Arpagn_jr)]| < CpHHH'(87)

In view of (85) and (86), we have

Z Cov{T1(m1)T11s(m2), Tipn(mi)T1qsin(ma)}
h=—o00

[o ol Ol e S ENe ]

= 16 Z ZZZZ%W’J ’.s,h (m1,m2)(0o).

h=—00 i1=0 j=0¢'=0 j'=0

Without loss of generality, we can take the supremum over the integers s > 0, and consider the

sum for positive h. Let mg = m1 A mg and Yy p, = eei—pn, — E(erer—p, ). We first suppose that
h > 0. It follows that

oo o X0

Z Z Z Z |COV (Ci,ml (90, At—h ey At—i)cj,mg (90, At—i—s—h ey At+s—j)7

i=0 j=0 /=0 j'=0
cz-f,m(oo, Atintsee o Desni)eitms O, Avysints- o Aorn )|
< w1+ w2 +v3+vg+ s,

where
oo o0 o0
B . t t+s t+h t+h+s
U1 —’Ul(h) = E E E COV(szl Cjmz Citimy €57 ima ) ’
i>[h/2] 7=04i'=03"=0
0o oo 0o
B t ths Gtth (tthts
va =wva(h) = E E E Cov (szl Cjmar Cir,my €7 mo )
i=0 j>[h/2] i'=0 j/=0
o0 o0 oo
. t t+s t+h t+h+s
vy =wv3(h) = E E E Cov (szl Cjmar Cirymy €57 ima ) ’
=0 j=04'>[h/2] j'=0
o0 o0 o0
. t clts t+h t+h+s
vy =v4(h) = E E g E Cov (Cz m1€jma Cirimy €57 mo ) ’
=0 j=014'=0 j'>[h/2]
(/2] [R/2] [R/2] [h/2]
. t t+s t+h _t+h+s
Vg = U5(h) = ‘COV (ciymlcj7m2’ci’,mlcj/7m2 ) ’
i=0 j=0 =0 j'=0
where

t
Cil,m = Cil’m(eo, At—h ey At—il)-

One immediate remark is that cﬁlym is measurable with respect to A, r € {t —1,...,t — i1 }. Since

o
‘COV (c? ctts ctth cHthS)‘ < Cpttr ity

1,m1 > g,me Y ma g me

we have

oo oo XX

_ t t+s t+h t+h+s h/2
o Y S o (e e ) < g

i>[h/2] j=01i'=0j'=0

for some positive constant ;. Using the same arguments we obtain that v;, ¢ = 2,3, 4 are bounded
by #ip"/?. The a—mixing property (see Theorem 14.1 in [16], p. 210) and Lemmas A.1 and A.7,
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entail that

[h/2] [h/2] [h/2] [h/2]

_ t t+s t+h t+h+s
o= 33 33 [Cov (el el chin,esihl)|

’LO]O’L/ 0 4'=0

Z Z k6 ||C1 mi ;j”i?HQJFV

=1 (4,5,4",5")€Cx

t+h t+h+s
Cirom1 €7 mo

IN

z,m1 7 g,me? T, my Ty ma

v/(24v)
{a (c’? cits chih ctfh“)} )
2+v

where a(U, V') denotes the strong mixing coefficient between the o—field generated by the random
variable U and that generated by V and where

Ci=Ci(h) = {(i,5,7,5)€{0,1,...,[h/2}* ri>j—s, j <i'+s},
Co=Co(h) = {(i,5,7,5)€{0,1,...,[h/2}* ri>j—s, j >i' +s},
Cy=Cs(h) = {(i,5,7,5)€{0,1,...,[h/2}* 1i<j—s, j <i'+s},
Ci=Ca(h) = {(i,5,7,5)€{0,1,...,[h/2]}' i<j—s, j>i'+s}.
ctts t+h _t+hts : :

One checks easily that cz my Cjom, ald € mlc], myare respectively measurable with respect to

A, red{t—i,.. t—i—s—l}andA,«,re{t—z +h,..,t+h+s—1}. For (i,4,7,j") € C1, we have
t—igt—i—s—j,t—i—h—z <t+h+s—j andwethusdeducethat

t t+h _t+h . .
‘a (cf’mlcjchitmlcjtmts)‘ < aa(h—i' —s+1), Vh>i+s—1,
t  tts _t+h _t+hts . .
‘a (ci,mlcjﬂm,ci/7mlcj,7m2 )‘ < aa(—i—h—-s+1), Vh<—i—s+1,

1,my1 3,meo? T my T me

‘a(ct ctts chth ctfh“)‘ < an(0)<1/4, VYh=—i—s+1,...,i+s5—1.

