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Abstract: In this paper we derive the asymptotic properties of the least squares esti-
mator (LSE) of random coefficient autoregressive moving-average (RCARMA) models
under the assumption that the errors are uncorrelated but not necessarily independent.
Relaxing the independence assumption considerably extends the range of application of
the class of RCARMA models. Conditions are given for the consistency and asymptotic
normality of the LSE. A particular attention is given to the estimation of the asymp-
totic variance matrix, which may be very different from that obtained in the standard
framework. A set of Monte Carlo experiments is presented.
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1. Introduction

Since the works of |26, 27| and [35], the time series models with time-varying coefficients have
become increasingly popular. In statistical applications, a large part of the literature is de-
voted to the non-stationary autoregressive moving-average (ARMA) models with time-varying
parameters (see [3, 4, 7, 12]), see also the class of ARMA models with periodic coefficients
(for instance |1, 5]). But the most popular class deals with the treatment of regime shifts
and non-linear modeling strategies. For instance, a Markov-switching model is a non-linear
specification in which different states of the world affect the evolution of a time series (see,
for examples, [18, 28, 30]). The asymptotic properties of Markov-switching ARMA models are
well known in the literature (see, for instance, [8, 19, 21, 22, 33] or [29]).

The fact that changes in regimes may be very important for the evolution of interest rates
has been emphasized in a number of recent studies. Our attention here is focused on the
class of random coefficient ARMA (RCARMA) models with recurrent but non necessarily
periodic changes in regime. We consider a time series (X;);cz exhibiting changes in regime at
known dates and we suppose that we have finite regimes. Contrarily to the famous Markov-
switching approach, we assume that the realization of the regimes is observed. For such models,
[16, 17] gave general conditions ensuring consistency and asymptotic normality of least squares
(LS) and quasi-generalized least-squares (QGLS) estimators under the assumption that the

1


mailto:yacouba.boubacar$_$mainassara@univ-fcomte.fr
mailto:lrabehas@univ-fcomte.fr

Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak RCARMA models 2

innovation processes is independent. This independence assumption is often considered too
restrictive by practitioners. We considerably relax this independence assumption on the errors
to extend the range of application of the RCARMA models.

This paper is devoted to the problem of estimating RCARMA representations under the
assumption that the errors are uncorrelated but not necessarily independent. Thus, the main
goal of our paper is to complete the above-mentioned results concerning the statistical anal-
ysis of RCARMA models with uncorrelated but not necessarily independent innovation, by
considering the estimation problem under general error terms. We establish the asymptotic
distribution of the LS estimator of RCARMA models when the linear innovations are not
necessarily independent, but are strongly mixing.

The paper is organized as follows. Section 2 presents the RCARMA models that we consider
here. In Section 3, we established the strict stationarity condition and it is shown that the LS
estimator (LSE) is asymptotically normally distributed when linear innovation process (€;)
satisfies mild mixing assumptions. The asymptotic variance of the LSE may be very different
in the weak and strong cases. Particular attention is given to the estimation of this covariance
matrix. Modified version of the Wald test is proposed for testing linear restrictions on the
parameters. In Section 4, we present two examples of weak RCAR(1) models with iid and
correlated realization of the regimes. Numerical experiments are presented in Section 5. The
proofs of the main results are collected in the appendix.

2. Model and assumptions

Let (A¢)iez be a stationary ergodic observed process with values in a finite set S of size
Card(S) = K. We consider the random coefficient ARMA(p, q) process (X;)iez defined by

X, — Zp: A (A)Xi_ i =€ — Zq: b (A¢)er—; (1)

i=1 j=1

where the linear innovation process € := (& )icz is assumed to be a stationary sequence satifies
E(e) =0, E(eep) = 0*1j—y). Under the above assumptions, the process e is called a weak
white noise.

This representation is said to be a weak RCARMA (p, q) representation under the assump-
tion that € is a weak white noise. For the statistical inference of ARMA models, the weak white
noise assumption is often replaced by the strong white noise assumption, i.e. the assumption
that € is an independent and identically distributed (iid for short) sequence of random vari-
ables with mean 0 and common variance. Obviously the strong white noise assumption is more
restrictive than the weak white noise assumption, because independence entails uncorrelated-
ness. Consequently weak RCARMA representation is more general than the strong one.

The unknown parameter of interest denoted 6y := (aY(s), b?(s), i=1,...,p,j=1,...,q, s €
S) lies in a compact set of the form

©c {(ai(s)’bj(s)’ t=1,...,p,5=1,...,q, s€ S) € R(p+q)XK} )
with non empty interior, within which we suppose that 6 lies. The parameter o is considered
as a nuisance parameter. In order to estimate 6, one thus has at our disposal observations
(Xt,Ay), t =1,...,n, from which one aims at building an strongly consistent and asymptoti-
cally normal estimator 6,,. The strong mixing coefficients (az(h))nez of a stationary process



Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak RCARMA models 3

(Zt)i1ez are defined by

az(h) = sup IP(ANB) —P(A) -P(B)], (2)

AeFt , BEF,

where F' ., and F¥, be the o-fields generated by {Z,, u < t} and {Z,, u > t + h},
respectively. Let us suppose the following assumptions.
(A1) The processes (€;)iez and (Ay)iez are ergodic sequences, strictly stationary,
independent from each other.
(A2) For some v > 0, the processes (& )tez and (Ay)iez satisfy Y 0 046(h)ruF2 < 400
and 3°° aa (k)72 < 400,
(A3) The process (e;)iez also satisfies E[|e;[2* 4] < +o0.
(A4) We have 6 6(2), where © denotes the interior of ©.

We introduce the following notation so as to emphasize dependence of unknown parameter g in
(1). For all 6§ = (ai(s),bj(s), i=1,...,p,j=1,...,q, s€S) € O, welet a; := (a;(s),s €S),
i=1,...,pand b :== (bj(s),s € S), j =1,...,q. Let e(s) be the row vector of size 1 x K
such that the ith component is Ij4—;- Then one notices that Vt € Z

a;(Ay) =< e(Ay),a; >:= g7 (As,0), bj(A) =< e(At),ﬂ >i= g?(At,G), i1=1,...,p,j=1,...

where < -, - > denotes the scalar product between vectors of appropriate dimension. Thus (1)
reads

p q
Xi =Y gH(AL00) Xy = — Y gi(As,00)er ;. (3)
i=1 =1

Let us furthermore note that for all 4, j and s, g¢(s, ) and g?(s, 0) are linear in 0. We thus
introduce matrices

gi(s,00) - - 93(8,90) gllv(s’,g) 93(5’9)
0 0
A(S) = . s B(S,@) =
Ip—l : Iq—l :
0 0

for all s € S, 0 € ©. A remark that will prove useful later on is that 6 — B(s, ) is, for all
s € 8§, an affine function.

We next introduce the residues corresponding to parameter § € © as the stationary process
(€:(0))iez satisfying

q p
Z (Ap,O)er(0) = Xp = > gf (A, 0) X3, VEEZ. (4)
j=1 i=1

This process is unique in L2, as explained in Proposition 3.1. In particular, one has (&;(6p))icz =
(€t)tez, the initial white noise. We next define the approximating residue as the process
(et(0))iez verifying

q p
Z (A, 0)er(0) = Xe =Y gl (ALO)X,, VtEL (5)
: =1
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where values corresponding to negative indices are set to zero, i.e. processes (e:(0))tez and
(X)tez verify
€t(0) = 0, t < 0,
X = Xt]l[t21}a vVt € Z.
The basic idea behind definition of (e4(#))iez is that, given a realization X3, Xs,..., X, of

length n, €/(0) is approximated, for 0 < ¢t < n, by e;(0). Next, we define the cost function
1<,
Qn(0) =~ _ei(0). (6)
t=1

Finally, we let for all n € N the random variable én the least squared estimator that satisfies,
almost surely,

n én = mi n(0 >
Qulln) = win Qu(0) )
We finish this section by giving some notation. In the following, ||.|| will denote the norm of

matrices or vectors of appropriate size, depending on the context, whereas [|.|[, will denote

the LP norm defined by || X]||, = [E(|X|p)]1/p for all random variable X admitting a p—th
order moment, p > 1. For all matrix M, M’ will denote its transpose. For all three times

differentiable function f : ©@ — R, we will let Vf(0) = (%f{@))k Lo K V2f(0) =
=1,...,(p+q

02 3 _ 03 :
(89i86jf<9))i,jz1,...,(p+q)[( and V°f(0) = (ageagiagjf(9))£7i7j:1’m’(p+q)K respectively the first,
second and third order derivatives with respect to the variable 6.

3. Case of general correlated process (A¢)tez

In this section, we display our main results.

3.1. Stationarity

A first step consists in giving sufficient conditions such that processes (X;)icz and (e:(0))ez
defined in (1) and (4) are stationary and admits moments of order 2. Let ||.|| be any norm on
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the set of matrices, and let us introduce the following notation

er = (1,0,...,0) € RP*Y,
ep+1 = (ept1i)imlptes Ep+11 =1, €pp1i=Lmpia), i1=2,...,p+4¢,
M = (mij)i,jzl,...,p+q7 mi ;= ]l[z':qul,j:l or i=1,j=1]
g?(s,@) 93(379)
B(s,0) 0
O(s,0) = , sS€S8, 00,
0 0
0 I, 1 :
0
gll)(8700) 92(8700)
A(s) 0
U(s) := , seS8
0 0
0 I, :
0

As for B(s,0), one also notices in particular that  — ®(s,6) is an affine function for all s € S.
One has the following result.

Proposition 3.1. Let us suppose that

t 8 t 8
1 1
limsup — InE | sup H D(A;,0) <0, limsup—InE H U(A;) <0, (8)
t—oo t 00 ||y t=voo t i=1
then for all t € 7 and 6 € ©, the unique stationary solution to (4) is given by
Gt(e) = Z Ci(07 Atv s 7At—’i+1)€t—i7 where (9)
=0

7 k—1 i—1
CZ‘(@,At,... 7At—i+1) = €1 CD(At_j,H)M H \I/(At,j/)e;_,_l, (10)

k=0 j=0 =k

with the usual convention Hi = 1ifi > j. Furthermore, for each t € Z, sequence (¢;(0, A, ..., Ar—it1))ieN
18 unique in the set of sequences of random variables

H = {(di)ieN independent from (€)iez s.t. E (Z d12> < +OO} .

1=0

Let us note that decomposition (9) is a slight generalization of the Wold decomposition of
stationary processes which are squared integrable, see Theorem 5.7.1 p.187 of [11]. Also note
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that stability condition (8) is reminiscent of the one in |21, Theorem 1] (see also [10]); it is
however stronger as we need integrability conditions for process (e:(6))iecz (as well as on its
derivatives), uniformly on 6 € ©.

Corollary 3.2. The process (e(0))iez defined by (5) has the following decomposition

e(0) = Zcf(t, 0, Mgy .., ANy_iy1)€—i, t>p+1, where (11)
=0
min(t—1,4) k-1 i—1
S0, 0. A1) = > e [[ A, 0OM ] T(A—)e) 0, (12)
k=0 j=0 j'=k

where matriz M and vectors e, ept1, are defined at the beginning of the section.

Lemma 3.3. Random coefficients ¢;(0, Ay, ..., Ny_iy1), i € Z, t € Z, verify the following
properties:

o O~ Ci(e, At, e aAtfiqu)} 0 — V[Cl(e, At, e ,At,i+1)]2 and 6 — VQ[CZ'(H, At, e ’At7i+1)]2

are a.s. polynomial functions,
e Let us assume, instead of (8), the stronger assumption

. . Av+8 . ; Av+8
(A5)limsup —InE | sup H D(A;,0) <0, limsup—InE H U(A;)
t—00 0€0 | |;] too i=1
holds. Then one has
limsup; o T InE (supgeplci (0, A, ..., A7) ) < 0, 3
limsup; ., 1 InE (Supee@ ij[ci(H, AV ,Al)]H2V+4) < 0, j=2,3. (13)
Furthemore, coefficients c§(t,60,M¢—1,...,A¢—;), i € Z, t > 0, satisfy
lim SUP; 00 % In SUP¢>q E (SHPGEG[Cf(ta 67 Atv SRR At—’i+1)]2y+4) < 07
. i 2v+4 .
limsup; o, ¥ Insup,>q E (sup9€@ [V (t, 60, A, ..., Ag—ig)]]| * ) < 0, j=2,3.
(14)
3.2. Preliminary results
We define the cost function
1 n
On(0) =~ ; € (0). (15)

Similarly to én, let us introduce estimator 6, the least squared estimators corresponding to
the cost function O,,(6):

The following set of lemmas and propositions are necessary in order to prove the main consis-
tency and normal asymptotics results for estimators 6,, and 6,, defined in (16) and (7). They
also justify that e;(0) asymptotically behaves as €,(6) as t — oo for all 6.

<0
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Lemma 3.4. Let us suppose that (A1) and that Stationarity condition (8) hold. Sequences
(€:(0))tez and (e:(0))tez satisfy

supgee leo(@)ll, < +00 and supyso lsupgce @)l < +oo,
||[supgee |€:(8) — e(0)]||, tends to O exponentially fast as t — oo,

For all o > 0, t“supycg |€c(0) — e:(0)] — 0 a.s. as t — oo,

For all j = 1,2,3, ‘supge@ ijeo(ﬁ)m|4 < 400, sup;> Hsupee@ ijet(ﬁ)HH4 < 400
and one has t* [[supgee ||V (e — e) (O)|lllg /5 — 0, t* |[suppee [V (ee — ) O[], 5 —

0 and t ||supgee || V3 (er — et)(H)HHl — 0 as t = oo for all o > 0.

