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Abstrat: In this paper we derive the asymptoti properties of the least squares es-

timator (LSE) of autoregressive moving-average (ARMA) models with regime hanges

under the assumption that the errors are unorrelated but not neessarily independent.

Relaxing the independene assumption onsiderably extends the range of appliation of

the lass of ARMA models with regime hanges. Conditions are given for the onsisteny

and asymptoti normality of the LSE. A partiular attention is given to the estimation

of the asymptoti ovariane matrix, whih may be very di�erent from that obtained in

the standard framework. The theoretial results are illustrated by means of Monte Carlo

experiments.

AMS 2000 subjet lassi�ations: Primary 62M10, 62F03, 62F05; seondary 91B84,

62P05.

Keywords and phrases: Least square estimation, Random oe�ients, weak ARMA

models.

1. Introdution

Sine the works of Hamilton (1988, 1989) and Niholls and Quinn (1982), the time series

models with time-varying oe�ients have beome inreasingly popular. In statistial appli-

ations, a large part of the literature is devoted to the non-stationary autoregressive moving-

average (ARMA) models with time-varying parameters (see Azrak and Mélard (1998, 2006);

Bibi and Franq (2003); Dahlhaus (1997)), see also the lass of ARMAmodels with periodi o-

e�ients (for instane Anderson and Meershaert (1997); Basawa and Lund (2001)). But the

most popular lass deals with the treatment of regime shifts and non-linear modeling strategies.

For instane, a Markov-swithing model is a non-linear spei�ation in whih di�erent states

of the world a�et the evolution of a time series (see, for examples, Franq and Roussignol

(1997); Hamilton (1990); Hamilton and Susmel (1994)). The asymptoti properties of Markov-

swithing ARMA models are well known in the literature (see, for instane, Billio et al.

(1999); Franq and Roussignol (1998); Franq and Zakoïan (2001, 2002); Kim and Kim (2015)

or Hamilton (1994)).

The fat that hanges in regimes may be very important for the evolution of interest rates

has been emphasized in a number of reent studies. Our attention here is foused on the lass

of ARMA models with regime hanges (ARMARC for short); for instane, ARMAmodels with

reurrent but non neessarily periodi hanges in regime. We onsider a time series (Xt)t∈Z
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exhibiting hanges in regime at known dates and we suppose that we have �nite regimes. Con-

trarily to the famous Markov-swithing approah, we assume that the realization of the regimes

is observed. Suh a situation may be realisti, and would orrespond e.g. to time series with

periods of harsh and mild weather whih are observed in pratie. This model ould also be

applied to eonomi time series whose behaviour depends on worked days and publi holidays,

whih are known in advane. Another motivating example would be �nanial times series,

where regimes orresponding to typial known major events leading to high and quiet (low)

volatility subperiods are observed, see e.g. Figure 1.2 p.7 in Franq and Zakoïan (2010) where

the high volatility lusters orresponds to largely famous events suh as September 11th 2001

or the 2008 �nanial risis. Another example an be found for instane in Franq and Gautier

(2004b).

For suh models, Franq and Gautier (2004a,b) gave general onditions ensuring onsisteny

and asymptoti normality of least squares (LS) and quasi-generalized least-squares (QGLS)

estimators under the assumption that the innovation proesses is independent. This indepen-

dene assumption is often onsidered too restritive by pratitioners. Relaxing the indepen-

dene assumption onsiderably extends the range of appliations of the ARMARCmodels, and

allows to over general nonlinear proesses. Indeed suh nonlinearities may arise for instane

when the error proess follows an autoregressive onditional heterosedastiity (ARCH) intro-

dued by Engle Engle (1982) and extended to the generalized ARCH (GARCH) by Bollerslev

(1986), all-pass (see Andrews et al. (2006)) or other models displaying a seond order depen-

dene (see Amendola and Franq (2009)). Other situations where the errors are dependent

an be found in Franq and Zakoïan (2005), see also Romano and Thombs (1996). This paper

is devoted to the problem of estimating ARMARC representations under the assumption that

the errors are unorrelated but not neessarily independent. These are alled weak ARMARC

models in ontrast to the strong ARMARC models above-ited, in whih the error terms are

supposed to be independent and identially distributed (iid). Thus, the main goal of our paper

is to omplete the above-mentioned results onerning the statistial analysis of ARMARC

models, by onsidering the estimation problem under general error terms. We establish the

asymptoti distribution of the LS estimator of weak ARMARC models, under strongly mixing

assumptions.

The paper is organized as follows. Setion 2 presents the ARMARC models that we onsider

here. In Setion 3, we established the strit stationarity ondition and it is shown that the

LS estimator (LSE) is asymptotially normally distributed when linear innovation proess (ǫt)
satis�es mild mixing assumptions. The asymptoti ovariane of the LSE may be very di�erent

in the weak and strong ases. Partiular attention is given to the estimation of this ovariane

matrix. Modi�ed version of the Wald test is proposed for testing linear restritions on the

parameters. In Setion 4, we present two examples of weak ARMARC(1, 0) models with iid

and orrelated realization of the regimes. Numerial experiments are presented in Setion 5.

The proofs of the main results are olleted in the appendix.

2. Model and assumptions

Let (∆t)t∈Z be a stationary ergodi observed proess with values in a �nite set S of size

Card(S) = K. We onsider the ARMARC(p, q) proess (Xt)t∈Z de�ned by

Xt −
p
∑

i=1

a0i (∆t)Xt−i = ǫt −
q
∑

j=1

b0j(∆t)ǫt−j (1)
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where the linear innovation proess ǫ := (ǫt)t∈Z is assumed to be a stationary sequene satis�es

E(ǫt) = 0, E(ǫtǫt′) = σ2
1[t=t′]. Under the above assumptions, the proess ǫ is alled a weak

white noise.

An important example of a weak white noise is the GARCH model (see Franq and Zakoïan

(2010)). In the modeling of �nanial time series the GARCH assumption on the errors is often

used to apture the onditional heterosedastiity. However, the multipliative noise struture

of this GARCH model is often too restritive in pratial situations. This is one motivation

of this paper, whih onsiders an even more general weak noise, where the error is subjet to

unknown onditional heterosedastiity.

This representation is said to be a weak ARMARC(p, q) representation under the assump-

tion that ǫ is a weak white noise. For the statistial inferene of ARMA models, the weak white

noise assumption is often replaed by the strong white noise assumption, i.e. the assumption

that ǫ is an iid sequene of random variables with mean 0 and ommon variane. Obviously

the strong white noise assumption is more restritive than the weak white noise assumption,

beause independene entails unorrelatedness. Consequently weak ARMARC representation

is more general than the strong one.