Note also that, by the Holder inequality,

Hci mi .t7t7i2H2+1/ — H lml H4+2y } ;:22”44_21, S CpiJrj'
Therefore
o0
S S et et e, o (et ettt g tat) )

i’ yma g me i,ym1 Y g,me Y my g me

h=0 (4,4,i’,5')€C1

Z piHIti T (z +2s—1+z+2al’/ 2+V)( )) < 00.

1,4,17,j'=0 r=0

IN

Continuing in this way, we obtain that Y, jvs(h) < co. It follows that

[o el O lNe o}

Z Z Z Z Z |COV (Ci,ml (90, At—l, ey At—i)cj,mg (90, At—i—s—l; ey At—i—s—j);

h=0 i=0 j=0i'=0 /=0
Cit .my (90, Atintyeeo s Dirnir)Cjr my (00, Dtgsth—1s- - Dtgstnyjr))]

zzvz . (59)

=01:i=1
The same bounds clearly holds for

0 oo oo oo o

Z Z Z Z Z |COV (ci,ml (90; Atfla ) Atfi)cj,mz (907 AtJrsfl; ) AtJrsfj)a

h=—o00 1=0 j=014'=0 5/=0
Citymy (00, Appn—1, -+ Digph—ir)Cjr o (00, Atgsph—1s - - s Dpgpstrn—yjr))| < 00,
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which shows that

[ olENNe SHENe *HNe o]

Z ZZZ Z |COV C'Lml QO;At 1;-";Atfi)cj,mz(emAtJrsfl;-";AtJrsfj)a

h=—o00 i=0 j=014'=0 5/=0

Citymy (00, Dtph—1, - oy Digh—ir )7 mo (00, Dtgsph—1s - - s Dgstn—jr))| < 00.

A slight extension of Corollary A.3 in [30] shows that

e}

Z |COV (Yl,iYIJrs,j; Y1+h,i’Y1+s+h,j/)| < Q. (89)

h=—o00
Because, by Cauchy Schwarz inequality

IE [er€r—icrsserrs—s]| < Ele]* < o0

by the assumption that E |e;|*"™ < oo and in view of (87) it follows that
D 1Cov {1 (ma) Y igs(ma), Yign(mi)Yiyopn(mo)}|
h=—o00
< ’@ZZZ aEannck Z |Cov (Y1,iY145,55 Yigh,ir Yi4stn,j7)]
i=0 j=0i'=0 j/=0 h=—o0

[o oliNNe OlNe S HNe ¢}

+I€ ZZZ Z Z |COV CIL mi eo,At 17---7At—i)cj,m2(905At+s—17---7At+s—j)7

i=0 j=04¢=07"=0 h=—o00

Citoma (00, Dtgh—1, -+ Dtgph—ir)Cjr ms (00, Dtgsih—1, -+ Digrsph—sr))|

The conclusion follows from (88) and (89). O

Let Sy be the matrix obtained by replacing T; by T in 2?.
Lemma A.9. Under the assumptions of Theorem 3.10, \/7_"||XA)L =Xy I, VTIEy — By, and
NG v — Yy, || tend to zero in probability as n — oo when r = o(n'/3).

Proof. For 1 <mq,ms < K(p+q) and 1 < 71,73 <, the element of the {(r1 — 1)(p + ¢) K + m }-
th row and {(r2 — 1)(p + ¢)K + m2}-th column of ET is of the form n=' Y"1 | Z;, where Z; :=
Ztryrs(m1,ma) = Ty (Mm1)Li—ry (Mm2). By statlonarlty of (Z;), we have

n n—1

1 5 1 3 c

ar (E Zt) = ﬁ (n - |h|) COV (Zt) Zt—h) S 717 (90)
t=1 h=—n+1

where, by Lemma A.8, C is a constant independent of rq,79,m1,mo and r,n. Now using the
Tchebychev inequality, we have

Vg3 >0, P{\/?Hil,. — Xy | > ﬁ} < @E{THiL - ELHQ}-

In view of (80) and (90) we have

E {r||2T - 2T||2} < E{
R K(p+aq)r
< E{THEL - zL||2} <r Y Var (

mi,mo=— 1

[\
an —
I

) < C1K2(p + q)*r3
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as n — 0o when r = o(n'/3). Hence, when r = o(n'/?)