S

Proposition 3.5. Under the same assumptions in Lemma 3.4, we have that, for all a € (0,1),

1. supyeg |@Qn(0) — On(0)| converges a.s. to 0, and n® |[supycg |Qn(0) — On(0)|]|; tends to
0 as n — oo,

2. supgeo ||V (Qn(0) — 0,(0))]| and suppeg ||V (Qn(0) — 0n(0))]|, for j = 2,3 converge
a.s. to 0,
8. n®||supgeg |V(Qn — On)(0)|||; — 0 as n — oo.

3.3. Asymptotic properties
Proposition 3.6. Let (A1), (A4) as well as stationarity condition (8) hold. Estimator 6,
defined by (16) converges a.s. towards 6.

Theorem 3.7 (Consistency of estimator). Let (A1), (A4) as well as stationarity condition
(8) hold. Estimator 0,, defined by (7) converges a.s. towards 0.

Theorem 3.8 (AsymptoticAnormality for the estimator). Let us suppose that assumptions
(A1) to (AB) hold, and let 0,, defined in (7). We have the following Central Limit Theorem

Jn (én _ 90> DN (0,Q:=J TN, 0 oo, (17)
matrices I and J being defined as
J = J(0o) =2E (Ve(00)[Ver(60)]') (18)
I = I(6) =4 i E (et(00)er—k(00) Ver(00)[Ver—1(00)]')
. k=—00
= Z Cov(Yy, Ti_r), where (19)
T, = Ezg;)) = 2¢¢(00) Ver(0o). (20)

Remark 3.9. In the strong RCARMA case, i.e. when (A1) is replaced by the assumption
that (e) is iid, we have I = 2J, so that = 2J!. In the general case we have I # 2.J.
As a consequence the ready-made software used to fit RCARMA do not provide a correct
estimation for weak RCARMA processes.

3.4. Estimating the asymptotic variance matriz

Theorem 3.8 can be used to obtain confidence intervals and significance tests for the param-
eters. The asymptotic variance {2 must however be estimated. The matrix J can easily be
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estimated by its empirical counterpart
ZVet V[ Ve (6,)]'-

In the standard strong RCARMA case (2 = an* !is a strongly consistent estimator of . In the
general weak RCARMA case this estimator is not consistent when I # 2.J (see Remark 3.9). So
we need a consistent estimator of I, defined by (19). The estimation of this long-run variance
I is more complicated. In the literature, two types of estimators are generally employed: the
nonparametric kernel estimator, also called Heteroskedasticity and Autocorrelation Consistent
(HAC) estimators (see [2] and [34] for general references, and [23] for an application to testing
strong linearity in weak ARMA models) and spectral density estimators (see e.g. [6] and [15]
for a general references and [9] for estimating I when 6 is not necessarily equal to 6p).

In the present paper, we focus on an estimator based on a spectral density form for I.

Interpreting (27)~ 11 as the spectral density of the stationary process (Y;) evaluated at
frequency 0 (see [11], p. 459) of the process (20). This approach, which has been studied by
[6] (see also [15]), rests on the expression

I=& Y1)z, ®'(1) (21)

when (Y;) satisfies an AR(o0) representation of the form

®(L)Y, =T + Z QT = uy, (22)
i=1

where uy is a (p+¢) K-variate weak white noise with variance matrix ¥,,. Let T, be the vector
obtained by replacing 6y by 6, in T; and ® r(2) = Lpyqr + Zl 1 P, Zz where <I>T Tye-- <I>M
denote the coefficients of the least squares regression of T; on Ty 1y Tt - Let 4,4 be the
residuals of this regression, and let EuT be the empirical variance of @, 1,. .., Upy.

In the framework of linear processes with independent innovations, Berk [6] showed that
the spectral density can be consistently estimated by fitting autoregressive models of order
r = r(n), whenever r — oo and 73/n — 0 as n — co. It can be shown that this result remains
valid for the linear process (Y1), though its innovation (u;) is not an independent process.
Another difference with [6], is that (T;) is not directly observed and is replaced by ().

We are now able to state the following theorem.

Theorem 3.10. In addition to the assumptions of Theorem 3.8, assume that the process (Y;)
defined in (20) admits an AR(co) representation (22) in which the roots of det ®(z) = 0 are
outside the unit disk, ||®;]| = o(i~2), and ¥, = Var(u;) is non-singular. Moreover we assume
that E |e;[*™ < 0o and 357 o {ac (k) /%) < oo and Y32 ({aa(k)}/CH) < oo for some
v > 0. Then the spectral estimator of I

PP =@ (1), &711) = 1
in probability when r = r(n) — oo and r3/n — 0 as n — oo.
The matrix 2 is then estimated by a "sandwich" estimator of the form

O = J P T = @01 (1)8, @ (1).

T
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3.5. Testing linear restrictions on the parameter

It may be of interest to test sg linear constraints on the elements of 6y. Let R be a given
matrix of size so X (p + ¢)K and rank sg, and let o and 7 be given vectors of size sy such
that r; # rg. Consider the testing problem

Hy : Rby = rg against Hy: ROy =rq. (23)

The Wald principle is employed frequently for testing (23). We now examine if this principle
remains valid in the non standard framework of weak RCARMA models.

Let Q = J~11J!, where J and I are consistent estimator of J and I, as defined in Section
3.4. Under the assumptions of Theorems 3.8 and 3.10, and the assumption that I is invertible,
the modified Wald statistic

WM = n(Roén — TQ),(RQQRE))_l(RQén — 7“0)

asymptotically follows a X%O distribution under Hg. Therefore, the standard formulation of
the Wald test remains valid. More precisely, at the asymptotic level «, the modified Wald
test consists in rejecting Hy when W), > Xgo(l — «). It is however important to note that a
consistent estimator of the form € = J~11J~! is required. The estimator {0g := 2.1, which
is routinely used in the time series softwares, is only valid in the strong RCARMA case. Thus
standard Wald statistic takes the following form

Wg = n(Roén — TO)/(ROQSRé)il(ROén —70),

which asymptotically follows a X%O distribution under Hy.

4. Examples

In this section, we give examples of weak RCAR(1) model with iid and correlated process
(Ap)tez.

4.1. Independent and identically distributed process (A¢)icz: the AR(1) model

We provide here some results that show that one obtains very neat results in the particular
case where (Ay)ez is i.i.d. and centered. We consider a particular AR(1) model where (1)
reads

X, —d®Ai Xy =&, (24)

i.e. a’(s) = a's for all s € S, where a® = 6 is here the unknown (scalar) parameter and
belongs to some compact set © C R, and the state space S is a finite subset of R. It is easy
to check that, with notation defined in Section 3.1, one has that B(s,0) is not defined (as
here ¢ = 0), A(s) = g%(s,00) = a’s and ¥(s) = A(s) = a’s. Stationarity condition (8) in
Proposition 3.1 is translated as

o0 8y11/8 o0 _ 1 1
IR <1 = E( [E<|Ao|8>11/8’[E<|Ao|8>]”8>' >
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Let us note that (25) allows some interesting cases where one has |[a’A;| > 1, which is a non
stable state case and is somewhat a paradox to the usual stability condition in the classical
AR(1) model where it is standard that process (X;)icz defined by X; = aX;_1 +¢; is stable iff
la| < 1. One simple example is when (Ay)iez is i.i.d. with distribution Ay ~ ié_l + % + %5“,
in which case (25) reads |a°| < 2, so that [a%Ay| = 2 > 1 if we pick for example a’ = 2, when
Ay =1.

Furthermore, one computes easily that, for all a = 0 € O, ¢(a) = X; — aA; X1, where X;
has the classical decomposition obtained from (24):

oo t—1

Xy = Z H(aoAtfj)Etfi- (26)

i=0 j=0

Since Assumption (A2) is trivially satisfied here, we only need suppose that (A1), (A3) and
(A4) hold for some v > 0. In that case, Theorems 3.7 and 3.8 translate as

Theorem 4.1. 6, defined as (7) converges a.s. towards 0y = a°. Besides, one has the asymp-
totic normality

Jn (én - ao) PN(0,9), n— oo, (27)
where
(a2 2\12 oo ;
o L2 > (o B Bl (28)

Proof. Strong consistency and asymptotic normality are straigtforward consequences of Theo-
rems 3.7 and 3.8. In order to compute €, we need to compute .JJ = J(a®) and I = I(a®) in (17).
Since Ze,(a) = —A;X;_1, and since E(X?) is equal to m thanks to (26) and the
fact that (e)icz is a weak noise, independent from (A¢):cz. Hence we have, by independence
of Ay from X;_1,

g5 ([ o)) ~m st - 2

There then remains to get I = I(a®). From Theorem 3.8 we need to compute the expectation
of

Dey(a®) Oe;_1.(a®)

er(a)er_p(a") S YAV, CERVAVENY, CHy ]

da da
oo i—1 oo i'—1
0 0
= e 1y ZH(G Ap1j)er1-i| Dig Z H(a A g1 jr)e—p—1-i
=0 7=0 i'=0 j'=0

for all k£ € N. Using independence of processes (€;)iez and (A¢)iez, we have

e (a®) des 1 (a” o,
E<€t(a0)€t—k(a0) Gta(;l) Gtaka(a )) — Z Vbt ’kd(k,1+i,k:+1+i/) (29)

1,4'=0

where d(n,m,r) := E(egeé_ne_me—,) for all n, m, r in N, and

i—1 i'—1
. -
el K — (aO)Z-H +2E H At—l—j' H Atfkflfj/
=1 j=-1
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Since A; is centered, one checks immediately that Vi’i/’k‘ is non zero if and and only if £ =0
and i = 4', in which case one has V%0 = [(aO)QE(A%)]zH. Hence (29) is in that case equal
to (a°)?E(AZ) Y72, [(a°)*E(A2)]" E(e?e?_,_;), which is also the expression for I(a®), yielding
(28). O

4.2. Modulating Markov chain

We now give an example of process (A;)ez with correlated trajectories by considering a
discrete time stationary ergodic Markov chain with state space & = {1,2} and transition

probabilities matrix
. 0 1
P = (p(i,)))ij=12 = ( p 1—p ) ’

where p lies in (0, 1), and with stationary distribution

D 1
P(A; =1), P(A; =2)) = (£ - ).
(P(Ar =1), P(Ay =2)) = (m1, m2) <p+1,p+1> (30)
We also consider, as in the previous section, an AR(1) model of the form

Xt - GO(At)Xt_l = €, (31)

where parameter 6y = (a’(1),a"(2)) verifies a’(1) = 0, in order to have nice expressions
later for asymptotic normality. In order to establish the stationarity condition (8) we need to
compute E [|| T, a’(Ag)|[®] which, because of a’(1) = 0, simplifies to

E

ITI aO(Ak)HS] =’ @PP(Ar = ... = Ay = 2) = [a°(2)]¥m2(1 - p)7,
k=1

so that stationarity condition (8) here reads

1 1
@@ € <_(1—p)1/8’ (1—p)1/8>' (32

Here again, as in the i.i.d. case for (A)iez, and since (I_Pﬁ > 1, one can allow |a°(2)|

to be larger than 1 so that state 2 € S is non stable, although the process is stationary.
Let us furthermore note that the Markov chain (Ay)sez verifies the Doeblin condition so is
geometrically ergodic, hence has exponentially fast strong mixing property (see [32]), so that
(A2) is satisfied. We furthermore suppose that (A1), (A3) and (A4) hold for some v > 0.
As in (26), one has

co 1—1

Xt = Z H CLO(At,J’)Et,i, (33)

=0 j=0
and €;(a) = Xy — a(A¢) X1 for all 0 = (a(1),a(2)) € ©. We introduce matrices Q(l),l € S =
{1,2} as well as vector 7y defined by

aw=(y ). e@=(1,%,) w-om (39

Theorems 3.7 and 3.8 read
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Theorem 4.2. 0, defined as (7) converges a.s. towards 6y = (a°(1),a®(2)). Besides, one has
the asymptotic normality

Jn (én - 90) PyN(0,9), n— oo, (35)

where Q = J I, matrices J = (J(I,I')), pesz and I = (I(1,1')),pes2 being defined by

_ 1+a%(2)?
JLY) = o5 gy
J(1,2) = J(2,1) =0, (36)
1 1
122 = o rrraerny

and I(L,I") = I(1,I,0) + 25722, I(L,U', k), where

S0 1 [ Sk a2 QIR P QUNQE) dlk,i 4+ Lk 4+ 1)
S hcicher A2 QUQR)F d(ky i + 1,k + 4 +1)
i 2 QUIQEY (ki + 1,k + 7 +1)] v, =2,
S50[S a7 QUIQER)I P TTIQUIQE) dki + Lk 4+ )| wy, 1 =1,
(37)

10,0, k) =

where d(i,i',i") := E(erer—ier_jres—in), i, ', " in N.

Proof. 1t is not hard to check that, for all i € & = {1,2} and a = (a(1),a(2)), aai(l.)et(a) =
—1{a,=Xt-1. One computes easily

;o ]l[Atzl}Xt{l 0
Ve (00)[Ver(6o)] —( 0 Lia=yXi 1 )’

so that it suffices to compute E(]l[At:”XtQ_l) for all [ = 1,2, in order to compute J. By the
usual argument of independence of the Markov chain from the weak white noise, and since
a®(1) = 0, we get, for [ = 1,2,

00 i—1
E(H[At:l}XtQ—l) = U2ZE H[At:qH(aO(At_l_j))Q
=0 j=0

[ee]
_ 2 2 0/0)\2i il — 52 2
= o'm+o 121 a’(2)"m(1 = p)" p(2,1) = 0"m + 07y —a2)2(1-p)?

so that those quantities along with (30) yield the expression for the for matrix J in (36).