The unknown parameter of interest denoted θ0 := (a0i (s), b
0
j (s), i = 1, . . . , p, j = 1, . . . , q, s ∈

S) lies in a ompat set of the form

Θ ⊂
{

(ai(s), bj(s), i = 1, . . . , p, j = 1, . . . , q, s ∈ S) ∈ R
(p+q)×K

}

,

with non empty interior, within whih we suppose that θ0 lies. The parameter σ
2
is onsidered

as a nuisane parameter. In order to estimate θ0, we thus have at our disposal the observations
(Xt,∆t), t = 1, . . . , n, from whih we aim to build a strongly onsistent and asymptotially

normal estimator θ̂n. We now introdue, the strong mixing oe�ients (αZ(h))h∈Z of a sta-

tionary proess (Zt)t∈Z de�ned by

αZ(h) := sup
A∈Ft

−∞
, B∈F∞

t+h

|P(A ∩B)− P(A) · P(B)| , (2)

measuring the temporal dependene of the proess and where F t
−∞, and F∞

t+h be the σ-�elds
generated by {Zu, u ≤ t} and {Zu, u ≥ t + h}, respetively. We will make an integrability

assumption on the moment of the noise and a summability ondition on the strong mixing

oe�ients (αZ(h))h≥0. Let us suppose the following assumptions.

(A1) The proesses (ǫt)t∈Z and (∆t)t∈Z are ergodi sequenes, stritly stationary,

independent from eah other.

(A2) For some ν > 0, the proesses (ǫt)t∈Z and (∆t)t∈Z satisfy

∑∞
h=0 αǫ(h)

ν
ν+2 < +∞

and

∑∞
h=0 α∆(h)

ν
ν+2 < +∞.

(A3) The proess (ǫt)t∈Z also satis�es E[|ǫt|2ν+4] < +∞.

(A4) We have θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

Note that the strong white noise assumption entails the ergodiity ondition for (ǫt)t∈Z. This is
not the ase if we impose the weak white noise assumption only, hene the assumption (A1).

Likewise, the ergodiity ondition on (∆t)t∈Z is imposed in that assumption. For example, if

(∆t)t∈Z is a �nite Markov hain, then a neessary and su�ient ondition for ergodiity is
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that it is irreduible, whih ensures its positive reurrene (see Theorem 1.10.2 p.53 in Norris

(1998)), see for instane the example in Setion 4.

We introdue the following notations so as to emphasize dependene of unknown parameter

θ0 in (1). For all θ = (ai(s), bj(s), i = 1, . . . , p, j = 1, . . . , q, s ∈ S) ∈ Θ, we let ai :=
(ai(s), s ∈ S), i = 1, . . . , p and bj := (bj(s), s ∈ S), j = 1, . . . , q. Let e(s) be the row vetor of

size 1×K suh that the ith omponent is 1[s=i]. Then we notie that ∀t ∈ Z

ai(∆t) =< e(∆t), ai >:= gai (∆t, θ), bj(∆t) =< e(∆t), aj >:= gbj(∆t, θ), i = 1, . . . , p, j = 1, . . . , q,

where < ·, · > denotes the salar produt between vetors of appropriate dimension. Thus (1)

reads

Xt −
p
∑

i=1

gai (∆t, θ0)Xt−i = ǫt −
q
∑

j=1

gbj(∆t, θ0)ǫt−j . (3)

Let us furthermore note that for all i, j and s, gai (s, θ) and gbj(s, θ) are linear in θ. We thus

introdue the following ompanion matries

A(s) :=











ga1(s, θ0) · · · · · · gap(s, θ0)

0

Ip−1
.

.

.

0











, B(s, θ) :=











gb1(s, θ) · · · · · · gbq(s, θ)

0

Iq−1
.

.

.

0











for all s ∈ S, θ ∈ Θ. A remark that will prove useful later on is that θ 7→ B(s, θ) is, for all
s ∈ S, an a�ne funtion.

We next introdue the residuals orresponding to parameter θ ∈ Θ as the stationary proess

(ǫt(θ))t∈Z satisfying

ǫt(θ)−
q
∑

j=1

gbj(∆t, θ)ǫt−j(θ) = Xt −
p
∑

i=1

gai (∆t, θ)Xt−i, ∀t ∈ Z. (4)

This proess is unique in L2
, as explained in Proposition 3.1. In partiular, we have (ǫt(θ0))t∈Z =

(ǫt)t∈Z, the initial white noise. We next de�ne the approximating residuals as the proess

(et(θ))t∈Z verifying

et(θ)−
q
∑

j=1

gbj(∆t, θ)et−j(θ) = X̃t −
p
∑

i=1

gai (∆t, θ)X̃t−i, ∀t ∈ Z, (5)

where values orresponding to negative indies are set to zero, i.e. the proesses (et(θ))t∈Z and

(X̃)t∈Z verify

et(θ) = 0, t ≤ 0,

X̃t = Xt1[t≥1], ∀t ∈ Z.

The basi idea behind de�nition of (et(θ))t∈Z is that, given a realization X1,X2, . . . ,Xn of

length n, ǫt(θ) is approximated, for 0 < t ≤ n, by et(θ). Next, we de�ne the ost funtion

Qn(θ) =
1

2n

n
∑

t=1

e2t (θ). (6)
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Finally, we let for all n ∈ N the random variable θ̂n the least squared estimator that satis�es,

almost surely,

Qn(θ̂n) = min
θ∈Θ

Qn(θ), (7)

We �nish this setion by giving some notations. In the following, ||.|| will denote the norm of

matries or vetors of appropriate size, depending on the ontext, whereas ||.||p will denote

the Lp
norm de�ned by ||X||p = [E(|X|p)]1/p for all random variable X admitting a p−th

order moment, p ≥ 1. For all matrix M , M ′
will denote its transpose. For all three times

di�erentiable funtion f : Θ −→ R, we will let ∇f(θ) =
(

∂
∂θk

f(θ)
)

k=1,...,(p+q)K
, ∇2f(θ) =

(

∂2

∂θi∂θj
f(θ)

)

i,j=1,...,(p+q)K
and ∇3f(θ) =

(

∂3

∂θℓ∂θi∂θj
f(θ)

)

ℓ,i,j=1,...,(p+q)K
respetively the �rst,

seond and third order derivatives with respet to the variable θ.

3. Case of general orrelated proess (∆t)t∈Z

In this setion, we display our main results.