VrlIEr, - Sx |l
VrlIZr — |
The proof is complete. O

We now show that the previous lemma applies when T, is replaced by T,.

Lemma A.10. Under the assumptions of Theorem 3.10, /7|3 , VTI2¢ — x|, and
\/F||f]T + — X | tend to zero in probability as n — oo when r = o(n'/3).

op(1),
op(1) and V7| Sr x,

(1)

Proof. We first show that the replacement of the unknown initial values {X,, u < 0} by zero
is asymptotically unimportant. Let Xy be the matrix obtained by replacing e;(6,,) by €(,) in
2? . We start by evaluating E||2T - ilr |I?. We first note that

1 n
Yy - El,.,n = " E :at—i,t—iﬁml,mz(en)
t=1

fori, i’ =1,...,r and my,ma =1,..., K(p + q) and where

e (én) ey (én)
0, o

€ (én) Oet_ir (én)

*etfi(én)etfi/ (én) 90 90

Qt—i t—i’ ;m1,mo (én) = etfi(én)etfi’ (én)

Using (80), we have

r  K(ptq)

n 2
R S [gzatw,mhm(ém].
t=1

1,4’ =1m1,ma=1

We thus deduce the following L? estimate:

. . r K(p+q) 1 n A 2
1S5, ~ S, 0 3 X |0 et (@)
1,4’ =1m1,ma=1 =
r  K(ptq) .
< Z Z ZHat it—i’ ml,mg(e ) s
1,4/ =1m1,ma=1
by Minkowski’s inequality. Thanks to Holder’s inequality:
Hat it—i ml,mzé Z'At it—i’,my,ma’ with
1 der(0) 2
A imime = |50 leci(8) = ers®)]|| sup |suplec(®)]|| (suplsup | Z4
0cO 4 >0 |[6cO 12 \t>0 |[6eO 12
Oey (0 2
A iivmms = s la@] s ler-o(6) e @] (sup sup | )\ )
0cO 12 0cO 4 \t=>0 0€O 89 12
2
0 Oey (0
A it myms = ( sup [e;(0)] ) sup || =5 (¢ 1(9)—@_1-(9))‘ sup ||sup 52 )‘
0cO 16 0cO 16/5 t>0 ||0€O 16
2
Oer(0) 0 ‘
Azzmm (su (0 ) sup || == (er—i (0) — €,/ (0 .
t—i,t 1,m2 9€g|t( )l y s ol | T eeg ao(t (0) —er—ir(0)) 1o/s
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We deal with A} as A3 and A% are dealt

t—i,t—i/,my,ma and'At i, t—4 ,m1,ma?
with similarly. In view of Lemma A.7, one has

t—i,t—i’,my,mo t—i,t—i',my,mo

1 & 1 &
— A, Citmym, S K1 sup |es—;(60) — er—; (0
n;t,t,l, ln;%@'t() t()|4
k1 [ — 1 r r
< — sup |e (6) — e (0 + 7 ||sup |eo (0 :O(—+—):O—,
n(; sup ex(6) = (®)]| +|jsup eo(0) ) —+-)=0(5)

independent from 4, i’, m; and msy. Similarly, one has

1 1< )
- ZAffi,tfi/,ml,mg < K3— Z sup 90 (et—i(0) — €ti(9))‘
nia ni= llece 16/5
<t (X |5 0 - o)
(Z 0cO 16/5
1
+r supaeo—() O<_+Z>O(Z)’
0co 00 16/5 n on n

becanse S, [supgee 19((0) — (0))/90ll 5, < 0 and [supace, 1960 (4) 8] < o0 (soe
Lemma A.7, Point 4). Gathering A} A? A2 and Azlfi,tfi/