In order to compute I, we need to take the expectation of €t(‘90)6t—k(90)a%(l)Gt(Qo)aaL(l/)Et—k(eo) =
eretkln, = Xe—11[a, =11 X¢—1- forall [, I"in S and k € N. As in (29) in the proof of The-
orem 4.1, this expectation is equal to > 7% _, ViR 1 d(k, 1 + 4,k 4+ 14 4') where

i—1 i'—1
VAR =B Djamg [ ] a®(A1-3) - Ta e [ a®(Ar—io1—y)
=0 §'=0

This quantity can be obtained straightforwardly using e.g. Lemma 1 of [16]. Remembering that
Q(1), Q(2) and my are defined by (34), we then have the following expression for V"*(1 1),
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according to whether t —i >t —k < i<k, t—k>t—i>t—k—i < k<i<k+7
ort—k—i>t—i <= k+1i <

a®(2)H1QQER) P TIQNQ2) v, i<k,

» a® () 1QQ2) k<i<k+d lI'=2
V20 ’k(l,l/) _ 0, kSZSk—i—Zl, llzl,
(2 1QUQ2) v, kil <i =2,
0, k4 <, I =1,
yielding (37). O

5. Numerical illustrations

We study numerically the behaviour of our estimator for strong and weak RCARMA models.
We consider the following RCARMA(1, 1) model

X, =a¥(A)X1 + e + D) (Ay)er_1, (38)

where the innovation process (¢;) follows a strong or weak white noise. The process (4A;) is
simulated (independently of (€;)) according to the law of a stationary Markov chain with
state-space S = {1, 2} and transition probabilities matrix

p(1,1) 1-p(1,1) \ (095 0.05
1-p(2,2) p(2,2) -\ 005 095 )°
This Markov chain is geometrically ergodic, so that Condition (AZ2) is satisfied. We first

consider the strong RCARMA case. To generate this model, we assume the innovation process
(e) in (38) is defined by an iid sequence such that

e 2 N(0,1). (39)

Following [36], we propose a set of experiment for weak RCARMA with innovation process ¢
in (38) defined by

e = ne(fm—1] +1)71, (40)

where (7:):>1 is a sequence of iid standard Gaussian random variable.

The numerical illustrations of this section are made with the free statistical software R
(see http://cran.r-project.org/). We simulated N = 1,000 independent trajectories of size
n = 2,000 of Model (38), first with the strong Gaussian noise (39), second with the weak noise
(40). Recall that the regimes (A;) are supposed to be known. For each of these N replications,
we estimate the coefficient 0y = (a$(1),a?(2),09(1),69(2))" = (0.90, —0.45,0.10,0.85)" and

Figures 1 and 2 display the realization of length 400 of Model (38) in the strong (39) and
weak (40) noise cases. Note that here stationarity condition (8) in Proposition 3.1 is trivially
satisfied as all coefficients a(1), a{(2), 89(1), b(2) are all less than 1 in modulus.

Figure 3 compares the distribution of the least squares estimators (LSE) in the strong and
weak noise cases. The distributions of af(1), a%(2) and #9(2) are similar in the two cases,
whereas the LSE of 5(13(1) is more accurate in the weak case than in the strong one. Similar
simulation experiments, not reported here, reveal that the situation is opposite, that is the
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LSE is more accurate in the strong case than in the weak case, when the weak noise is defined
by € = mmi—1. This is in accordance with the results of [36] who showed that, with similar
noises, the asymptotic variance of the sample autocorrelations can be greater or less than 1
as well (1 is the asymptotic variance for strong white noises).

Figure 4 compares the standard estimator Q = 2J°! and the sandwich estimator =
J~1ISP J=1 of the LSE asymptotic variance 2. We used the spectral estimator I .= I
defined in Theorem 3.10, and the AR order r is automatically selected by AIC, using the
function VARselect() of the vars R package. In the strong ARMA case we know that the
two estimators are consistent. In view of the two top panels of Figure 4, it seems that the
sandwich estimator is less accurate in the strong case. This is not surprising because the
sandwich estimator is more robust, in the sense that this estimator continues to be consistent
in the weak ARMA case, contrary to the standard estimator. It is clear that in the weak

~ 2 A
case nVar {b(f(l) - b(f(l)} is better estimated by Q57 (3,3) (see the box-plot (c) of the right-

bottom panel of Figure 4) than by 2J71(3,3) (box-plot (¢) of the left-bottom panel). The
failure of the standard estimator of €2 in the weak RCARMA framework may have important
consequences in terms of identification or hypothesis testing and validation.

Table 1 displays the relative percentages of rejection of the standard and modified Wald
tests (Wg and W) proposed in Section 3.5 for testing the null hypothesis Hp : b(1) = 0.
We simulated N = 1,000 independent trajectories of size n = 500, n = 2,000 and n = 10, 000
of the strong RCARMA(1,1) model (38)-(39) and of the weak RCARMA(1,1) model (38)-
(40). The nominal asymptotic level of the tests is &« = 5% and the empirical size over the
N = 1,000 independent replications should vary between the significant limits 3.6% and 6.4%
with probability 95%. The line in bold corresponds to the null hypothesis Hy. For the strong
RCARMA model (38)-(39), the relative rejection frequencies of the Wg and W, tests are
close to the nominal 5% level when b{(1) = 0, and are close to 100% under the alternative when
n is large. In this strong RCARMA example, the W g and W, tests have very similar powers
under the alternative for all sizes. As expected, for the weak RCARMA model (38)-(40), the
relative rejection frequencies of the standard Wg Wald test is definitely outside the significant
limits. Thus the error of first kind is well controlled by all the tests in the strong case, but
only by the W, modified version test in the weak case (Model (38)—(40)) when b{(1) = 0.
Note also that for Model (38)-(40), the relative rejection frequencies of the W, test tend
rapidly to 100% as n increases under the alternative. By contrast the empirical powers of the
standard W test is hardly interpretable for Model (38)-(40), because we have already seen
in Table 1 that the standard version of the W g test do not well control the error of first kind
in the weak RCARMA framework.

From these simulation experiments and from the asymptotic theory, we draw the conclusion
that the standard methodology, based on the LSE, allows to fit RCARMA representations of
a wide class of nonlinear time series. This standard methodology, including in particular the
significance tests on the parameters, needs however to be adapted to take into account the
possible lack of independence of the errors terms. In future works, we intent to study how
the existing identification and diagnostic checking procedures should be adapted in the weak
RCARMA framework considered in the present paper.
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Simulation (Y;) of a strong RCARMA

n=400
0
|

0 100 200 300 400

Time t

Fic 1. Simulation of length 400 of Model (88)-(39) with 6 = (af(1),a3(2),9(1),69(2)) =
(0.90, —0.45,0.10,0.85)", . The process (X;) is drawn in full line, the Markov chain (A;) is plotted in dot-
ted line.
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Simulation (Y;) of a weak RCARMA

< -
N - - - - —_— e = m === = = -
A : ! K I 1: - ’
\ | 1 L '
I| - | ! 1 :
o
S
Il ©
c
N
|
T —
I I I I I
0 100 200 300 400
Time t
Fic 2. Simulation of length 400 of Model (88)-(40) with 6o = (af(1),a3(2),b9(1),69(2)) =

(0.90, —0.45,0.10,0.85)", . The process (X;) is drawn in full line, the Markov chain (A;) is plotted in dot-
ted line.
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Strong ARMA Weak ARMA
-] ) _s_ -]
&4 =& & ! - 84 o = = &
o | ' ,+| ' o | '
] al—————— 15 = = =
S 7 R =i % - 8
Q T T 1 T Q T T T T
(CY (b) (©) (d) CY (b) (©) (d)
estimation errors for n=2000 estimation errors for n=2000
N N
Strong case: Normal Q-Q Plot of by(1) Weak case: Normal Q-Q Plot of b, (1)
= = 8
%) g 8 ©
N A w7
— o — (=3
= - = =
2 9 T T T T T T < T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Normal guantiles Normal quantiles
Strong case Weak case
g <t g [Te)
o [a}
© [ T ST T |
-0.10 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05
Distribution of b, (1) - 61(1) Distribution of by (1) - Gl(l)

Fic 3. LSE of N = 1000 independent simulations of the model (38) with size n = 2000 and unknown parameter
0o = (a9(1),al(2),b9(1),9(2))" = (0.90, —0.45,0.10,0.85)’, when the noise is strong (39) (left panels) and when
the noise is the weak noise (40) (right panels). Points (a)-(d), in the boz-plots of the top panels, display the
distribution of the estimation errors é(z) —00(i) fori =1,...,4. The panels of the middle present the Q-Q
plot of the estimates é(S) = 3(1)(1) of the last parameter. The bottom panels display the distribution of the same
estimates. The kernel density estimate is displayed in full line, and the centered Gaussian density with the

same variance s plotted in dotted line.
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Strong RCARMA: estimator 2J7* Strong RCARMA: estimator of J™HJ™
< < °
g o
.- n .- b
N E N j_ E °
4 i S 1
<1 5 = -9 4
=== = =75 ==
I I I I I I I I
(@) (b) (©) (d) (@) (b) (©) (d)
Estimates of diag(Q) Estimates of diag(Q)

1

Weak RCARMA: estimator of 2J° Weak RCARMA: estimator of J71J™*

© - o -
© - © 4
< < o
4
_ — _ S
~ e _$_ ry ~ ° _'_ _a_ o
—t = — 5 == %
e T T T T e T T T T
(@ (b) (©) (d) (@ (b) (©) (d)
Estimates of diag(Q) Estimates of diag(Q)

Fic 4. Comparison of standard and modified estimates of the asymptotic variance 2 of the LSE, on the simu-
lated models presented in Figure 8. The diamond symbols represent the mean, over the N = 1000 replications,
of the standardized squared errors n {af(1) — 0.90}" for (a) (0.58 in the strong case and 0.56 in the weak case),

. 2
n{al(2) —&—0.45}2 for (b) (0.94 in the strong case and 0.92 in the weak case), n{b?(l) — 0.10} for (c) (2.58

. 2
in the strong case and 1.33 in the weak case) and n {b?(?) — 0.85} for (d) (0.87 in the strong case and 0.81

in the weak case).
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TABLE 1
Percentages of rejection of standard W g and modified Wy Wald tests for testing the null hypothesis
Hy :b9(1) = 0, in the RCARMA(1,1) model (38). The nominal asymptotic level of the tests is
a = 5%. The number of replications is N = 1000. The line in bold corresponds to the null hypothesis
Hp.

n = 500 n = 2000 n = 10000
1) Ws Wy Ws Wy Ws Wy

Strong RCARMA-Model (38)-(39)

0.9 100.0  100.0 100.0 100.0 100.0 100.0
0.4 100.0  100.0 100.0 100.0 100.0 100.0
0.2 86.1 86.9  100.0 100.0 100.0 100.0
0.1 32.3 35.3 85.7 86.6  100.0  100.0
0.0 6.3 8.0 6.0 6.3 5.6 5.8
-0.1 27.3 30.1 79.8 79.8  100.0 100.0
-0.2 76.5 77.0 100.0 100.0 100.0 100.0
-0.4 99.2 99.0 100.0 100.0 100.0 100.0
-0.9 84.7 85.9 99.6 99.6  100.0 100.0

Weak RCARMA-Model (38)—(40)

0.9 100.0  100.0 100.0 100.0 100.0 100.0
0.4 99.7  100.0 100.0 100.0 100.0 100.0
0.2 57.4 96.2  100.0 100.0 100.0 100.0
0.1 3.5 52.4 50.3 98.0  100.0  100.0
0.0 0.2 5.8 0.0 4.7 0.0 5.6
-0.1 2.8 39.5 37.6 93.8 100.0 100.0
-0.2 34.1 89.6 99.9  100.0 100.0 100.0
-0.4 96.0 99.6  100.0 100.0 100.0 100.0
-0.9 86.1 89.7 99.7 99.7  100.0  100.0

Appendix A: Proofs
A.1. Proofs of Proposition 3.1 and Lemma 3.3

Proof of Proposition 3.1. Let us first note that Condition (8) is equivalent to

t 8 t 8

E(sup|[[[®An0)| | <cof, E| ]| | <o, (41)
9€0 ||;24 i=1

for some constant C' > 0 and 0 < p < 1 (independent from 6), and is akin to Condition (A2)
in [16]. Let us first introduce processes (Z;)icz and (@¢)iez by

Zt = (Xt, PN ,Xt,erl,Et, ce ,Et,qul), € R(p+q)><1, (I)t = (et,O, cee g€ty ,O), S R(p+q)><1

where €; in the latter is in (p+ 1)th position in @;. Then it is clear that one has the following
equation for Z;: ) .
Zy =V(A)Z—1 + @, YVEETZ,
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of which a candidate for the solution of the above equation is, with the usual convention

-1
szo =1

oo k—1
S WA @ tez (42)

k=0 j=0
a stationary process, provided that the series converges, which we strive to prove now. Let us
pick for ||.|| a subordinate norm on the set of matrices. By independence of processes (Ay)ez

and (€)tez, and using the fact that the latter is square integrable, we easily get, for k£ > 1,
E(|[9(A) . WA k)@ klP) <E (12 B(A )P @ k]P)
—E (I1%(A) . 9 )|P) E ([l-4l”) < CE (Jloll?) o*

the last inequality stemming from (41), so that series (42) converges in L?. Note that one
proves that Z; (hence X;) is in L* by replacing ||.||> by ||.|[* in the above inequality, using
again (41) and the fact that (€)sez is in L*, see assumption (A3). Similarly, defining

Zt(ﬂ) = (Et(e),...,Et,qul(e),Xt,...,Xt,erl)/, Wt = (Xt,O,...,Xt,...,O)' (43)
where X; in the latter is in (¢ + 1)th position, one also gets that Z;(0) satisfies
Zt(H) = @(At,H)Zt_l(H) + We.