3.1. Weak stationarity

A �rst step onsists in giving su�ient onditions suh that the proesses (Xt)t∈Z and (ǫt(θ))t∈Z
de�ned in (1) and (4) are stritly stationary and admits moments of su�iently high order so

as to obtain onsisteny and asymptoti normality results. This approah is standard, see e.g.

(Franq and Zakoïan, 2001, Theorem 1 and Setion 3) and (Stelzer, 2009, Theorems 2.1 and

4.1). Let ||.|| be any norm on the set of matries, and let us introdue the following notations

w1 := (1, 0, . . . , 0) ∈ R
p+q,

wp+1 := (wp+1,i)i=1,...,p+q, wp+1,1 = 1, wp+1,i = 1[i=p+1], i = 2, . . . , p + q,

M := (mij)i,j=1,...,p+q, mi,j = 1[i=q+1,j=1 or i=1,j=1],

Φ(s, θ) :=



























ga1(s, θ) · · · gap(s, θ)

B(s, θ) 0

0 · · · 0

0 Ip−1
.

.

.

0



























, s ∈ S, θ ∈ Θ,

Ψ(s) :=



























gb1(s, θ0) · · · gbq(s, θ0)

A(s) 0

0 · · · 0

0 Iq−1
.

.

.

0



























, s ∈ S.
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Let us note that the matries Φ(s, θ) and Ψ(s) are, like B(s, θ) and A(s), reminisent of

ompanion matries. As for B(s, θ), we also notie in partiular that θ 7→ Φ(s, θ) is an a�ne

funtion for all s ∈ S. We have the following result.

Proposition 3.1. Let us suppose that

(A5a) lim sup
t→∞

1

t
lnE



sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Φ(∆i, θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8


 < 0, lim sup
t→∞

1

t
lnE





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Ψ(∆i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8


 < 0,

then for all t ∈ Z and θ ∈ Θ, the unique stationary solution to (4) is given by

ǫt(θ) =

∞
∑

i=0

ci(θ,∆t, . . . ,∆t−i+1)ǫt−i, where (8)

ci(θ,∆t, . . . ,∆t−i+1) =

i
∑

k=0

w1

k−1
∏

j=0

Φ(∆t−j , θ)M

i−1
∏

j′=k

Ψ(∆t−j′)w
′
p+1, (9)

with the usual onvention

∏j
i = 1 if i > j. Furthermore, for eah t ∈ Z, (ci(θ,∆t, . . . ,∆t−i+1))i∈N

is the unique sequene in the set of sequenes of random variables

H :=

{

(di)i∈N independent from (ǫt)t∈Z s.t. E

(

∞
∑

i=0

d2i

)

< +∞
}

satisfying the deomposition (8).

The uniqueness property in this proposition an be seen as an identi�ability property. Suh

a property is guaranteed in a similar ontext by Assumption A6 page 56 in Gautier (2004)

(see also Franq and Gautier (2003)) in the ase of strong ARMA proesses modulated by

a Markov hain. Note also that the deomposition (8) is a slight generalization of the Wold

deomposition of stationary proesses whih are squared integrable, see Theorem 5.7.1 p.187

of Brokwell and Davis (1991). Remark that the stability ondition (A5a) is reminisent of

the one in (Franq and Zakoïan, 2001, Theorem 1) and (Stelzer, 2009, Theorem 2.1) (see

also Brandt (1986)); it is however stronger as we need integrability onditions for the proess

(ǫt(θ))t∈Z (as well as on its derivatives), uniformly on θ ∈ Θ. More preisely, we note that the

right inequality ondition in (A5a) is equivalent to (Stelzer, 2009, Remark 4.1 (a)).

Corollary 3.2. The proess (et(θ))t∈Z de�ned by (5) has the following deomposition

et(θ) =

∞
∑

i=0

cei (t, θ,∆t, . . . ,∆t−i+1)ǫt−i, t ≥ p+ 1, where (10)

cei (t, θ,∆t, . . . ,∆t−i+1) =

min(t−1,i)
∑

k=0

w1

k−1
∏

j=0

Φ(∆t−j , θ)M
i−1
∏

j′=k

Ψ(∆t−j′)w
′
p+1, (11)

where the matrix M and vetors w1, wp+1, are de�ned at the beginning of the setion.

Lemma 3.3. The random oe�ients ci(θ,∆t, . . . ,∆t−i+1), i ∈ Z, t ∈ Z, verify the following

properties:
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• θ 7→ ci(θ,∆t, . . . ,∆t−i+1), θ 7→ ∇[ci(θ,∆t, . . . ,∆t−i+1)]
2
and θ 7→ ∇2[ci(θ,∆t, . . . ,∆t−i+1)]

2

are a.s. polynomial funtions,

• Let us assume, instead of (A5a), that the stronger assumption

(A5b) lim sup
t→∞

1

t
lnE



sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Φ(∆i, θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4ν+8


 < 0, lim sup
t→∞

1

t
lnE





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Ψ(∆i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4ν+8


 < 0

holds. Then we have

lim supi→∞
1
i lnE

(

supθ∈Θ[ci(θ,∆i, . . . ,∆1)]
2ν+4

)

< 0,

lim supi→∞
1
i lnE

(

supθ∈Θ
∣

∣

∣

∣∇j [ci(θ,∆i, . . . ,∆1)]
∣

∣

∣

∣

2ν+4
)

< 0, j = 2, 3.
(12)

Furthemore, the oe�ients cei (t, θ,∆t−1, . . . ,∆t−i), i ∈ Z, t ≥ 0, satisfy

lim supi→∞
1
i ln supt≥0 E

(

supθ∈Θ[c
e
i (t, θ,∆t, . . . ,∆t−i+1)]

2ν+4
)

< 0,

lim supi→∞
1
i ln supt≥0 E

(

supθ∈Θ
∣

∣

∣

∣∇j[cei (t, θ,∆t, . . . ,∆t−i+1)]
∣

∣

∣

∣

2ν+4
)

< 0, j = 2, 3.

(13)

Note that one of the di�erenes with Gautier (2004); Franq and Gautier (2003) (apart for

the obvious one where the noise is weak here) is that (A5b) leads to the exponential derease

(12) for the oe�ient [ci(θ,∆i, . . . ,∆1)]
2ν+4

(uniformly in θ) as well as its derivatives. This
is to be ompared with Condition A8 page 56 of Gautier (2004) (see also Franq and Gautier

(2003)), where the exponent is 4 instead of 2ν + 4. This ν > 0 is what makes the di�erene

between weak and strong noise, as this is the parameter that measures the dependene among

the random variables in the (non iid) sequene (ǫt). Also note that (12) and (13) are akin to

Conditions (A2) and (A8) in Franq and Gautier (2004a).