‘ t—i,t—i’ ,mq1,mo? t—i,t—i’ ,;my,mo? Y \t—i,t—1i/ ;my,mo ;M1 ,ma)?
we arrive at
A A r K(ptq) ’ ry 2 r4
B8y Se < XS (PN A ] mo(2{2)) =0 (%).
i,i'=1m1,ma=1 t 1j=1
We thus deduce that
\/_HE -% 1, I =op(1), when r =r(n) =o (n2/5) . (91)
We now prove that
ﬁHf)I - 21” =op(1), when r = r(n) =o (n1/3) )
Taylor expansions around 6, yield
A A der(0,)  Oes(O ;
l02) — o) < o [on = o], | a0 - 2O o -] o2

with 7y = supgeg ||0€:(0)/00)||, s¢(m) = supgee Ha?et(e)/aoaomu where m = m; = mgy. Define
Z; as in the proof of Lemma A.9, and let Z;, be obtained by replacing Y;(m) by T;,(m) =
€(0,)0€(0,,)/00,, in Z;. Using (92), for 4,7/ =1,...,r and my,my = 1,..., K (p + q), we have

dei_i(0,) Dev_sr (0r) der_i(00) Bey_ir (0)

er—i(On)er—i (0r) —€t—i(0o)er—ir(0o) < ZBt it—itmymae (93)

89m1 69m2 89m1 69m2
with
Jei—i(0) Oer—ir (0)
Bl = 9 — 9 H i’ 0
t—i,t—i’ ,my,mao Tt—i 0 Sup|€t ( )lslelg aoml Slelg aamz
. Oer—i(0) Oer—i ()
BQ = Y 0 —9 H —1 0 -
t—i,t—i’,m1,ma Ti—i " 0 Slelg|€t z( )lglelg aorm Slel@ aamz
e —q 0
BY s v = ses(my) | supler—i(0)| sup lec—r(6)] sup \—“'
9co 9cO 9co| O00m,
86 —3 9
Bf ittty = St—ir(m2) H sup |e:—;(0)] sup |et—ir (9)| Sup‘ t—i( )‘ )
9co 9co 9co| O0m,
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We deal with B} and B2 as B and B# are dealt

t—i,t—i’,mi,mo tztzm1m27

with similarly. We note first that, for all i = 1,.

- 0
—Zsup|et i = ! Z sup|et = — Z sup|et | + = Zsup|et
’L t 1— ’L

t—i,t—i’,mi,ma t—i,t—i’,m1,mo

1—10€© n,
< LS @)+ Z e
< —-= sup € (0 sup |e; (0
nr, a7, n =1 0€0
r 4
= (E + 1) < 228'60(0” +op,s,(1)) : (94)
4

by ergodic Theorem. Similarly to (94), one has

PO < (20 (o

By the Cauchy-Schwartz inequality and using (94) and (95), we have

n

—Z

96@

860 (9)
00,

+ op.s.m) . (95)
4

96@

K(p+q) n

1
E E n E Bt—i,t—i’,ml,mg
t=1

7,4/ =1m1,ma=1

7“2

IN

0, — HOH (% + 1)3 (k1 +0ps.(1))

H O(1) (k1 +0p.5.(1)),

when 7 = o (nl/s) and for some constant x; > 0. Similar inequalities hold for Bt it—it mymy 1OT
j =2,3,4. We thus deduce from (80) and (93) that
N A 9 2
IS, ~Sr P < | 0= 1). (96)
Since \/n (én — 90) converges in distribution, a tightness argument yields H =Op (n’1/2)
and hence from (96), we obtain for r = o(n'/?)
Vrl[Sx, =2, || = oe(1). (97)

By Lemma A.9 , (91) and (97) show that ﬁ”f]T — Yy [ = op(1). The other results are obtained
similarly. O

Write @ = (P; - - - ®,.) where the ®;’s are defined by (22).
Lemma A.11. Under the assumptions of Theorem 3.10,

Vil er - 2,[ =0,

as r — O0.

Proof. Recall that by (22) and (78)
o0
T = &0, tua =20+ Y B i tu= 20, Fur,
i=r+41
Hence, using the orthogonality conditions in (22) and (78)

@ -®, = T,y Ny (98)

T T
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where ¥,- v = Eu;, X} ;. Using arguments and notations of the proof of Lemma A.8, there exists
a constant C5 independent of s and my, my such that

o0
E|T1(mi)Yips(ma)] < Cv Y p" 2 fle]|f < Co.
h1,ha=0
By the Cauchy-Schwarz inequality and (80), we then have
[Cov (Ti—ron, X, 4) || < Cor' 2K (p + q).