A solution candidate to the above solution is
oo k—1
0)=> T2 ;00w s, tel (44)
k=0 j=0
Similarly to the proof leading to (42), convergence of (44) is obtained thanks to (41) as well
as stationarity of (X;)iez and the fact that X; € L*.

One checks that w; = MZ; and €(f) = e1Z;(0), which, plugged into (42) and (44)
yields (9) with coefficients ¢;(0, Ay, ..., Ar—i11) given by (10). Finally, let us verify that
(ci(0,A,...,Ar—i+1))ien is the unique sequence verifying (9). Let us then pick a sequence
of r.v. (d;)ien in M such that (0) = > ;2 ci(0, A, ..., Ap—iv1)er—i = Y10 di€t—;- One then
gets, by independence from (€;);ez as well as by the fact that the latter is a weak white noise:

o 2 [oe)
0=E Z(Cz‘(e, Agyoo Apig) — di)eti] =o’E (Z(Q’(Q, Agy oo A1) — di)2>
i=0 =0

hence (Ci(e, At, e 7At—i+1))iEN = (di)ieN a.s. ]

Proof of Lemma 3.3. The fact that the 6 — ¢;(0, Ar_1,..., ¢ 5), 0 Ve (0, Ar_1, ..., Ar)]?
and 0 — V2[c;(0, A1, ..., Ar;)]? are polynomial functions (of several variables) can be veri-
fied easily using the fact that, forall s € S, 0 — ®(s,0) and 6 — V() are affine functions. We
turn to (13). Using Minkovski’s inequality, the fact that matrix norm ||.|| is submulitplicative
entails

sup ‘C’i(ev Aia s 7A1)‘
0cO

25

2v+4 k=0

zug e1®(A,0) ... P(Ai_ oy, ) MU (D) ... U(Ar)ep, |
€

2u+4

1/(2v-+4)
<OZ{ (gggH@ (An0).. (Ai_m,enﬁ"“||@<A,~_k>...wmﬁ”‘*)] (45)
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for some constant C' > 0. The Cauchy Schwartz inequality as well as (8) yields

- - 1/(2v+4)
{E <§ugH<I>(Ai,6)...<I>(Aik+1,6)H (A ) .. (AT ﬂ
€

1

(4v+8) V; i

< [E (2118 |®(A;,0) ... @(Aikﬂ,e)”‘l”%ﬂ [E (H\I/(Al-,k) . \I!(Al)]]4”+8)] WH < o pErD
S

which, plugged in (45), yields inequality (13) for ¢;(0, A, ..., A1). The inequalities for VZ[e; (0, Ay, ..., Aq)],
J = 2,3, are proved similarly. As to ¢§(¢,0,A,...,Ar—iy1), (12) yields the upper bound

sup |Cf(t, ‘9) At) B At7i+l)|
0cO

2v+4

<
k=0

gug ‘61@(At, 6) e (I)(At,k+1, H)M\I/(At,k) SN \I/(At_i+1)€;+1‘
S

9

2u+4

so that upper bound (14) for ¢§(¢,0, A¢_1,...,Ar;) follows again by a Cauchy Schwartz ar-
gument. The upper bound (14) for Ve§(¢,0, Av—1,...,A¢—;) is obtained similarly. [

A.2. Proofs of Lemma 3.4 and Proposition 3.5

Proof of Lemma 3.4. We first prove Point 1. Using decomposition (9) of €,(6), independence
of the white noise from the modulating process, as well as stationarity of the former, we obtain

o0
sup [eo(0)||| < Z sup [¢; (6, A, ..., A—it)][] [leolla
(JS(C] 4 i—0 110€© 4

which is a converging series because of (13). As to e;(#), we use this time decomposition (11)
as well as (14) in order to get

< Zsup

4 t>0

sup | (0, Aty ..., Arip1)]
0cO

."60”4 < +00.
4

sup |e.(6)
0cO

sup
>0

In order to prove Point 2, we remind the following notations. From (4) and (5), we have
Zt(ﬂ) = wt + @(At,G)Zt,l(G) YVt € Z,
and
ZE(0) =k + O(ALO)ZE,(6)  t=1,....m,

where Z{(0) := (e:(0), ..., ei—q+1(0), X ,)Z't_m_l)', wf = (X't, 0,...,X,... ,0), so that
wi = w; for t > r +1 (where r = max(p,q)), wy(0) = 0p4+4 for t < 0. We recall that processes
(Xt)tez and (e1(0))iez verify (5). Note that |[supyeg |€:(6) — e:(0)]||, — 0 is equivalent to
|[supgee [|Z£(0) — Z(0)]]|l;, — 0 as t — oo. Now, since X; = X; for £ > 1, one easily sees
that

Z{(0) = Z(0) = ©(A,0)[Z_1(0) — Z4-1(0)], Viz=r+1, (46)
ZE(0) — Z4(0) = wE — wy + B(Ay, 0)[Z8_1(0) — Z_1(0)], fort =1,...,r (47)
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Now, using (46) and (47) we obtain

t—r—1
Z50) = Z(0) = [ ®(A,0)[25(0) = Z,(0)], VE>r+1
7=0
—r— r—1i—1 r—1
= H (Ar5,0) | DT @A, 0)wiy —wra] [T (A, 0)wo (48)
j=0 =0 j=0 Jj=0

Let us furthermore note that

sup | X; — X
66

- Sup‘zgz Atv Xt z+zg] Atv )Et 2(0)‘ <+OOfOI‘t:1,...,7”
4 j=t 4
as indeed X; € L* (as proved in the proof of Proposition 3.1) and ||supyeg €:(6)||ls < +oo as
proved in Point 1. In view of (48), using Minkowski’s and Holder’s inequalities and (8), we
thus have

< Cpt,

sup || Z{(0) — Z(0)
66

for some constant C' > 0 and 0 < p < 1 (independent from 6).
Let us turn to Point 3. This is due to

t2+2a 0 _ 0 2 1
P+ sup |6t(9) o et(9)| >n) < HSHPGEGJEI;( ) et( )W2 =05, \v/n >0,
USC) t=n t

the last equality thanks to Point 2, and using Borel Cantelli’s lemma.

We now turn to Point 4. The fact that ||supgeg [[V7e0(6)|]||, and sup;q ||supgee [[VZer(0)]1]],
are finite is proved similarly to Point 1 and using estimates (13) and (14). We then pass on to
the limit of ¢* [[supgee ||V (er — €)(0)ll4/5 as t — oc. Let i € S. Deriving (46) with respect
to 6; yields

1250~ 20)] = P00 (71 (0)~ 1 O+ - BB, OZE1 (01O, V12
(49)
hence we may write
9 t—p k—1 9
50121 (0) = Z:(0)] = Y11 ©(A¢—;,0) 55 2Bk, 0)[Zi_4(0) — Ze-1(0)],
¢ k=0 j=0 v

hence, using Minkovski’s and Holder’s inequalities, and letting Mg := maxecs pco ‘ 75 2(s,0)|,

we get
—-p k—1
t |[sup |l 5o [ £ (0) = Z:(0)]l| Z upIH‘P A-j,0)|
0O 8/5 k=0|7€® j=o .
4 || sup1Z¢_4(0) — Zir(O)I]| . (50)
0c©
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Now, since HSUPGEG I Hk FO(A, 0)HH8 < kp¥ for some k > 0 and p < 1 thanks to (8), and
since t“ H supgee || Z; 1 (0) — Zt_/yg(«9)||H2 is uniformly bounded in ¢ and k£ < ¢, and tends to 0

supgee |13 2 0) = O, —
0 as t — oo, proving t||supgee ||V (er — et)(9)||||8/5 — 0 as t — oo in Point 4. Let us now

ast — 0o, the dominated convergence theorem yields that ¢t

prove that t® ||supgee ||VZ(er — et)(H)HH4/3 — 0. Deriving again (49) with respect to 6y,
{ €S, we obtain

0? 0? 0 0
90,00, 127 (0)—Zu(0)] = ©(Ay, )8«9 a0, [Z{1(0)—Z1—1(9)]+ a0, (A, )89 (Z;_1(0)—Zi—1(0)]
0 0 0? .
+ a—ei‘l)(ﬁt, 9)89 [Z{1(0) — Zi—1(0)] + m‘ﬂﬁt, 0)[Zi 1(0) — Z—1(0)], VE=p+1,
(51)
so that, in the same spirit as (49), one obtains
o’ ;X -
t* ||sup Z2(0) — Z (0 < M, sup O(A—;,0
96@"8‘958‘91'[ £(0) = Z.(0)]]] s @kzo E@‘jHo t—j,0)] 8
i [ sup||Zi_p(0) = Ze—1(O)l]||  +]| sup |l [ ik(0) = Zi-r(0)]l]
0cO 8/5 0cO 8/5
+ || sup |l = [ i x(0) = Zi—k (0)]|] ] , (52)
9o 8/5
for some positive constant M}, Using Point 2 (so that ¢ || suppeg || 27, (6) — Zt,k(H)HH8/5

tends to 0 as ¢ — oo, since 8/5 < 2) and the previous estimate

— 0
8/5

t

sup H—[Ze( ) — Zi(9)]]|
fcO

for all ¢ € §, we conclude by a dominated convergence theorem that

2
sup 5 (1~ ) O]

, hence t* )

4/3

sup || =——=—[Z;7(0) — Z,(0
eeguaegael[ t( ) t( )]H 4/3
tends to 0.

We finish by sketching the proof leading to ¢ ||supgeg || V3 (e; — €)(0)|[||, — 0. The starting
point is again deriving (51) with respect to 6y, ¢ € S, which yields, as in (52), the following
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estimate:

—Pp
Z p|H(I)At ]a
k— USC]

7=0

33

t _—
sup | 00,00,00;

[2(0) — Z:(0

1

¢ SHPHZf_k(H) = ZikOl|| 4 || supllo [ i x(0) = Zer(9)]l]
0c 4/3 0cO 00, 4/3
82
+| | sup|l oo [ i-k(0) = Zek O+ || sup |l 5o (27 (0) = Ze-w ()]
0€6 4/3 oco GV 4/3
0? 82
— 77 — Zi_ — 7

for some constant M[, so that one concludes similarly. [

Proof of Proposition 3.5. Let us start with Point 1. The fact that @, (0) converges a.s. to
Oxo(0) = E(€o(0)) as n — oo is a consequence of the fact that supgeg |€:(0) — e:(0)]> — 0
(itself a consequence of Point 3 of Lemma 3.4) and is justified by the same exact proof of
Lemma 7 in [20]. We now prove that n® ||supgeg |@n(0) — On(0)]|],- Let a € (0,1). Using the

upper bound supgee [e:(0)* — €:(0)| < [supgee le:(0)| + supgee ler(0)]] - supgee led(0) — e (9)],
as well as Cauchy Schwartz and Minkovski’s inequality, we get the following

LS ]

1 t=1
Since |[supgeg |e¢(0)]|], is upper bounded by Point 1 of Lemma 3.4, and ||supgeg |€:(0)]|], is
constant in ¢ and finite, there thus exists some constant C' > 0 such that

+
2

sup [e () — €(6)]
606

sup |e;(0)]
60

sup |Qn(0) — On(0)]
0O

sup |e; (6)]
0co

€ 2

n

1
S Cnl—oz Z

1 t=1

sup |Qn(6) — On(0)]
0O

sup |e;(0) — e¢(0)]
66

(53)
2

Let us write the right hand side of the above inequality in the form n%a P e (A
11—« 1 i
1) g=a==nyr== llsupgee le:(0) — €:(0)][l,. Since

1
tlfa _ (t _ 1)1704

sup |e(0) — e (0)]
66

sup |e;(0) — e¢(6)]
66

)

2

1
) Ty

which tends to 0 as ¢ — oo (a consequence of Point 2 of Lemma 3.4), Toeplitz’s lemma implies
that the right hand side of (53) tends to 0 as n — oo, and this proves Point 1.
We now prove Point 2. One has for all 6 € ©

1V]ex(6)* = e(0)*)I] = [12e:(0)V[ex(8) — e(0)] + 2[ex(0) — e+(8)]Ver(0) |
< 2[[e¢(0)V[er(0) — ex(O)][| + 2le(0) — ex(O)[.[[Ver(O)]].  (54)
so that

w0
=
T
o
-
—
s
~—
|
™
-+
—
s
=

sup [[V(Qn(6) ~ On(@)I] < = 3 supleu(6)].
JS(C] 0co JS(C]

n

=3 suplen(0) — 0)|sup Ve (@) (55)
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Lemma 3.4, Points 2 and 4, along with Borel Cantelli’s lemma, yields that supgcg |€:(6) —e:(0)]
and supgee ||V (e: — ) (0)]] a.s. tend to 0 as t — co. The second term on the right hand side
of (55) if then a.s. upper bounded thanks to Cauchy Scwhartz inequality by

1/2

. 1/2 n
2 [% Zsup le:(0) — Et((g)P] : [% Zgug HVet(ﬁ)HQ] ’
- t=19¢

which tends to zero thanks to Cesaro’s Lemma and the ergodic theorem. And since, by
Minkowski’s inequality,

n 1/2
[%Zsupretw)\Q] [Zsup‘et )~ O

7 6co

1/2

1/2
+3spleor|

= 6co

one has that [ 3% | supyce |e(6)?] 2 s as. upper bounded in n > 1, again by a Cesaro
and ergodic theorem argument. The first term on the right hand side of (55) if then again a.s.
upper bounded thanks to Cauchy Scwhartz inequality by

1/2

1/2 n
[ Z:supllv (er — 6t)(9)||2] : [lzsuplet(ﬂ)ﬁl :
n ] 0eo

t—1 0€©

which tends to zero as ¢ — co. Hence (55) implies that supgeg ||V(Qn(0) — On(0))|| a.s. tends
to 0 as n — oo. Proof of a.s. convergence of supgcg ||VZ(Qn(0) — O, (0))|] to 0 for j = 2,3 is
obtained similarly, using arguments related to Points 3 and 4 from Lemma 3.4.