3.2. Preliminary results

We de�ne the ost funtion

On(θ) =
1

2n

n
∑

t=1

ǫ2t (θ). (14)

Similarly to θ̂n, let us introdue θ̌n the least squared estimators orresponding to the ost

funtion On(θ):
On(θ̌n) = min

θ∈Θ
On(θ). (15)

The following results are neessary in order to prove the asymptoti properties for the esti-

mators θ̂n and θ̌n de�ned in (15) and (7). We �rst justify that et(θ) asymptotially behaves

as ǫt(θ) as t → ∞ for all θ as follows:

Lemma 3.4. Let us suppose that (A1) and that stationarity ondition (A5a) hold. Sequenes

(ǫt(θ))t∈Z and (et(θ))t∈Z satisfy

1. ||supθ∈Θ |ǫ0(θ)|||4 < +∞ and supt≥0 ||supθ∈Θ |et(θ)|||4 < +∞,

2. ||supθ∈Θ |ǫt(θ)− et(θ)|||2 tends to 0 exponentially fast as t → ∞,

3. For all α > 0, tα supθ∈Θ |ǫt(θ)− et(θ)| −→ 0 a.s. as t → ∞,
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4. For all j = 1, 2, 3,
∣

∣

∣

∣supθ∈Θ ||∇jǫ0(θ)||
∣

∣

∣

∣

4
< +∞, supt≥0

∣

∣

∣

∣supθ∈Θ ||∇jet(θ)||
∣

∣

∣

∣

4
< +∞

and we have tα ||supθ∈Θ ||∇(et − ǫt)(θ)||||8/5 −→ 0 , tα
∣

∣

∣

∣supθ∈Θ ||∇2(et − ǫt)(θ)||
∣

∣

∣

∣

4/3
−→

0 and tα
∣

∣

∣

∣supθ∈Θ ||∇3(et − ǫt)(θ)||
∣

∣

∣

∣

1
−→ 0 as t → ∞ for all α > 0.

We then show that the LSE is asymptotially equivalent to Qn(θ):

Proposition 3.5. Under the same assumptions in Lemma 3.4, we have that, for all α ∈ (0, 1),

1. supθ∈Θ |Qn(θ)−On(θ)| onverges a.s. to 0, and nα ||supθ∈Θ |Qn(θ)−On(θ)|||1 tends to

0 as n → ∞,

2. supθ∈Θ ||∇(Qn(θ) − On(θ))|| and supθ∈Θ ||∇j(Qn(θ) − On(θ))||, for j = 2, 3 onverge

a.s. to 0,
3. nα ||supθ∈Θ |∇(Qn −On)(θ)|||1 −→ 0 as n → ∞.

3.3. Asymptoti properties

We now turn to the main results of the paper, i.e. the strong onsisteny and normality of the

estimator θ̂n.

Proposition 3.6. Let (A1), (A4) as well as stationarity ondition (A5a) hold. The estimator

θ̌n de�ned by (15) onverges a.s. towards θ0.

Theorem 3.7 (Consisteny of the estimator). Let (A1), (A4) as well as stationarity ondi-

tion (A5a) hold. The estimator θ̂n de�ned by (7) onverges a.s. towards θ0.

Theorem 3.8 (Asymptoti normality for the estimator). Let us suppose that assumptions

(A1), (A2), (A3), (A4) and (A5b) hold, and let θ̂n de�ned in (7). We have the following

Central Limit Theorem

√
n
(

θ̂n − θ0

)

D−→ N
(

0,Ω := J−1IJ−1
)

, n → +∞, (16)

matries I and J being de�ned as

J := J(θ0) = E
(

∇ǫt(θ0)[∇ǫt(θ0)]
′
)

, (17)

I := I(θ0) =

∞
∑

k=−∞

E
(

ǫt(θ0)ǫt−k(θ0)∇ǫt(θ0)[∇ǫt−k(θ0)]
′
)

=
+∞
∑

k=−∞

Cov(Υt,Υt−k), where (18)

Υt := Υt(θ0) = ǫt(θ0)∇ǫt(θ0). (19)

Remark 3.9. In the strong ARMARC ase, i.e. when (A1) is replaed by the assumption that

(ǫt) is iid, we have I = σ2J , so that the ovariane matrix in the strong ase is ΩS := σ2J−1
.

In the general ase we have I 6= σ2J . As a onsequene the ready-made software used to �t

ARMARC do not provide a orret estimation for weak ARMARC proesses.

3.4. Estimating the asymptoti ovariane matrix

Theorem 3.8 an be used to obtain on�dene intervals and signi�ane tests for the param-

eters. The asymptoti ovariane Ω must however be estimated. The matrix J an easily be
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estimated by its empirial ounterpart

Ĵn =
1

n

n
∑

t=1

∇et(θ̂n)[∇et(θ̂n)]
′.

In the standard strong ARMARC ase Ω̂S = σ̂2Ĵ−1
n is a strongly onsistent estimator of Ω. In

the general weak ARMARC ase this estimator is not onsistent when I 6= σ2J (see Remark

3.9). So we need a onsistent estimator of I, de�ned by (18).

The estimation of this long-run ovariane I is more ompliated. In the literature, two

types of estimators are generally employed: the nonparametri kernel estimator, also alled

Heteroskedastiity and Autoorrelation Consistent (HAC) estimators (see Andrews (1991)

and Newey and West (1987) for general referenes, and Franq and Zakoïan (2007) for an

appliation to testing strong linearity in weak ARMA models) and spetral density esti-

mators (see e.g. Berk (1974) and den Haan and Levin (1997) for a general referenes and

Boubaar Mainassara et al. (2012) for estimating I when θ is not neessarily equal to θ0).
In the present paper, we fous on an estimator based on a spetral density form for I.
Interpreting (2π)−1I as the spetral density of the stationary proess (Υt) evaluated at

frequeny 0 (see Brokwell and Davis (1991), p. 459) of the proess (19). This approah,

whih has been studied by Berk (1974) (see also den Haan and Levin (1997)), rests on the

expression

I = Φ−1(1)ΣuΦ
−1(1) (20)

when (Υt) satis�es an AR(∞) representation of the form

Φ(L)Υt := Υt +
∞
∑

i=1

ΦiΥt−i = ut, (21)

where ut is a (p+ q)K-variate weak white noise with ovariane matrix Σu. Note inidentally

that, sine (Υt) depends on the regime (∆t), then so does the weak white noise (ut). Let Υ̂t

be the vetor obtained by replaing θ0 by θ̂n in Υt and Φ̂r(z) = I(p+q)K +
∑r

i=1 Φ̂r,iz
i
, where

Φ̂r,1, . . . , Φ̂r,r denote the oe�ients of the least squares regression of Υ̂t on Υ̂t−1, . . . , Υ̂t−r. Let

ûr,t be the residuals of this regression, and let Σ̂ûr be the empirial ovariane of ûr,1, . . . , ûr,n.
In the framework of linear proesses with independent innovations, Berk (1974) showed that

the spetral density an be onsistently estimated by �tting autoregressive models of order

r = r(n), whenever r → ∞ and r3/n → 0 as n → ∞. It an be shown that this result remains

valid for the linear proess (Υt), though its innovation (ut) is not an independent proess.