Thus,
IZurx | = 1 D0 EY X< D I@eiall [|Cov (Temron, L, ) |
i=r+1 h=1
o0
= 023 @l (99)
h=1
Note that the assumption [|[®;]| = o (i72) entails 7> ;" | @44l = o(1) as r — co. The lemma

therefore follows from (98), (99) and Lemma A.6. O

The following lemma is similar to Lemma 3 in [8].

Lemma A.12. Under the assumptions of Theorem 3.10,
VIS =2 = or(1)

as n — oo when r = o(n'/?) and r — occ.

Proof. We have

T

Ei,l, -7t

\
—
™M
=
\
™
SL
+
™
BL
——
—
g/
;_%
™
;_%
——
\g|
Sl

IN

(

Iterating this inequality, we obtain

S—1 —1
|85 -2

S

Thus, for every € > 0,

P(vr||Eg =2 > )

2

=] [Br. ==

IN

Pr >eand |95 -3y | ||l2g!] <1

=

S, v e

> 1)

€

I |

P|vi[Ss, - ox,

> 2
R IS

_1) — o(1)

by Lemmas A.9 and A.6. This establishes Lemma A.12. a

w2 (V8 - | 2 o5
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Lemma A.13. Under the assumptions of Theorem 3.10,

Vvr||e, -2,

= op(1)

as 7 — oo and r = o(n'/?).

Proof. By the triangle inequality and Lemmas A.6 and A.12, we have

$ot
|5z

= Hzf - Ei,l.H + HZEIH = Op(1). (100)

Note that the orthogonality conditions in (78) entail that ®, = Yy y_ Eil. By Lemmas A.6, A.9,
A.12, and (100), we then have
T,X, T,

\/;Hér _ir = \/7_6 X

= V7[[(Brs, - Pra) 85+ e, (871 - 57| = ex0).

=

DIFPRD M —ET7LE}1H

O
Proof of Theorem 3.10. In view of (21), it suffices to show that ®, (1) — ®(1) and 3, — %,
in probability. Let the r x 1 vector 1, = (1,...,1)" and the 7(p + ¢)K X (p + ¢)K matrix E, =
Iiprqx ® 1, where @ denotes the matrix Kronecker product and I; the d x d identity matrix.
Using (80), and Lemmas A.11, A.13, we obtain

T T o0
&, -2)| < [ (Bri- )|+ X @ni-)| 4| 3 @
i=1 i=1 i=r+1
R (o)
= (& -2) B | +l@ -2)E ) +| 3 @
1=r+1
R (o)
< Vorokvi{|e -2+ 12 -20)+| Y e

i=r+1

Now note that

r ,ir
and, by (22)
[ee]
Yy = Buwul=FEuY,=E { <Tt — Z @-L_i) T;}
1=1
= Yy - Y BEYT, Y =%y - &%y — Y HEYT T
1=1 1=r+1
Thus,

..

[£5 -2 - (2 - 2r) 25z

) (S y ~ Ty )+ Y BEYLT]
i=r+1

[ =+ (& - 21) (S5 1, k)|

o (@ -2 st |+ o (%5, — x|

IN

o0
> BEY, T
1=r+1

+ : (101)
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In the right-hand side of this inequality, the first norm is op(1) by Lemma A.9. By Lemmas A.11
and A.13, we have |[®, — 7| = op(r~/2) = op(1), and by Lemma A.9, ||XA]’TI — E&,ITH =

op(r~/2) = op(1). Therefore the second norm in the right-hand side of (101) tends to zero in
probability. The third norm tends to zero in probability because ||®, — ®%|| = op(1) and, by
Lemma A.6, [|¥% y || = O(1). The fourth norm tends to zero in probability because, in view of

Lemma A.9, ||XA]’T + —Zyx [l =op(l), and, in view of (80), [@r]? < 3002, Tr(®;®;) < oo. Clearly,

the last norm tends to zero, which completes the proof. [

Acknowledgements. The authors wish to acknowledge the support from the "Séries tem-
porelles et valeurs extrémes : théorie et applications en modélisation et estimation des risques"
Projet Région grant No OPE-2017-0068.