Let us now prove Point 3. Let a € (0,1). We deduce from (54), using Minkowski and Holder
inequality, that

sup [|V(Qn () — On(0))|| Z sup |e; (0 Sup||V[€t(‘9)*€t(‘9)]||
00 — |loco 06 4/3
Z sup lex(0) — x(0) 2 sup|[Ver(0) (56)

=1

Using Point 1 of Lemma 3.4, one has that |[supycg |e:(0)]]|, is upper bounded by some constant
C'. The first term in the righthandside of (56) may thus be upper bounded by

n

1
QCnl—a Z

t=1

sup || Vet (0) — e(0)]
0O

4/3.

Noting that ||supgee ||V]e:(8) — et(ﬁ)]HH4/3 < C'||supgee || V]er(0) — et(é?)]HHS/E) for some con-
stant C’, the above expression is, similarly to the argument in (53), a quantity that tends to
0 as n — oo thanks to Point 4 in Lemma 3.4 coupled with Toeplitz’s lemma. Hence the first
term in the right hand side of (56) tends to 0 as n — oo. Again using Point 1 and Point 2 of
the same lemma, and with the same argument, one also has that the second term in the right
hand side of (56) tends to 0 as n — oo, which proves Point 2. [
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A.3. Proofs of Proposition 3.6 and Theorem 3.7

Proof of Proposition 3.6. Independence of processes (Ay)iez and (€;)iez as well their
ergodicity yields that, for fixed j € N, process ((A¢—1,...,A¢—j,€—;)) is ergodic. One thus
deduces from Expression (9), and using the fact that (e );ez is a weak white noise, that O,,(0)
defined by (15) verifies

On(8) — Oso(8) := 0* > E([c;(0, Ao, ..., A_j)P) = 0”40 Y E ([¢;(6, Ao, ..., Aj)])  as.
j=0 j=1

(57)

as n — oo (remember that co(6,Ag) = 1). By uniqueness of decomposition (9) in Proposition

3.1, and since €(0y) = €, one has that (¢;(0,Ar—1,...,A¢;))ien = (1,0,...) if and only

if & = 6y, and that O (#) given in (57) is minimum at § = 6p, with minimum given by

Owso(00) = 0%. Let us then deduce that estimator 6,, defined in (16) converges a.s. towards 6.

For this we let a subsequence (0, )ren converging to some #* in the compact set © and we
prove that 6* = 0. Indeed, by definition of estimator 6, one has

On,(00) > On (O,,) (58)

for all k£ € N. A Taylor expansion yields the inequality
ny,
) . ; a1
|Ony, (y,) = Ony (0%)] < [[6hy, — 0 ”'Qn_k ZSlelg[lq(9)|~||v6t(9)ll]- (59)
t=1

But, using the ergodic theorem, one has

2 & 1 &
23 suplla@LITaO)l] < oY [suplal®) + sup Ve 0)P
k = 0co k <= loco 6o
2 2
— ||sup |eo(D)]|| + |[sup||Veo(8)]]|| < +oo,
0O 2 0cO 2

so that one gets from (59) that O, (65, )—Onp, (0*) — 0 as k — o0o. Since Oy, (%) — O (0%),
we obtain, passing to the limit in (58), that

hence 6* = 6y thank to uniqueness of the minimum of O« (). O
Proof of Theorem 3.7. Similarly to the proof of the previous theorem, we let a subsequence

(0n,,)ken converging to some 6, in the compact set © and we prove that 6, = 6y by proving
that O (0p) = Ooo(6+). By definition of 6, we have

Now, a Taylor expansion yields, for all ¢ and #” in ©, similarly to the argument in the proof
of Proposition 3.6,

Nk

1
|Qn, (0) = Qu, (O] < [0/ = 0"]].— > [sup!et(H)P + sup || Ve (0)|*| - (61)
Ny 0cO 0c®

t=1
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Using inequality (a + b)? < 2(a? + b?) for all a and b, we deduce that supgeg |e:(0)> <
2(supgee let(0) — €:(0)]?) + supgee |€:(0)|. Since a consequence of Point 3 of Lemma 3.4 is
that supgee |e:(0) — €:(0)|? tends to 0 as t — oo, the ergodic theorem yields that

2

+
2

1 Nk 2
—> [Sup lec(0)? + sup ||Vet(9)||2] — < 400
ng =] Loco 0cO 2

sup [€o (6] sup || Veo(0)]]
9€0 0co

as k — oo. Thanks to (61) and Point 1 of Proposition 3.5, we thus deduce that Qy, (6o) —
Ooo(bp) and @, (0n,) — O (0) as k — oo, and we conclude in the same way as in proof of
Theorem 3.6. U

A.4. Proofs of Theorem 3.8

Let us introduce the following matrices and vectors

In(0) = Var (vaVOu(0)) = (In(l,1)(O))1=1. prgic € RTFVXIFIE 0 €N, (62)
Yi(0) = ex(0)Ver(0) = Ve)(O)imr.prqc € RVFVE ke Z, (63)

Theorem 3.8 can be established using the following lemmas.

Lemma A.1 (Davydov (1968)). Let p, q and r three positive numbers such that p~* + ¢! +
r~1 = 1. Davydov [14] showed that

| Coo(X,Y)| < Kol X1 llg [ {o (X), o (¥)}]" (64)

where || X|[5 = E(XP), Ky is an universal constant, and a{c(X),o(Y)} denotes the strong
mizing coefficient between the o-fields o(X) and o(Y') generated by the random wvariables X
and Y, respectively.

Lemma A.2. Let the assumptions of Theorem 3.8 be satisfied. For alll, r in 1,...,(p+ q)K
and 0 € © we have

[e.9]

In(L,r)(0) — I(L,r)(0) == Y a(l,r)(0), n— 4o,

k=—o00
where cx(1,7)(0) = Cov (Y:(1)(0),Y,—x(r)(0)), k € Z, the former being a convergent series.

Proof of Lemma A.2: Let us write

. aet(ﬂ) 8615(9) !
vet(e) - < 801 gty 89(p+q)K )

where €/(6) is given by (9). The process (Yj(0)),, is strictly stationary and ergodic. Moreover,
we have

1,(6) = Vax (ﬁ%om) ~ Var (%Zw)) = 23" Cov (%(6), (0))
t=1 t,s=1

n—1

_ % S° (0 — [K))Cov (Yi(6), Yi-4(0))

k=—n+1
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From Proposition 3.1 and Lemma 13, we have

et(ﬂ) = CZ'(Q, Atfl, A ,At,i)et,i and 86t(0) = Z CZ‘J(Q, A1‘,71’ o ’Atfi)etfia for [ = 15 s (P‘H_I)K,

i=0 00, i=0
where we recall that ¢;(0,Ay_1,...,As—;) is defined by (10), and
0
cia(0,8¢1,...,0¢) = a6, —ci(0,8¢1,...,A¢)
9 i
= 2, (Z e1®(Ay_1,0) ... P(Ay_jy1, ) MI(A; ). .. \Il(Atl-)e;H) ,
k=0

with the following upper bound holding thanks to (14):

Esup(ci(0,A¢_1,...,0: ;)% < Cp' and Esup(c;ii(0, Ap—1, ... A ))E < Cpt, Vi
0cO 0eO

Let

Bijir g k(lr)(0) = Elei(0,A¢1,. .., Ari)cja(0, Apvy oo, A j)er (0, D1,y ooy Dgpir)
(0, A1y AN ) | E [er—i€—jerjirer—p—j]
—Elei(0, A1, s Ari)eja(0, Agny o, A )]
xE [Ci/(cg, At—k—la e ,At,k,i/)cj-/’r(e, At—k‘—la ce ,At,k,j/)] E [et,iet,j]

xE [et—k—ilet—k‘—j’]
= E [Ci(‘g) Atfla cee aAtfl')Cj,l(ea Atfla cee aAtfj)ci/ (‘9) At—k—la ey At—k—i/)

(0, A1y Dp_g—jr)] Cov (er—i€t—j, €—h—ir€t——j7)
+COV (Ci(‘ga Atfla cee aAtfl')Cj,l(ea Atfla ey At*j)a Gy (‘9’ At—k—la cee aAt—k‘—’i')

(0, A1, Ay jr)) Elerier | E [epp—irerp—jr] -
We then obtain

[c o 2uuNe olNe ONe o]

ZZZZﬁWM 1,r)#), kel

=0 j=014'=
The Cauchy Schwarz inequality implies that
IElci(0, A1y, Api)cjn(0, A1y Apj)ein (0, D1y, D p—ir)
1/2
X (0, A1y Do)l < (Blei(0, Ay, oo D) (0, Ag—q, ., D)) /

) (Elew (0, Ay_p1s- o D)o (0, Dy Dy )PP < (Bles(0, Ara, . Ay i)

4 4
X Eleji(0, A1, D )Y Bler (0, A1, Ay j— i) Bl (0, A1, -, Ay ) D)
< Cpi+j+z"+j’_ (65)

First, suppose that £ > 0, for all [, rin 1,...,(p+ ¢)K and 0 € ©, in view of (65) it follows
that

oo o0 0 X

lex(l,r)O)] = Jeov (YD) (0), Yo (@) = 4D D D> Biirgrn(,7)(0)

1=0 7=04'=05'=0
< 4(g91+ 92+ 93+ 9ga+ 95+ hi + ha + h3),
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where
g1 = Z ZZZKJPH_]—H—H |COV €t—i€t—j, €Ct—k—i/ €t—f— ])
z>[k/2 j=01i'=
g2 = Z Z ZZKPZJFJJFZJFJ (et i€t—js Ct—k—i’ Ct—k— ])|
i= 0]>k/2]z’ 04'=0
93 = ZZ Z Zﬁp (Et i€t—j, €t—k—i' €t—k— ])
1=0 j=04'>[k/2] j'=
g4 = ZZZ Z K/OZJFJJFZJF] (Et i€t—jy Ct—k—i' €t—k— j)
1=0 j=014'=0 j'>[k/2]
(k/2] [k/2] [k/2] [k/2]
g5 = ZZZZFJP (et Zetjvetk‘zletk])
i=0 j=0 i'=
hh = o Z Z’COV(Ci(evAt—la---7At—i)ci,l(07At—1v~'7At—z‘)7
i>[k/2] =0
Cz"(9 Akt Dpgmir)Cir p (0, D1,y o oo, Dpg—ir))|
h2 = 42 Z |COV CZ 09 At 1,...,At,i)ciyl(H,At,l,...,At,i),
1=0 i'>[k/2]
C’i’(ea At—k‘—l) cee aAt—k‘—’i’)ci/,r(ea At—k‘—l) cee )At—k—i/)) )
[k/2] [k/2]
hy = 042 Z|COV(Ci(9aAtfla---aAtfz')Ci,l(eaAtfla-n,Atfi)a
=0 /=0
Ci/(av At7k717 s 7At7k7i/)ci/,7‘(07 At7k717 s 7At7k‘7i/))‘ .
Because

2
\/E ler—iet—j)°E [er—p—ier—n—j/]” < Eler|* < 00
by Assumption (A3), we have It follows that

|Cov (er—i€t—j, €t—h—it€t—i—j")

oo oo o0

Y S I [ (i gcsiis)

i>[k/2] j=014'=0j5'=0

k/2
)

for some positive constant x;. Using the same arguments we obtain that ¢g; (i = 2,3,4)
is bounded by ;p*/?. Furthermore, (A3) and the Cauchy Schwartz inequality yields that
lei€irlloy, < +oo for any i and 4’ in Z. Lemma A.1 thus entails that

(k/2] [k/2] [k/2] [k/2]

D 3030 3 MR

=0 j=0 /=
[k/2] [k/2] [k/ 2] [k/ 2}

2202 koo T er-ser-ily, [l

=0 j=0 /=

x { o (min [k:—}—] —ik+i —ik+5 — g k+i — ])}V/(2+V) < Ko’/ ([k/2]) .