Another di�erene with Berk (1974), is that (Υt) is not diretly observed and is replaed by

(Υ̂t).
We are now able to state the following theorem.

Theorem 3.10. In addition to the assumptions of Theorem 3.8, assume that the proess (Υt)
de�ned in (19) admits an AR(∞) representation (21) in whih the roots of detΦ(z) = 0 are

outside the unit disk, ‖Φi‖ = o(i−2), and Σu = Var(ut) is non-singular. Moreover we assume

that E |ǫt|8+4ν < ∞ and

∑∞
k=0{αǫ(k)}ν/(2+ν) < ∞ and

∑∞
k=0{α∆(k)}ν/(2+ν) < ∞ for some

ν > 0. Then the spetral estimator of I

ÎSP := Φ̂−1
r (1)Σ̂ûrΦ̂

′−1
r (1) → I

in probability when r = r(n) → ∞ and r3/n → 0 as n → ∞.
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The matrix Ω is then estimated by a "sandwih" estimator of the form

Ω̂SP = Ĵ−1
n ÎSPĴ−1

n , ÎSP = Φ̂−1
r (1)Σ̂ûrΦ̂

′−1
r (1).

3.5. Testing linear restritions on the parameter

It may be of interest to test s0 linear onstraints on the elements of θ0. Let R be a given

matrix of size s0 × (p + q)K and rank s0, and let r0 and r1 be given vetors of size s0 suh

that r1 6= r0. Consider the testing problem

H0 : Rθ0 = r0 against H1 : Rθ0 = r1. (22)

The Wald priniple is employed frequently for testing (22). We now examine if this priniple

remains valid in the non standard framework of weak ARMARC models.

Let Ω̂ = Ĵ−1Î Ĵ−1
, where Ĵ and Î are onsistent estimators of J and I, as de�ned in Setion

3.4. Under the assumptions of Theorems 3.8 and 3.10, and the assumption that I is invertible,
the modi�ed Wald statisti

WM := n(R0θ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0θ̂n − r0)

asymptotially follows a χ2
s0 distribution under H0. Therefore, the standard formulation of

the Wald test remains valid. More preisely, at the asymptoti level α, the modi�ed Wald

test onsists in rejeting H0 when WM > χ2
s0(1 − α). It is however important to note that a

onsistent estimator of the form Ω̂ = Ĵ−1Î Ĵ−1
is required. The estimator Ω̂S = σ̂2Ĵ−1

, whih

is routinely used in the time series softwares, is only valid in the strong ARMARC ase. Thus

standard Wald statisti takes the following form

WS := n(R0θ̂n − r0)
′(R0Ω̂SR

′
0)

−1(R0θ̂n − r0),

whih asymptotially follows a χ2
s0 distribution under H0.

4. Examples

In this setion, we give examples of weak ARMARC(1, 0) model with iid and orrelated proess
(∆t)t∈Z.

4.1. Independent and identially distributed proess (∆t)t∈Z: the ARMARC(1, 0)
model

We provide here some results that show that we obtain very neat results in the partiular ase

where the state spae veri�es S ⊂ R, (∆t)t∈Z is i.i.d. and satis�es E(∆t) = 0. We onsider a

partiular AR(1) model where (1) reads

Xt − a0∆tXt−1 = ǫt, (23)

i.e. a0(s) = a0s for all s ∈ S, where a0 = θ0 is here the unknown (salar) parameter and

belongs to some ompat set Θ ⊂ R, and the state spae S is a �nite subset of R. It is easy

to hek that, using the notations de�ned in Setion 3.1, we have that B(s, θ) is not de�ned
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(as here q = 0), A(s) = ga1 (s, θ0) = a0s and Ψ(s) = A(s) = a0s. Stationarity ondition (A5a)

in Proposition 3.1 is translated as

|a0|
[

E(|∆0|8)
]1/8

< 1 ⇐⇒ a0 ∈
(

− 1

[E(|∆0|8)]1/8
,

1

[E(|∆0|8)]1/8

)

. (24)

Let us note that (24) allows some interesting ases where we have |a0∆t| ≥ 1, whih is a non

stable state ase and is somewhat a paradox to the usual stability ondition in the lassial

AR(1) model where it is standard that the proess (Xt)t∈Z de�ned by Xt = aXt−1+ǫt is stable
i� |a| < 1. One simple example is when (∆t)t∈Z is i.i.d. with distribution ∆t ∼ 1

4δ−1+
1
2+

1
4δ+1,

in whih ase (24) reads |a0| < 2, so that |a0∆t| = 3
2 > 1 if we pik for example a0 = 3

2 , when

∆t = 1.
Furthermore, we ompute easily that, for all a = θ ∈ Θ, ǫt(a) = Xt − a∆tXt−1, where Xt has

the lassial deomposition obtained from (23):

Xt =
∞
∑

i=0

i−1
∏

j=0

(a0∆t−j)ǫt−i. (25)

Sine Assumption (A2) is trivially satis�ed here, we only need suppose that (A1), (A3) and

(A4) hold for some ν > 0. In that ase, Theorems 3.7 and 3.8 translate as

Theorem 4.1. θ̂n de�ned as (7) onverges a.s. towards θ0 = a0. Besides, we have the asymp-

toti normality √
n
(

θ̂n − a0
)

D−→ N (0,Ω) , n → +∞, (26)

where

Ω =

[

1− (a0)2E(∆2
0)
]2

E(∆2
0)

∞
∑

i=0

[

(a0)2E(∆2
0)
]i
E(ǫ2t ǫ

2
t−i). (27)

Proof. Strong onsisteny and asymptoti normality are straightforward onsequenes of The-

orems 3.7 and 3.8. In order to ompute Ω, we need to ompute J = J(a0) and I = I(a0) in (16).
Sine

∂
∂aǫt(a) = −∆tXt−1, and sine E(X2

t ) is equal to
1

1−(a0)2E(∆2
0)

thanks to (25) and the

fat that (ǫt)t∈Z is a weak noise, independent from (∆t)t∈Z. Hene we have, by independene

of ∆t from Xt−1,

J(a0) = E

(

[

∂

∂a
ǫt(a

0)

]2
)

= E
(

∆2
tX

2
t−1

)

=
E(∆2

0)

1− (a0)2E(∆2
0)
.