References

[1] AMENDOLA, A. AND FrRANCQ, C. (2009). Concepts of and tools for Nonlinear Time-Series
Modelling. Wiley-Blackwell, Chapter 10, 377-427.

[2] ANDERSON, P. L. AND MEERSCHAERT, M. M. (1997). Periodic moving averages of random
variables with regularly varying tails. Ann. Statist. 25, 2, 771-785.

[3] ANDREWS, B., DAvrs, R. A., AND BREIDT, F. J. (2006). Maximum likelihood estimation for
all-pass time series models. J. Multivariate Anal. 97, 7, 1638—1659.

[4] ANDREWS, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance
matrix estimation. Econometrica 59, 3, 817-858.

[5] AZRAK, R. AND MELARD, G. (1998). The exact quasi-likelihood of time-dependent ARMA
models. J. Statist. Plann. Inference 68, 1, 31-45.

[6] AZRAK, R. AND MELARD, G. (2006). Asymptotic properties of quasi-maximum likelihood esti-
mators for ARMA models with time-dependent coefficients. Stat. Inference Stoch. Process. 9, 3,
279-330.

[7] Basawa, I. V. axD LunD, R. (2001). Large sample properties of parameter estimates for
periodic ARMA models. J. Time Ser. Anal. 22, 6, 651-663.

[8] BERK, K. N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2, 489-502.
Collection of articles dedicated to Jerzy Neyman on his 80th birthday.

[9] BiBI, A. AND FrancqQ, C. (2003). Consistent and asymptotically normal estimators for
cyclically time-dependent linear models. Ann. Inst. Statist. Math. 55, 1, 41-68.

[10] BiLLio, M., MoONFORT, A., AND ROBERT, C. P. (1999). Bayesian estimation of switching
ARMA models. J. Econometrics 93, 2, 229-255.

[11] BOLLERSLEV, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econo-
metrics 31, 3, 307-327.

[12] BouBACAR MAINASSARA, Y., CARBON, M., aND Francq, C. (2012). Computing and
estimating information matrices of weak ARMA models. Comput. Statist. Data Anal. 56, 2,
345-361.

[13] BRANDT, A. (1986). The stochastic equation Y,,11 = A,Y,, + B, with stationary coefficients.
Adv. in Appl. Probab. 18, 1, 211-220.

[14] BROCKWELL, P. J. AND Davis, R. A. (1991). Time series: theory and methods, Second ed.
Springer Series in Statistics. Springer-Verlag, New York.

[15] DAHLHAUS, R. (1997). Fitting time series models to nonstationary processes. Anmn.
Statist. 25, 1, 1-37.

[16] DAVIDSON, J. (1994). Stochastic limit theory. Advanced Texts in Econometrics. The Claren-
don Press, Oxford University Press, New York. An introduction for econometricians.

[17] Davypov, J. A. (1968). Convergence of distributions generated by stationary stochastic
processes. Theor. of Proba. and Appli. 13, 2, 691-696.

[18] DEN HAAN, W. J. AND LEVIN, A. T. (1997). A practitioner’s guide to robust covariance ma-
trix estimation. In Robust inference. Handbook of Statist., Vol. 15. North-Holland, Amsterdam,



Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak ARMARC models 45

299-342.

[19] ENGLE, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Fconometrica 50, 4, 987-1007.

[20] FrRANCQ, C. AND GAUTIER, A. (2004a). Estimation of time-varying ARMA models with
Markovian changes in regime. Statist. Probab. Lett. 70, 4, 243-251.

[21] FrAaNCQ, C. AND GAUTIER, A. (2004b). Large sample properties of parameter least squares
estimates for time-varying ARMA models. J. Time Ser. Anal. 25, 5, 765—783.

[22] FrRANCQ, C. AND RoussiaNoL, M. (1997). On white noises driven by hidden Markov chains.
J. Time Ser. Anal. 18, 6, 553-578.

[23] FrRANCQ, C. AND RoussiaNorL, M. (1998). Ergodicity of autoregressive processes with
Markov-switching and consistency of the maximum-likelihood estimator. Statistics 32, 2, 151—
173.