IN
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Since

|COV(Ci(9, Atfl, c ,Atfi)Cz‘,l(e, Atfl, R ,Atfl'), Ci/(cg, At—k—la C ’Atfk—z'/)
X Ci/7r(‘9, A_p_1,... ’At—k‘—i’))| < Cpiﬂ'/’

we have

- 4 Z Z‘COV Cz 9 At 1,...,At_z‘)C“(e,At_l,...,At_i),
i>[k/2]i'=0

Gy (‘9) At—k—la sy Atfkfi/)ci/,’r'(e) At—k—la sy Atfkfi/)” < "/V'llpk/2)
for some positive constant ). Using the same arguments we obtain that hs is bounded by

népkﬂ. The a—mixing property (see Theorem 14.1 in [13], p. 210) and Lemma A.1, along with
(13), entail that

[k/2] [k/2]
hy = o Z Z |Cov(ci(0, Ap—1,. ., Api)eig(0, D1, D),
=0 i'=
ci (0, Atfkfla e D) (0, D1, D)
[k/2] [k/2]
< DD kel A, A (0,81, D)y,
i=0 i'=0
4 (67 At,k,l, L Atfk‘fi/)ci/,r(67 At,k,l, L 7At7k7i/))H2+V
x{an (k+1 -0} < kel ([k/2).
It follows that
Z|0k(lﬂ“ )| < Rzp\k|/2+ﬁ Zau/(QJru ([/2]) Z I//(2+1/ ([k/2]) <
k=0 k=
by Assumption (A2). The same bounds clearly holds for
0
> lext.r)(O),
k=—00
which shows that -
D lerlr)(9)] < o0
k=—00
Then, the dominated convergence theorem gives
1 n—1 00
I,(l,r)(0) = — — |k l,r)(0 I(l,7r)(0) := 1,r)(0), ,
(L)) =~ k;ﬂ@ k)ek(l,r)(0) — I(L,7)(0) kz_:oo%( r)(#), n—+oo

and completes the proof. O
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Lemma A.3. Under the assumptions of Theorem 3.8, one has convergence in distribution of
the random vector -
VnVQn(6p) = N(0,1), asn — oo

where we recall that matriz I is given by (19).

Proof of Lemma A.3: In view of Proposition 3.5, it is easy to see that

\/Ev (Qn - On) (00) = OIP‘(l)-

Thus V@, (0y) and VO, (0y) have the same asymptotic distribution. Therefore, it remains to
show that
VO, (00) B N(0,1), as n — oo.

Forl,in1,...,(p+ ¢)K and 0 € ©, we have

e (6 -
59(1 | - ;Ci,l(ﬂ, Ap,.o s Ayg )i, (66)

where the sequence ¢; (0, Ar_1, ..., Ar—;) is such that Esupgpeg |(cii(0, At—1,..., M) =0
at a geometric rate as ¢ — oo (see Lemma 3.3). Moreover, note that

00, (0 2« 2 o — >
\/ETHE) = % Z Yt(l)(e) = % Z Z Ci(e, Aiq,... ,At,i)et,i Z Cj’[(e, Ai_q,... ,At,]’)et,]’.
t=1 j

t=1 =0 j=1

Since Ve (0p) belongs to the Hilbert space H(t — 1), the random variables €,(6y) and Ve (6p)
are orthogonal and it is easy to verify that E[\/nVO,,(6p)] = 0. Now, we have for all m

20,(00) 2 2 «—
\/57 = — Yim (D) + — Zm(l
where
Y%m(l) = ch,l(e()vAt—lv . 7At—j)€t€t—j
j=1
Zt,m(l) = Z Cj,l(007At—1a---7At—j)€t€t—j-
j=m+1
Let

Yim = Yem(0o) = (Yem(1), ..., Yem((p + Q)K)), and
s Zim((p+ 9)K))

Zt,m = Zt,m(HO) = (Zt,m,(l)’

The processes (Y7 )¢+ and (Z )¢ are stationary and centered. Moreover, under Assumption
(A2) and m fixed, the process Y = (Yi,,); is strongly mixing (see [13], Theorem 14.1 p.
210), with mixing coefficients ay(h) < aa,(max{0,h —m}) < aa (max{0,h —m+1}) +
ae (max{0, h — m}), by independence of (A;)iez and (€)icz. Applying the central limit theo-
rem (CLT) for mixing processes (see [31]) we directly obtain

2 n D o0
=D Vi BNOL), In=4 30 Cov (Vi Yionn).
t=1

h=—o0
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As in [20] (see Lemma 3), one can show that I = lim,, ,« I, exists. Since || Z; |2 — 0 at an
exponential rate when m — oo, using the arguments given in [20] (see Lemma 4), one show

that
n
lim limsupP { n=1/2 Z Zt.m
m—=00 n—oo —

for every £ > 0 (see the following lemma A.4). From a standard result (see e.g. [11], Proposition
6.3.9), we deduce that

>€} =0 (67)

1 < 2 o« 2 «— D
Y VOu,(00) = —=> Vim+—= > Zim — N(0,I),
\/ﬁ t=1 \/ﬁ t=1 \/ﬁ =1
which completes the proof. O

Lemma A.4. Under the assumptions of Theorem 3.8, (67) holds, that is

n
n V2N Zy | > 5} = 0.
t=1

Proof of Lemma A.4: For [ =1,...,(p+ ¢)K, by stationarity we have

lim limsupP {
m—=00 n—oo

p— 4 &
Var <% ;Zt,m(z)> = - > Cov(Zim (1), Zom (1))

t,s=1

_ % S (= [W)Cov(Zem (1), Zi-nm (1)
|h|<n

< 4 Z |Cov(Ztm (1), Zt—nm(1))] -

h=—o00

Consider first the case h > 0. Because Esupgce(cji(0o, Ar—1,...,A¢—;))? < kp’ (see 13),
using also Ele;|* < oo, for [h/2] < m, it follows from the Holder inequality that

sup [Cov(Zim(l), Zinm (D) = sup [E(Zim (D Z—nm ()] < wp™ (68)
Let h > 0 such that [h/2] > m. Write

Zin = 2 (D) + 20 (),

where
) [h/2] . 00
th,Lm(l) = Z Cj,l(e()aAt—la"'7At—j)€t€t—j7 th,Lm(l) = Z ch(HO,At_l,...,At_j)etet_j.
Jj=m+1 j=[h/2]+1

Note that Zf;n(l) belongs to the o-field generated by {A;—1,..., A /9, €5 €61, > €—[n/2)}
and that Z;_j, (1) belongs to the o-field generated by {A;_p—1,A¢v—p—2, ..., €—h, €—p—1,.-- }-
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Note also that, by (A3), E|Zg,;(l)|2+” < oo and E|Z;_j (1) < 0o. The a—mixing prop-
erty and Lemma A.l then entail that
[h/2] 0o
Cov (2L, (1), Zy— hm(l))‘ < Z Z lej (00, A1, Dymp—jr)
j=m+1j'=m+1
X HC]' 1(00, At—h - At_j)etet_jH2+V [QA,E([h/Q])]V/(QJFV)
[h/2] oo

< w oy Y P [l (ny2) + o ()2)]

j=m+1j'=m+1
ko™ [t/ ([nj2)) + o T ([/2)] (69)

IN

By the argument used to show (68), we also have
Cov (2l ), Zunm(D)] < oo™ (70)

In view of (68), (69) and (70), we obtain
> 1CMZum 1), Zo (D)) < wimp™+ S {p" o™ + p™ [/ ([0/2]) + X ET([n/2])] b = 0
s —

as m — oo by (A2). This implies that

2 n

We have the same bound for h < 0. The conclusion follows from (71). O

Lemma A.5. Under the assumptions of Theorem 3.8, almost surely
V2Qn(00) — J, n — oo,
where J exists (is given by (18)) and is invertible.

Proof of Lemma A.5: For all [, rin 1,...,(p+ ¢)K, in view of Proposition 3.5, we have
almost surely

82
00,00,
Thus 92Q,,(00)/06,00,. and 920,,(0)/90,00, have almost surely the same asymptotic distri-
bution. From (9) and (13), there exists a sequence (c; (0, At—1,...,Ar—i));cy such that

(Qn(0o) — O, (6p))| — 0, as t — co.

0%e,(0 >
89;9(,9 ; il (0, A1y A )er—; with E(ci (6, Apry .oy Ag z)) < Cp', Vi. (72)

This implies that 0%¢;(0)/06,00, belongs to L?. In the other hand, we have
9%20,(0) 2 — a e (0 Der () Oey (0
06,06,  n ; () aelae Z a6, 80

82615( ) a€t( )8615( )
— QE(et(6)89189T>+2E< 20, 06, >,asn—>oo,
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by ergodic theorem. Using the uncorrelatedness between €;(6y) and the linear past H.(t — 1),
Dei(00)/00; € He(t — 1), and 0%€(09) /00,00, € H(t — 1), we have

920,,(6) 0et(6p) Oet(6p)
E(———)=2E| —+— =J(l,r). 73
( 90,00, ) ( 90, 90, > (m) (73)
Therefore, J is the covariance matrix of v/20¢(0y)/00. If J is singular, then there exists a
vector ¢ = (c1, ..., C(p+q k) 7 0 such that ¢’Je = 0. Thus we have
(r+a)K
Z Ck 8€t =0, a.s. (74)

Differentiating the two sides of (4) yields

P (p+9)K Des(0 q (p+q) K Der5(60) q
=D Bt = Y, T =S 8 Y ) (g (B o) )
i=1 k=1 k =1 1 k =
where
(p+9)K (p+q)K b
a\ * 8 z'a A 70 * ag(At)GO)
(6 (Anto) = 3 Ck%;o) d (6))'(Beb0) = 3 L
k=1 k=1

Because (74) is satisfied for all ¢, we have

p q

D (G (A, 00)Xei =Y (98" (Ar, 00)er—; (60).

=1 j=1

The latter equation yields a RCARMA(p — 1, g — 1) representation at best. The identifiability
assumption (see Proposition 3.1) excludes the existence of such representation. Thus

(r+9)K (p+9)K
s g3 (A, 6 dg" At,eo)
7@t = Y a2 g and (g (a0 = > g =0
k=1
and the conclusion follows. O

Proof of Theorem 3.8: For all 7,5,k =1,..., K(p+ q) we have
330,,(0) 2 — D3ei(0) 2 o [ Oe(0) 0%€:(0)
90;00;00,  n ; {Et(e)ae 90, aek} T tz { 90, aejaek}
82675 86,5 0) 2 - 8et(0) 82675(0)
) Z{aeae 265 }+E;{ 20, ael-aek}‘
Using the ergodic theorem, the Cauchy Schwarz inequality and Lemma 3.4, we obtain

930, (0)
00,00,00),

sup sup < ~00. (75)

n 0cO
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In view of Proposition 3.5, we have almost surely

83
228 m (Q”(H) B On(e))' — 0, as n — oo.

Thus 82Q,(0)/00;00;00), and 620,,(0)/90;00,;00, have almost surely the same asymptotlc

distribution. In view of Theorem 3.6 and (A4), we have almost surely 6, — 6 €0. Thus
VQn(0y) = Ogp+qx for sufficiently large n, and a Taylor expansion gives for all r € {1, ..., (p+

K},
0= Vit Qul00) + Q07,1 (= 0o) (76)

where 67, . lies on the segment in RP+DK with endpoints 0,, and 6. Using again a Taylor
expansion, Theorem 3.7 and (75), we obtain for all [ =1,...,(p+ ¢)K,
< supsup

ipsup V<6elae >H 1657 = 6ol

— 0 a.s.asn — oo.

OQQH(H;;,T) . 82 Qn(HO)
00,00, 00,00,

This, along with (76), implies that, as n — oo

Jn (én - 60) = — [V2Qu(00)] " \/E&Qgié%) + op(1).

From Lemma A.3 and Lemma A.4, we obtain that \/ﬁ(én — 6p) has a limiting normal distri-
bution with mean 0 and covariance matrix J—'7J~!. O

A.5. Proofs of Theorem 3.10

The proof of Theorem 3.10 is based on a series of lemmas.
Consider the regression of Ty on Y, _1,..., Y, defined by

.
= Z D, Th i+ Upy, Upp L{Ti—1 - Tyr}. (77)

i=1
If Yy,...,7, were observed, the least squares estimators of ®, = (®,1---®,,) and %, =

Var(u,;) would be given by

9

A A A 1 v !
ir = ETvIrEIi and Eﬁr = E Z (Tt - irlr,t> (Tt rlr t)

where X, , = (Y;_; - T}_,),

ZTt 7t EIT:%ZIMI;#
t=

with by convention Y; = 0 when ¢ < 0, and assuming XAIL is non singular (which holds true
asymptotically).



Y. Boubacar Mainassara and L. Rabehasaina/Estimating weak RCARMA models 36

Actually, we just observe Xi,...,X,. The residuals ¢ := e4(f,,) are then available for
t = 1,...,n and the vectors T, obtained by replacing 6y by én in (20) are available for
t = 1,...,n. We therefore define the least squares estimators of ®, = (®,;---®,,) and
Y., = Var(u,¢) by

with by convention T, = 0 when ¢ < 0, and assuming f):r is non singular (which holds true

asymptotically).
In the sequel, we use the multiplicative matrix norm defined by
1A = sup [|Az| = o'/*(A'A), (78)
llz]<1

where A is a C1*% matrix, ||z||> = 2/Z is the Euclidean norm of the vector 2 € C%*! and
o(+) denotes the spectral radius. This norm satisfies

|A? < Za?’j, when A is a R4*% matrix (79)
i?j

with obvious notations. This choice of the norm is crucial for the following lemma to hold
(with e.g. the Euclidean norm, this result is not valid). Let

=t

. 1< .
Svx, = EY.X,,, Xy =EY,T, Xy =EY, Y ET:EZTJ;.
t=1

In the sequel, C' and p denote generic constant such as K > 0 and p € (0,1), whose exact
values are unimportant.