There then remains to get I = I(a0). From Theorem 3.8 we need to ompute the expetation

of

ǫt(a
0)ǫt−k(a

0)
∂ǫt(a

0)

∂a

∂ǫt−k(a
0)

∂a
= ǫtǫt−k∆tXt−1∆t−kXt−k−1

= ǫtǫt−k∆t





∞
∑

i=0

i−1
∏

j=0

(a0∆t−1−j)ǫt−1−i



∆t−k





∞
∑

i′=0

i′−1
∏

j′=0

(a0∆t−k−1−j′)ǫt−k−1−i′





for all k ∈ N. Using independene of the proesses (ǫt)t∈Z and (∆t)t∈Z, we have

E

(

ǫt(a
0)ǫt−k(a

0)
∂ǫt(a

0)

∂a

∂ǫt−k(a
0)

∂a

)

=

∞
∑

i,i′=0

V i,i′,kd(k, 1 + i, k + 1 + i′) (28)
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where d(n,m, r) := E(ǫ0ǫ−nǫ−mǫ−r) for all n, m, r in N, and

V i,i′,k := (a0)i+i′+2
E





i−1
∏

j=−1

∆t−1−j .
i′−1
∏

j′=−1

∆t−k−1−j′



 .

Sine ∆t is entered, we hek immediately that V i,i′,k
is non zero if and and only if k = 0

and i = i′, in whih ase we have V i,i,0 =
[

(a0)2E(∆2
0)
]i+1

. Hene (28) is in that ase equal

to (a0)2E(∆2
0)
∑∞

i=0

[

(a0)2E(∆2
0)
]i
E(ǫ2t ǫ

2
t−1−i), whih is also the expression for I(a0), yielding

(27).

4.2. Modulating Markov hain

We now give an example of proess (∆t)t∈Z with orrelated trajetories by onsidering a

disrete time stationary irreduible �nite Markov hain (hene, ergodi) with state spae

S = {1, 2} and transition probabilities matrix

P = (p(i, j))i,j=1,2 =

(

0 1
p 1− p

)

,

where p lies in (0, 1), and with stationary distribution

(P(∆t = 1), P(∆t = 2)) = (π1, π2) =

(

p

p+ 1
,

1

p+ 1

)

. (29)

We also onsider, as in the previous setion, an ARMARC(1, 0) model of the form

Xt − a0(∆t)Xt−1 = ǫt, (30)

where parameter θ0 = (a0(1), a0(2)) veri�es a0(1) = 0, in order to have nie expressions later

for asymptoti normality. In order to establish the stationarity ondition (A5a) we need to

ompute E
[

||∏t
k=1 a

0(∆k)||8
]

whih, beause of a0(1) = 0, simpli�es to

E

[

||
t
∏

k=1

a0(∆k)||8
]

= |a0(2)|8tP(∆1 = ... = ∆t = 2) = |a0(2)|8tπ2(1− p)t−1,

so that stationarity ondition (A5a) here reads

a0(2) ∈
(

− 1

(1− p)1/8
,

1

(1− p)1/8

)

. (31)

Here again, as in the i.i.d. ase for (∆t)t∈Z, and sine

1
(1−p)1/8

> 1, we an allow |a0(2)|
to be larger than 1 so that state 2 ∈ S is non stable, although the proess is stationary.

Let us furthermore note that the Markov hain (∆t)t∈Z veri�es the Doeblin ondition so is

geometrially ergodi, hene has exponentially fast strong mixing property (see Jones (2004)),

so that (A2) is satis�ed. We furthermore suppose that (A1), (A3) and (A4) hold for some

ν > 0. As in (25), we have

Xt =

∞
∑

i=0

i−1
∏

j=0

a0(∆t−j)ǫt−i, (32)
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and ǫt(a) = Xt − a(∆t)Xt−1 for all θ = (a(1), a(2)) ∈ Θ. We introdue matries Q(l), l ∈ S =
{1, 2} as well as vetor πV de�ned by

Q(1) =

(

0 p
0 0

)

, Q(2) =

(

0 0
1 1− p

)

, πV = (0, π2)
′. (33)

Theorems 3.7 and 3.8 read

Theorem 4.2. θ̂n de�ned as (7) onverges a.s. towards θ0 = (a0(1), a0(2)). Besides, we have
the asymptoti normality

√
n
(

θ̂n − θ0

)

D−→ N (0,Ω) , n → +∞, (34)

where Ω = J−1IJ−1
, matries J = (J(l, l′))l,l′∈S2 and I = (I(l, l′))l,l′∈S2 being de�ned by

J(1, 1) = σ2 p
p+1

1+a0(2)2p
1−a0(2)2(1−p) ,

J(1, 2) = J(2, 1) = 0,
J(2, 2) = σ2 1

p+1
1

1−a0(2)2(1−p)

(35)

and I(l, l′) = I(l, l′, 0) + 2
∑∞

k=1 I(l, l
′, k), where

I(l, l′, k) =



























∑∞
i′=0 1

′
[

∑

i<k a
0(2)i+i′Q(l)Q(2)iP ′k−i−1Q(l′)Q(2)i

′

d(k, i + 1, k + i′ + 1)
∑

k≤i≤k+i′ a
0(2)i+i′Q(l)Q(2)k+i′d(k, i + 1, k + i′ + 1)

+
∑

i>k+i′ a
0(2)i+i′Q(l)Q(2)id(k, i + 1, k + i′ + 1)

]

πV , l′ = 2,
∑∞

i′=0 1
′
[

∑

i<k a
0(2)i+i′Q(l)Q(2)iP ′k−i−1Q(l′)Q(2)i

′

d(k, i + 1, k + i′ + 1)
]

πV , l′ = 1,

(36)

where d(i, i′, i′′) := E(ǫtǫt−iǫt−i′ǫt−i′′), i, i
′
, i′′ in N.