[24] FrRANCQ, C. AND ZAKOTAN, J.-M. (1998). Estimating linear representations of nonlinear
processes. J. Statist. Plann. Inference 68, 1, 145-165.

[25] FrRANCQ, C. AND ZAKOTAN, J.-M. (2001). Stationarityof multivariate markov-switching arma
models. J. Econometrics 102, 2, 339-364.

[26] FrRANCQ, C. AND ZAKOIAN, J.-M. (2002). Autocovariance structure of powers of switching-
regime ARMA processes. ESAIM Probab. Statist. 6, 259-270. New directions in time series
analysis (Luminy, 2001).

[27] FrANCQ, C. AND ZAKOIAN, J.-M. (2005). Recent results for linear time series models with
non independent innovations. In Statistical modeling and analysis for complex data problems.
GERAD 25th Anniv. Ser., Vol. 1. Springer, New York, 241-265.

[28] FrRANCQ, C. AND ZAKOIAN, J.-M. (2007). HAC estimation and strong linearity testing in
weak ARMA models. J. Multivariate Anal. 98, 1, 114-144.

[29] FrRANCQ, C. AND ZAKOIAN, J.-M. (2010). GARCH models. John Wiley & Sons, Ltd.,
Chichester. Structure, statistical inference and financial applications.

[30] FrAaNCQ, C. AND ZAKOIAN, J.-M. (2010). GARCH Models: Structure, Statistical Inference
and Financial Applications. Wiley.

[31] GRENANDER, U. AND SZEGO, G. (1958). Toeplitz forms and their applications. California
Monographs in Mathematical Sciences. University of California Press, Berkeley-Los Angeles.
[32] HAMILTON, J. D. (1988). Rational-expectations econometric analysis of changes in regime:
an investigation of the term structure of interest rates. J. Econom. Dynam. Control 12, 2-3,

385-423. Economic time series with random walk and other nonstationary components.

[33] HaMILTON, J. D. (1989). A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica 57, 2, 357-384.

[34] HAMILTON, J. D. (1990). Analysis of time series subject to changes in regime. J. Economet-
rics 45, 1-2, 39-70.

[35] HAMILTON, J. D. (1994). Time series analysis. Princeton University Press, Princeton, NJ.

[36] HAMILTON, J. D. AND SUSMEL, R. (1994). Autoregressive conditional heteroskedasticity and
changes in regime. Journal of econometrics 64, 1, 307-333.

[37] HERRNDORF, N. (1984). A functional central limit theorem for weakly dependent sequences
of random variables. Ann. Probab. 12, 1, 141-153.

[38] JoNEs, G. L. (2004). On the markov chain central limit theorem. Probab. Surv. 1, 299-320.

[39] KM, C.-J. AND KiM, J. (2015). Bayesian inference in regime-switching ARMA models with
absorbing states: the dynamics of the ex-ante real interest rate under regime shifts. J. Bus.
Econom. Statist. 33, 4, 566-578.

[40] NEWEY, W. K. AND WEST, K. D. (1987). A simple, positive semidefinite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica 55, 3, 703-708.

[41] NicHoLLs, D. F. AND QUINN, B. G. (1982). Random coefficient autoregressive models: an
introduction. Lecture Notes in Statistics, Vol. 11. Springer-Verlag, New York-Berlin. Lecture
Notes in Physics, 151.

[42] RomANO, J. P. AND THOMBS, L. A. (1996). Inference for autocorrelations under weak
assumptions. J. Amer. Statist. Assoc. 91, 434, 590-600.



	Introduction
	Model and assumptions
	Case of general correlated process (t)tZ
	Stationarity
	Preliminary results
	Asymptotic properties
	Estimating the asymptotic variance matrix
	Testing linear restrictions on the parameter

	Examples
	Independent and identically distributed process (t)tZ: the ARMARC(1,0) model
	Modulating Markov chain

	Numerical illustrations
	Proofs
	Proofs of Proposition 3.1 and Lemma 3.3
	Proofs of Lemma 3.4 and Proposition 3.5
	Proofs of Proposition 3.6 and Theorem 3.7
	Proofs of Theorem 3.8
	Proofs of Theorem 3.10

	References