Lemma A.6. Under the assumptions of Theorem 3.10,

[z} <o

|12,

Sup max { HETaL
r>1

Proof. The proof is an extension of Section 5.2 of [25]. We readily have

B, 2l < 2x, .,

(@', Opyqyi)' Il and [ Zx 2]l <2y, (0fpsgypc 2l
for any z € REP+0" and 0,1k = (0,...,0)" € RP+DK_ Therefore
0 < [[Var (To)ll = [|Zx, || < |[£x, ]| < ---

and

9

=, || < HELH
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so that it suffices to prove that sup, >, HEL H and sup, > HZFH are finite to prove the result.
Let us write matrix ¥y in blockwise form

S, =[0G =) jmr,.rr Ck) =E(ToY}) € REETOEE+D) ke 7,
Let now f : R — CK®+OxK(@+9) he the spectral density of (Yy)sez defined by
1 « :
flw)= o pa C(k)e“k, weR.

A direct consequence of (20) and Lemma A.2 is that f(w) is absolutely summable, and that
supyeg || f(w)|| < +oo, for any norm ||.|| on CKP+O*K®@+a) (in particular, one which is inde-
pendent from r > 1). Another consequence is that one has the inversion formula

™
Ck)y= [ f(x)e **de, VkelZ. (80)
—
Last, it is easy to check that f(w) is an hermitian matrix for allw € R, i.e. f(w) = f(w)’, where
/ /
Z is the conjugate of any vector or matrix z with entries in C. Let then (") = (5@ yeees 57@ > €
R E@+0)x1 he an eigenvector for Yy , with 5](-T) e REW+o)x1 5 — 1 7 such that |60 =1

and )
5) Elré(’") - HELH =0 (EL) , (81)

where ||Sy || is the norm of matrix Yy defined in (78). One then checks that

5(1" ET 5 Z 5 (r / (Z 5 z(m 1z > f(x)<i 6%)ei(m—1)x>d:€’

i,7=1 m=1
(82)
the last equality a direct consequence of (80). f(z) being hermitian, (X,Y) € CK@Fax1
CE@+a)x1 y X/ f (7)Y defines a semi definite non negative bilinear form, hence one has for
all z € R and X e CE@+ax1,

0< X'J(#)X < /()| X'X < sup | ()| X'X.

Let us point out that sup,,cp || f(w)|| is a quantity which is independent from > 1. We deduce
from (82) and the previous inequality that

! T
5(T),EL5( ) < Supr ||_/ (Z §(r) gilm— m) (Z 5%)ei(m1)z>d‘r. (83)
m=1

A short computation yields that

" (i 50 gilm— > (Z 6 gi(m—1)z )d:c— 25(1" '50) = 1502 = 1,
T \m=1

which, coupled with (81) and (83), yields that ||Sy || < sup,cg ||f(w)]| < 400, an upper bound
independent from r > 1. By similar arguments, the smallest eigenvalue of Yy is greater than

a positive constant independent of 7. Using the fact that |[Sy|| is equal to the inverse of the
smallest eigenvalue of ¥y , the proof is completed. o
The following lemma is necessary in the sequel.
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Lemma A.7. Let us suppose that (A1) and that Stationarity condition (8) for v =16

32 ¢ 32

[Tw@)

i=1

t

[Te.0)

i=1

<0

1
<0, limsup n InE

t—o00

1
(A6)limsup — InE | sup
t—o0 1 0co

hold. We assume that ¢, € L**8. Sequences (e;(0))iez and (e;(0))iez satisfy

1. l[suppee leo(@)ll1g < +00 and supyo lIsuppee ler (@)l < +20,

2. |[supgee le:(0) — e(0)]]], tends to O exponentially fast as t — oo,

3. For all a > 0, t* supgeg |€:(0) — €1 (0)] — 0 a.s. as t — oo,

4. Forall j = 1,2,3, |[supgee [[VZeo(0)]||] 5 < +00, supi |[supgee Ve (O)]]|] 5 < +oo
and one has t* ||supgeg ||V (er — Et)(0)||||16/5 — 0, ast — oo for all o > 0.

Proof of Lemma A.7 is similar to the proofs of Lemmas 3.3 and 3.4. O

Denote by Y¢(i) the i-th element of Y.

8+4v

Lemma A.8. Let (¢;) be a sequence of centered and uncorrelated variables, with E |e| < 00

and Y ;7 [ae(h)]y/(QJrV) < 00 for some v > 0. Then there ezits a finite constant Cy such that
formy,mo=1,...,(p+q)K and all s € Z,

> 1Cov{Y1(m1)T1ys(ma), Yipn(m1) Tapssn(ma)}| < Cr.

h=—00
Proof. Recall that

8et (00)
00,

= > b, Arv,. . A i)er s, forl=1,...,(p+ K, (84)
=0

where Ci((go, At—l, ey At—i) is defined by (10) and Civl(eo, At—la ey At—i) = 8@(90, At—h ey At_i)/aé?l,
and with the following upper bound holding thanks to (14):

Esup(ci(0, Ar_1,...,Ar))* < Cp’ and Esup(ci (0, Ay_1,...,0))* < Cp', Vi
00 9o

Let

Yigit sk (M1, m2)(0o) = Elcim, (0o, A1, s Ari)Cims (00, Dtrs—15 - Dpys—j)
X Cit iy (00, Dih—1, - - - Disn—ir)Cjrmy (B0, Dtgrssh—1,- -+ Dirsinyj)]
X COV (€1€1—i€14 s€tts—js €t+hEt+h—if Etts+h€tts+h—j’ )
+Cov (Cimy (00, At—1, -+ oy Ar—i)Cjma (00, Digs—1, -, Digs—j),
Cirmy (00s Atph—1, -+« Dtpn—ir)Cjrmy (00, Dtgsth—1s-- - At+s+h—j’))
X [er€1—i€tts€ys—j) B [€r4n€irh—is €tpsrh€itsth—jt] - (85)

The Cauchy Schwarz inequality implies that

UE[Ci,ml (905 Atfla ceey Atfi)cj,mg (90) At+871) R At+s,j)
Xty (00, Dtn—1, - - oy Dpsh—i1)¢j o (00, Dsin—1, - - -, Dpysin_jr)]| < CpHITiHi(g6)
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In view of (84) and (85), we

have

Z Cov{Y1(m1)Y14s(m2), Tixn(m1)T1rsin(me)}

h=—o0

oo o0 o0 X

= 16 Z ZZZZ’Y@,]Z] shmlamQ)(QO)

h=—o00 1=0 j=014'=0 j'=0

39

Without loss of generality, we can take the supremum over the integers s > 0, and consider
the sum for positive h. Let mg = m1 A mg and Yy j, = erer—p, — E(erer—p, ). We first suppose

that h > 0. It follows that

oo o 0 o0

2.2 2.2 [C

i=0 j=01/=0j/=0

Ci/7m1 (607 At+h717 s

ov (Ci7m1 ((90, At—h .

< vy +vy+v3+v4+ s,

‘COV (c2§ ctts ctth ct»+h+8)

where

vy =wvi(h) =

veg =wv9(h) =

vz =wv3(h) =

vy =wvg4(h) =

vs =v5(h) =
where
One immediate remark is that c Z
Since
we have

v =

[c o lNNe S B¢ o)

3 Zzz\cw (clnye

i>[h/2] 7=04'=0j'=0

Z Z Z Z ‘COV (cﬁm1
i=0 j>[h/2]i'=0 j/=0
>3 > > |cor

t
i=0 j=0i'>[h/2] j'=0 (
(

CZ ,m1

[ oluNNe eRENe o]

>33 3 [cor

1=0 j=014'=0 j'>[h/2]
[h/2] [h/2] [R/2] [h/2]

t

CZ ,M1

) At+h7i/)cj/,m2 (607 At+s+h717 e

t+s t+h
jm2’ z ,mi ] mo

t+s t+h t+h+s
sz’ z ymi J , M2

t+s t+h t+h+s
]mg’ z ,mi ] ,m2

t+s t+h t+h+s
]mg’ z ,mi ] ,1m2

t o otts otth (tthis
2,200 Cov (el i b, o515

=0 j=0 i'=

t
C; =Cz‘17m(90,At_1,...

i1,m

,m

t,m1 7 gme? i my g ma

i>[h/2] 7=04'=0 j'=0

) At—’il )

is measurable with respect to A, r € {t — 1, ...

g
< szJrz +j+7 ,

c A i) Cjma (00, Dgs—1, - -

) At+s+h7j’)) ‘

t+h+s)

)
)|
)|

oo
t t+s t+h _t+h+s h/2
> ZZZ(COV( o, Sl )| < g2,

t—ip).
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for some positive constant x;. Using the same arguments we obtain that v;, ¢ = 2,3,4 are
bounded by k;p/2. The a—mixing property (see Theorem 14.1 in [13], p. 210) and Lemmas
A.1 and A.7, entail that

[h/2] [h/2] [h/2] [h/2]

_ L Gbts  obth othhts
v = 30D D0 |Cov (el el el e

1=0 7=0 ¢/=0 j'=0

<Y Y wfe

k=1 (i,j,i/,j/)ECk

t t+s

t ct+h t+h+s
©,m1 7 j,ma i ma g ma t,m1 7 g,me i my g ma

v/(24+v)
{j (ct cits ctth Ct+h+s)} ’
2+v

24v

where «(U, V') denotes the strong mixing coefficient between the o—field generated by the
random variable U and that generated by V and where

C1=Ci(h) {G,5,7,5) € {0,1,...,[h/2}* i>j—s, § <i' + s},
Co=0Co(h) = {(i,5.7,5)€{0,1,....[n/2]}* 1i>j—s, j >i +s},
C3=0Cs(h) = {(i,.7,5)€{0,1,...,[n/2}* i <j—s, j <i+s},
Ci=Cus(h) = {(i,4,7,5)€{0,1,....[h2}i<j—s, j > +s}.

One checks easily that c! oy ztsQ and c?j}t 1c§+fn+5 are respectively measurable with respect to

Ar,re{t—z,...,t+5—1} and Ar,re{t i+ hy....,t +h+s—1}. For (i,5,7,5") € C1, we
have t —i <t+s—j,t+h—4i <t+h+s—j and we thus deduce that

tt t+h _t+h y y
‘a (ci7m1cjj;22,c;”mlcj7fm’;5>‘ < aa(h—i'—=s+1), Vh>i+s—1,
t s t+h tthts , ,
‘a (ci’mlcj’mQ,ci,mlcj/m2 )‘ < apa(—ti—h—-s+1), Vh<—i—s+1,

‘a(ct clts bt ct.+h+5>‘ < aa(0)<1/4, Vh=—i—s+1,....7 +s5—1.

1,m1 7 jme? i my T me

Note also that, by the Holder inequality,

t t+s t+s i+J
‘szl ]mg = H zm1H4+2,, j,ma e SCP .
Therefore
o0
v/(24v)
Z Z ‘ el otts clth tth+ts { o (Cz§ cbts ctth c;+h+s>} ’
2+4v

1,m1 " j,mo i'ymy 5 ma t,m1 7 jme? i my T me

24v
h=0 (4,5,i",5)€C1

< Z P aEasacs (z +25—1+z+20z1’/ 24) (T)) < 0.
0,J:4',3'=0 r=0

Continuing in this way, we obtain that ;7 vs(h) < co. It follows that

[c.ole e cAlN¢ S ENe o)

ZZZZZ ‘COV Cimy 007At 1s-- 7At—i)cj,m2(007At+s—17"'7At+s—j)7

h=0 i=0 j=01i'=

Ci/,m1 (007 At+h717 ey At+h7i/)cj’m’L2 (007 At+s+h717 ey At+s+h7j/)) |

co 5
Z sz‘(h) < 0. (87)

h=0 =1
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The same bounds clearly holds for

oo o 0 o0

Z ZZZZ ’COV Cimy eo,At 1,...,At_z‘)cj’rm(eo,AH_S_l,...,AH_S_]'),

h=—o00 1=0 j=014'=035'=0

Ci’,m1(007 At+h—17 cee 7At+h—i’)cj’,m2 (907 At+s+h—b cee 7At+s+h—j’))| < 00,

which shows that

oo o 0 o0

Z ZZZ Z |COV C; m1 Qo,At 1,...,At,i)cj"mQ(eo,AtJrs,l,...,AtJrs,j),

h=—oc0 1=0 j=01i'=

cit;my (6o, At+h717 s Dheir) € mg (00, Apssin—1, - - s Dpgsin—jr))| < 0.

A slight extension of Corollary A.3 in [24] shows that

[e.9]

Z |Cov (Y1, Y1455, YithirYitsthi)

h=—00

Because, by Cauchy Schwarz inequality

IE [eser—i€tsserrs—s]] < Ele]* < o0

8-+4v

by the assumption that E |e;| < 0o and in view of (86) it follows that

Z |Cov {Y1(m1)Y145(m2), Lipn(m1)Tipsrn(me)}

h=—00
0o 00 00 00 0o
gy
< KDY DDA Y |Cov (ViaYives VivnaYits i)
i=0 j=0 i/=05'=0 h=—00

oo o 0 o0

+I<& ZZZZ Z |COV sz1 Qo,At 1,...,At,i)cj"mQ(eo,AtJrs,l,...,AtJrs,j),

1=0 j=04'=035'=0 h=—00

cit my (o, At+h71, e D he )€ mg (00, Apsin—t, - - s Aprsin—jr))|

The conclusion follows from (87) and (88). O

Let Sy be the matrix obtained by replacing T, by Y, in i];f.
Lemma A.9. Under the assumptions of Theorem 3.10, \/FHEIT — Yy I, V7l[Ey = S|, and
\/FHEA]T’IT — Yy .y, || tend to zero in probability as n — oo when r = o(n'/3).