Proof. It is not hard to hek that, for all i ∈ S = {1, 2} and a = (a(1), a(2)), ∂
∂a(i) ǫt(a) =

−1[∆t=i]Xt−1. We ompute easily

∇ǫt(θ0)[∇ǫt(θ0)]
′ =

(

1[∆t=1]X
2
t−1 0

0 1[∆t=2]X
2
t−1

)

,

so that it su�es to ompute E(1[∆t=l]X
2
t−1) for all l = 1, 2, in order to ompute J . By the

usual argument of independene of the Markov hain from the weak white noise, and sine

a0(1) = 0, we get, for l = 1, 2,

E(1[∆t=l]X
2
t−1) = σ2

∞
∑

i=0

E





1[∆t=l]

i−1
∏

j=0

(a0(∆t−1−j))
2





= σ2πl + σ2
∞
∑

i=1

a0(2)2iπ2(1− p)i−1p(2, l) = σ2πl + σ2 a0(2)2π2
1− a0(2)2(1− p)

p(2, l),

so that those quantities along with (29) yield the expression for the for matrix J in (35).

In order to ompute I, we need to take the expetation of ǫt(θ0)ǫt−k(θ0)
∂

∂a(l) ǫt(θ0)
∂

∂a(l′)ǫt−k(θ0) =
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ǫtǫt−k1[∆t=l]Xt−11[∆t−k=l′]Xt−1−k for all l, l′ in S and k ∈ N. As in (28) in the proof of The-

orem 4.1, this expetation is equal to

∑∞
i,i′=0 V

i,i′,k(l, l′)d(k, 1 + i, k + 1 + i′) where

V i,i′,k(l, l′) := E





1[∆t=l]

i−1
∏

j=0

a0(∆t−1−j).1[∆t−k=l′]

i′−1
∏

j′=0

a0(∆t−k−1−j′)



 .

This quantity an be obtained straightforwardly using e.g. Lemma 1 of Franq and Gautier

(2004a). Remembering that Q(1), Q(2) and πV are de�ned by (33), we then have the following

expression for V i,i′,k(l, l′), aording to whether t − i > t − k ⇐⇒ i < k, t − k ≥ t − i ≥
t− k − i′ ⇐⇒ k ≤ i ≤ k + i′ or t− k − i′ ≥ t− i ⇐⇒ k + i′ < i:

V i,i′,k(l, l′) =























a0(2)i+i′
1

′Q(l)Q(2)iP ′k−i−1Q(l′)Q(2)i
′

πV , i < k,

a0(2)i+i′
1

′Q(l)Q(2)k+i′πV , k ≤ i ≤ k + i′, l′ = 2,
0, k ≤ i ≤ k + i′, l′ = 1,

a0(2)i+i′
1

′Q(l)Q(2)iπV , k + i′ < i, l′ = 2,
0, k + i′ < i, l′ = 1,

yielding (36).

5. Numerial illustrations

We study numerially the behaviour of our estimator for strong and weak ARMARC models.

We onsider the following ARMARC(1, 1) model

Xt = a01(∆t)Xt−1 + ǫt + b01(∆t)ǫt−1, (37)

where the innovation proess (ǫt) follows a strong or a weak white noise. This model is to be

ompared with the example in Setion 3.4 of Gautier (2004) or Setion 4 of Franq and Gautier

(2003). The proess (∆t) is simulated (independently of (ǫt)) aording to the law of a sta-

tionary Markov hain with state-spae S = {1, 2} and transition probabilities matrix

(

p(1, 1) 1− p(1, 1)
1− p(2, 2) p(2, 2)

)

=

(

0.95 0.05
0.05 0.95

)

.

By an argument similar to the one explained in the example in Setion 4.2, one has that this

Markov hain is geometrially ergodi, so that Condition (A2) is satis�ed. We �rst onsider

the strong ARMARC ase. To generate this model, we assume the innovation proess (ǫt) in
(37) is de�ned by an iid sequene suh that

ǫt
D
= N (0, 1). (38)

Following Romano and Thombs (1996), we propose a set of two experiments for weak AR-

MARC with innovation proesses ǫt in (37) de�ned by

ǫt = ηt(|ηt−1|+ 1)−1, (39)

ǫt = η2t ηt−1, (40)

where (ηt)t≥1 is a sequene of iid standard Gaussian random variable. The noises de�ned by

(39) and (40) are a diret extension of the weak noises in Examples 2.1 and 2.2 de�ned by
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Romano and Thombs (1996). Thus we easily hek that those weak noises meet the require-

ments of assumptions (A1) to (A4) for all ν > 0. We also note that the innovation proess

(39) is a martingale di�erene, as opposed to (40).

The numerial illustrations of this setion are made with the free statistial software R (see

http://ran.r-projet.org/). We simulated N = 1, 000 independent trajetories of size

n = 2, 000 of Model (37), �rst with the strong Gaussian noise (38), seond with the weak

noise (39) and third with the weak noise (40).

Reall that the regimes (∆t) are supposed to be known. For eah of these N repliations,

we estimate the oe�ient θ0 = (a01(1), a
0
1(2), b

0
1(1), b

0
1(2))

′ = (0.90,−0.45, 0.10, 0.85)′ .
Figures 1 and 2 display the realization of length 400 of Model (37) in the strong (38) and

weak (40) noises ases. Note that here stationarity ondition (A5a) in Proposition 3.1 is

trivially satis�ed as all oe�ients a01(1), a
0
1(2), b

0
1(1), b

0
1(2) are all less than 1 in modulus.

Figure 3 ompares the distribution of the least squares estimators (LSE) in the strong and

the two weak noises ases. The distributions of â01(1), â
0
1(2) and b̂01(2) are similar in all ases,

whereas the LSE of b̂01(1) is more aurate in the weak ase with noise (39) than in the strong

one. Similar simulation experiments reveal that the situation is opposite, that is the LSE is

more aurate in the strong ase than in the weak ase, when the weak noise is de�ned by

(40). This is in aordane with the results of Romano and Thombs (1996) who showed that,

with similar noises, the asymptoti ovariane of the sample autoorrelations an be greater

(for noise (40)) or less (for noise (39)) than 1 as well (1 is the asymptoti ovariane for strong

white noises).

Figure 4 ompares the standard estimator Ω̂S = σ̂2Ĵ−1
and the sandwih estimator Ω̂ =

Ĵ−1ÎSPĴ−1
of the LSE asymptoti ovariane Ω. We used the spetral estimator Î := ÎSP

de�ned in Theorem 3.10, and the AR order r is automatially seleted by AIC, using the

funtion VARselet() of the vars R pakage. In the strong ARMARC ase we know that

the two estimators are onsistent. In view of the two top panels of Figure 4, it seems that

the sandwih estimator is less aurate in the strong ase. This is not surprising beause the

sandwih estimator is more robust, in the sense that this estimator ontinues to be onsistent

in the weak ARMARC ase, ontrary to the standard estimator. It is lear that in the weak

ases nVar
{

b̂01(1) − b01(1)
}2

is better estimated by Ω̂SP(3, 3) (see the box-plot () of the right-

middle and right-bottom panel of Figure 4) than by Ω̂S(3, 3) (box-plot () of the left-middle
and left-bottom panel). The failure of the standard estimator of Ω in the weak ARMARC

framework may have important onsequenes in terms of identi�ation or hypothesis testing

and validation.