Proof. For 1 < mj,my < K(p+q) and 1 < ry,7y < r, the element of the {(r1 — 1)(p + ¢) K + m; }-
th row and {(ro — 1)(p + ¢)K + ma}-th column of ¥y is of the form n~' Y} | Z; where
Zt := Zy ) ro(mi,ma) = Ty (m1) Yy, (Mm2). By stationarity of (Z;), we have

n n—1
1 1 C
ar (E t:E 1 Zt) = ﬁ E (n — |h|) COV (Zt, Zt_h) S n1) (89)

h=—n-+1
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where, by Lemma A.8, (1 is a constant independent of rq, 79, m1, mo and r,n. Now using the
Tchebychev inequality, we have

v8 >0, P{VFIEr, ~ 11> 8} < ZE {r|Er, - I}
In view of (79) and (89) we have

E{r|$y - 512} <E{r|Srx, - Srr 7}

K(p+a)r n 2 2..3
- 1 Ci1K=(p+q)°r
E {THZL - ZLHQ} <r > Var (E ;1: Zt> < (pn 7T _ o(1)

mi,ma=1

as n — oo when 7 = o(n'/3). Hence, when r = o(n!/3)

VilIEr, = Sr [l = oe(1),
VrlIEr = r| = op(1) and V7|[Erx, — S, || = op(1).

The proof is complete. [
We now show that the previous lemma applies when Y; is replaced by Y.

Lemma A.10. Under the assumptions of Theorem 3.10, \/?HEA]T — ¥ ||, ﬁ”f]T — Y|, and

ﬁ”fiT + — Xxx, || tend to zero in probability as n — 0o when r = o(n'/3).

Proof. We first show that the replacement of the unknown initial values {X,, u < 0} by
zero is asymptotically unimportant. Let ¥y be the matrix obtained by replacing e;(6,) by

e(6,) in iir' We start by evaluating IEHEA]L - EIMHQ- We first note that

N 1 n )
Eir N EIT " [E Z Ap—it—i' ;m1,mo (en)]
t=1

for i,/ =1,...,rand my,ms =1,..., K(p+ q) and where

es—i(0,) Des—y (6,,) Oer—i(0n) Der_v (0)

at—i,t—i’,ml,mg(én) = et—i(én)et—z"(én) _ftfi(é )Gt i’ (é )

0, OO, O 0O,

Using (79), we have

r K(p+q)

2
A . 1 & R
ST VD S L) PSS §

i,i'=1m1,ma=1

We thus deduce the following L? estimate:

K(p+q)

BS, ~Sp P < Y Y

i,i'=1m1,ma=1

1 — ?
E Z at—i,t—i’,ml,mg(en)

K(p+q)

Z Z ZH% it—i’ m1,m2(é )

i,i'=1m1,mz=1 t=1

IN

)
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by Minkowski’s inequality. Thanks to Holder’s inequality:

ZAt i,t—i’;m1,ma’ With

Hat i,t—1i’ m1,m2 0

Oey (0 2
Atl_i,t_i/’mlm = ||sup|e—i(0) — €:—i(0)||| sup ||sup|e.(d)] (sup sup 52) )
0cO® 4 t>0 [[0€O 12 \t>0 [[#cO 12
ey (0 2
A?,Ltﬂ-/’ml,m = ||sup | (0) sup |e;_q(0) — €,y (0)] (sup sup % )
0cO 12 110€© 4 \t=0 |[0cO 12
2
0 Oey (0
At zt d ,mMm1,m2 = < Sup‘Et(e)‘ ) Sup an (et—’i(e) - et—’i(a)) Sup Sup t( )
0co 16 veo || 00 16/5 t=0 116€© o0 16
2
Oey (0 0
Al = ([sunla@] ) s |52 | Jsop | 5 oo cvion] |
0cO 16 0€O 00 6 110€© 00 16/5
We deal with A} and A? as A3 and A% are dealt

tztzm1m2 t—i,t—i’,;m1,ma?
with similarly. In view of Lemma A.7, one has

t—i,t—i’,;m1,ma t—i,t—i’,m1,ma2

n

n
1 1
— E Al . ., < K- E
n t—i,t—1i' ;m1,mo n

t=1 t=1

n—r

0D
n

t=1

sup |eq—i(0) — €—i(0)]
CSC)

4

IN

sup e (0) — €(0)]
9o

+r
4

sup |eo(6)]
6O

J=0Gi) =00,

independent from ¢, 7', m; and ms. Similarly, one has

1< 9
1 < Ka— su et—i(0) — e—i(0
Z —ht=tmi,my = Bn; 068 ae(t )= i) 16/5
< 1(; oup |2 (i) )
< K3— 99 \ V) T
n \ i lleco o6 16/5

+7r||su
fcO

Oep(0)
00

B EIGHRIG!

because 3% [|supgee |10 (€:(60) — e (0 ))/39||H16/5 < 00 and |[supgeg [|0€0(0)/90][|,5,5 < o0
(see Lemma A.7, Point 4). Gathering A! A? A3 and A7}

t—i,t—i’ ,;m1,ma’ t—1i,t—i’ ;m1,ma’ t—1i,t—i’,;m1,ma
we arrive at

t—i,t—i’,;m1,ma?

r  K(p+aq) 2 2 !

N S 2 2

B8y Sn € XY (DX M) =0 (2} =0 (%).
1,i/=1m1,mz=1 tl]l

We thus deduce that

VillSy =Sy, [l =op(1), when r =r(n) = o (n*°). (90)
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We now prove that
VIlISx, = S || = 0p(1), when r = r(n) = o (n'/%).
Taylor expansions around 6y yield

Der(0n)  Oer(o)

00, op. | =5m)

eu(fn) — e(00)| < 70 | ey

with 7y = supgeg [|0€:(6) /00|, s¢(m) = supyee ||0%€:(0)/0000r, || where m = my = my. Define
Zy as in the proof of Lemma A.9, and let Z;,, be obtained by replacing Y¢(m) by T ,(m) =
€¢(0,)0¢,(0,,)/00,, in Z;. Using (91), for i,i' = 1,...,r and m1,my = 1,..., K(p+q), we have

Z z,t—i’,ml,mg’(92)

6€t—i(én) 861‘/,@'/(&”) Oe;— 1(00) Oy Z’ 00

er—i(0n)er—iv (0r,) — €r_i(B0)er_ir (6)

00 00y DO O,
with
Dera(0)]  |Deru(6)
1 t t—1
Blietmms = 1ot ol gl O g T = oup| 55
i Deri(0)] | Der_y(0)
B2, i omims = Tt—il Hn—Husu er—i(0)|su : su !
e o5 O g, 158|000,
Oe i 0
B it vmms = Si-i(mi) | sup lec—i(0)] sup ler—s (0)] sup —”‘
9e6 9eo 0o | Obm,
86 —3 0
B it myme = St—ir(M2) Hsup\et_i(e)\sup]et_i/(e)\sup =i )‘
be 6co oco | 00nm,

We deal with Bt and B2 as B3 and B4 are dealt

t—i,t—i’ ;mi,mo tztzm1m27 tztzmlmg

with similarly. We note first that, forall i =1,... 7,

t—i,t—i’,m1,meo

— 0 n—i
1 , 1
— sup |e;— = — sup |e.(0)]" = — sup |e.(0)]" + — sup |e.(6)
tz;eee Z n Z ;0€0 ntzlzieee n;eee
rl 0
< ZL S plaf®+ LY suplafo)
nr., .-, 0€0 n =] 6eo

4

sup |eo(6)]
0cO

+ Op.s.(1)> : (93)

Il
—

| 3

+

—
~—
N

4

by ergodic Theorem. Similarly to (93), one has

O < (241) f

By the Cauchy-Schwartz inequality and using (93) and (94), we have

n 4

= s

196@

aet i Oep(0)

00,

4
+ op.s_(1)> . (94)

4

96@

r  K(pt+q) n

Z Z Ztltlmlﬂm

1,4/ =1 m1,ma= 1

2w =] (= +1)° (1 + 00 1)

IN

| 0@ (k1 + 0,1,
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when 7 = o (n1/3) and for some constant x; > 0. Similar inequalities hold for Bfﬁi b it g
for j = 2,3,4. We thus deduce from (79) and (92) that

~ ~ ~ 2
S, = Sx 2 < 2|6, 60| Op(1). (95)

Since /n (én — 60) converges in distribution, a tightness argument yields 0, — HOH =

Op (n*1/2) and hence from (95), we obtain for r = o(n!/?)
VrSy,, — S, | = op(1). (96)

By Lemma A.9 , (90) and (96) show that \/F||flT — Yy || = op(1). The other results are
obtained similarly. O -

Write @5 = (P --- ®,) where the ®;’s are defined by (22).
Lemma A.11. Under the assumptions of Theorem 3.10,
Vr (1@ @, 0,

as r — o00.

Proof. Recall that by (22) and (77)

o0
T = B0, +u =20, + > BT u =8,
i=r+1

Hence, using the orthogonality conditions in (22) and (77)
o -2

r - =r

= S, By (97)
where Xy = Euﬁvtl’m. Using arguments and notations of the proof of Lemma A.8, there
exists a constant C5 independent of s and mq, mo such that
o0
E[T1(m1)Y1s(ma)| <C1 > p" 2 ef < Co.
h1,ha=0
By the Cauchy-Schwarz inequality and (79), we then have
|Cov (Tomyony T, p) || < Cor2K (p + q).

Thus,
o0 o
IZuze, o= 1D PEYX <Y 1R rgnll [|Cov (Yemron, Loy |
i=r41 h=1
(o]
= o)y ||@rall (98)
h=1

Note that the assumption ||®;|| = o (:72) entails 7 Y52 ||®,41] = o(1) as r — oo. The lemma
therefore follows from (97), (98) and Lemma A.6. [

The following lemma is similar to Lemma 3 in [6].
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Lemma A.12. Under the assumptions of Theorem 3.10,
1 —1 —1
VS -5l = on()

as n — oo when r = o(n'/3) and r — oco.

Proof. We have

&—1 -1
|82 -5z

o1 1 1 N .
Iz ==+ =) 22, —=x.

Iterating this inequality, we obtain

=5

IN

7 7

< ==

-1
ZL

1 —1 -1
55 -2y

oo

) HEL — 2,
i=1

Thus, for every € > 0,

P(vr[8g-22 > <)

2~
=2 =, — = : 1
< p| Al T2 L > e and HET —ELH Hz; <1
1= gy —=e | =z ’
2 (v, -3 =] 2 0)
. €
< P V|8 -3x > — :
L I s
. -1
+p (VP [5y, -5 2 52 ) o)
by Lemmas A.9 and A.6. This establishes Lemma A.12. O
Lemma A.13. Under the assumptions of Theorem 3.10,
VT || @, — || = op(1)
as v — oo and r = o(n'/3).
Proof. By the triangle inequality and Lemmas A.6 and A.12, we have
=20 <[5 =2 + =] = oe) ©9)

Note that the orthogonality conditions in (77) entail that ®, = ETQTE?. By Lemmas A.6,
A9, A.12, and (99), we then have

N e

- l(5es, 7o) 57 o, (57 5 =t
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]
Proof of Theorem 3.10. In view of (21), it suffices to show that ®,.(1) — ®(1) and 3, — 2,
in probability. Let the r» x 1 vector 1, = (1,...,1) and the r(p + ¢)K X (p + ¢)K matrix
E, =[x ® 1, where ® denotes the matrix Kronecker product and I; the d x d identity
matrix. Using (79), and Lemmas A.11, A.13, we obtain

T T o
&) -20)| < |3 (dri— @)+ | X @@ +| Y @
i=1 i=1 i=r+1
o0
= (& -2)E|+I@-2)E )+ | Y @
i=r+1
o0
< Vor oV {||g -2+ 12 -2+ || Y @
i=r+1
= O]p(l).
Now note that .
Y, = Xg - @04

and, by (22)
Yy = FEuw)=FEuY,=E { (Tt — Z <I>Z-Tt_z~> T;}
i=1

o0 o0
= Sy-— Z ®EY, Y =Sy — &%y — Z O;EY,_; Y}
=1 i=r+1

Thus,

..

= [[Be e ()

o
- (EAYTT - ELrgf) + Z O;EY,_; Y}
- i=r+1
|55 = 20| +||(& - 21) (B~ Shr,)

+ H (Qr - g::) E’T&H + ]g: (igf .

—=—r

IN

|

- Egr,xr)

+ Z OEY, ;Y| . (100)

i=r+1

In the right-hand side of this inequality, the first norm is op(1) by Lemma A.9. By Lemmas A.11
and A.13, we have ||®, — ®7|| = op(r~'/?) = op(1), and by Lemma A.9, HE’?ET - E/T,LH =

op(r~/2) = op(1). Therefore the second norm in the right-hand side of (100) tends to zero in
probability. The third norm tends to zero in probability because ||®, — ®)|| = op(1) and, by
Lemma A.6, [|[X y || = O(1). The fourth norm tends to zero in probability because, in view
of Lemma A.9, Hi]’TL — E/T,LH = op(1), and, in view of (79), ||®]|? < 3°0°, Tr(®;®) < occ.
Clearly, the last norm tends to zero, which completes the proof. [J
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