Table 1 displays the relative perentages of rejetion of the standard and modi�ed Wald

tests (WS and WM ) proposed in Setion 3.5 for testing the null hypothesis H0 : b
0
1(1) = 0. We

simulated N = 1, 000 independent trajetories of size n = 500, n = 2, 000 and n = 10, 000 of

the strong ARMARC(1, 1) model (37)�(38) and of two weak ARMARC(1, 1) model (37) with
�rst noise (39) and seond (40). The nominal asymptoti level of the tests is α = 5% and the

empirial size over the N independent repliations should vary between the signi�ant limits

3.6% and 6.4% with probability 95%. The line in bold orresponds to the null hypothesis H0.

For the strong ARMARC model (37)�(38), the relative rejetion frequenies of the WS and

WM tests are lose to the nominal 5% level when b01(1) = 0, and are lose to 100% under

the alternative when n is large. In this strong ARMARC example, the WS and WM tests

have very similar powers under the alternative for all sizes. As expeted, for the two weak

ARMARC models (37)�(39) and (37)�(40), the relative rejetion frequenies of the standard
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WS Wald test is de�nitely outside the signi�ant limits. Thus the error of �rst kind is well

ontrolled by all the tests in the strong ase, but only by the WM modi�ed version test in the

weak ases (Model (37)�(39)) and (Model (37)�(40), for n large) when b01(1) = 0. Note also
that for Models (37)�(39) and (37)�(40), the relative rejetion frequenies of the WM test

tend rapidly to 100% as n inreases under the alternative. By ontrast the empirial powers

of the standard WS test is hardly interpretable for Models (37)�(39) and (37)�(40). This is

not surprising beause we have already seen in Table 1 that the standard version of the WS

test does not orretly ontrol the error of �rst kind in the weak ARMARC frameworks.

From these simulation experiments and from the asymptoti theory, we draw the onlusion

that the standard methodology, based on the LSE, allows to �t ARMARC representations of

a wide lass of nonlinear time series. This standard methodology, inluding in partiular the

signi�ane tests on the parameters, needs however to be adapted to take into aount the

possible lak of independene of the errors terms. In future works, we intend to study how

the existing identi�ation and diagnosti heking proedures should be adapted in the weak

ARMARC framework onsidered in the present paper.

6. Conlusion

We onsidered in this paper an ARMA model modulated by an exterior (observed) regime

{∆t, t ≥ 0} with possibly dependent errors. Under some tehnial assumptions, we proved

the onsisteny and the asymptoti normality of the LSE. An e�ient weak estimator for the

asymptoti ovariane matrix has been given. Numerial illustrations orroborate our theoret-

ial results. Some future works inlude how to extend those results to the ase of vetor ARMA

(VARMA) models, as well as how the existing identi�ation (see Boubaar Maïnassara (2012);

Boubaar Maïnassara and Kokonendji (2016) ) and diagnosti heking (Boubaar Maïnassara and Saussereau

(2018); Boubaar Mainassara (2011)) proedures ould be adapted to the present model.

Appendix A: Proofs

A.1. Proofs of Proposition 3.1 and Lemma 3.3

Proof of Proposition 3.1. Let us �rst note that Condition (A5a) is equivalent to

E
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θ∈Θ
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∣

∣

∣

∣

t
∏

i=1

Ψ(∆i)
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∣

∣

∣

∣

8


 ≤ Cρt, (41)

for some onstant C > 0 and 0 < ρ < 1 (independent from θ). Let us �rst introdue the

proesses (Z̃t)t∈Z and (ω̃t)t∈Z by

Z̃t = (Xt, . . . ,Xt−p+1, ǫt, . . . , ǫt−q+1)
′ ∈ R

(p+q)×1, ω̃t = (ǫt, 0, . . . , ǫt, . . . , 0)
′ ∈ R

(p+q)×1

where ǫt in the latter is in (p+1)th position in ω̃t. Then it is lear that we have the following

equation for Z̃t:

Z̃t = Ψ(∆t)Z̃t−1 + ω̃t, ∀t ∈ Z,

of whih a andidate for the solution of the above equation is, with the usual onvention

∏−1
j=0 = 1,

Z̃t =

∞
∑

k=0

k−1
∏

j=0

Ψ(∆t−j)ω̃t−k, t ∈ Z, (42)
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Time t

n
=

4
0
0

0 100 200 300 400

−
6

−
4

−
2

0
2

4

Simulation (Xt) of a strong ARMARC

Fig 1. Simulation of length 400 of Model (37)�(38) with θ0 = (a0
1(1), a

0
1(2), b

0
1(1), b

0
1(2))

′ =
(0.90,−0.45, 0.10, 0.85)′, . The proess (Xt) is drawn in full line, the Markov hain (∆t) is plotted in dot-

ted line.
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Time t

n
=

4
0
0

0 100 200 300 400

−
1
0

−
5

0
5

Simulation (Xt) of a weak ARMARC

Fig 2. Simulation of length 400 of Model (37)�(40) with θ0 = (a0
1(1), a

0
1(2), b

0
1(1), b

0
1(2))

′ =
(0.90,−0.45, 0.10, 0.85)′. The proess (Xt) is drawn in full line, the Markov hain (∆t) is plotted in dotted

line.



Y. Boubaar Maïnassara and L. Rabehasaina/Estimating weak ARMARC models 19

(a) (b) (c) (d)

−
0
.4

0
.0

estimation errors for n=2000

Strong ARMARC

(a) (b) (c) (d)

−
0
.4

0
.0

estimation errors for n=2000

Weak 1 ARMARC

(a) (b) (c) (d)

−
0
.4

0
.0

estimation errors for n=2000

Weak 2 ARMARC

−3 −1 1 3

−
0
.1

0
0
.0

5

Normal quantiles

b
1
( 1

)−
b^

1
( 1

)

Strong case:  Q−Q Plot

−3 −1 1 3

−
0
.0

5
0
.0

5

Normal quantiles

b
1
(1

)−
b^

1
(1

)

Weak 1 case: Q−Q Plot

−3 −1 1 3

−
0
.2

0
.0

0
.2

Normal quantiles

b
1
(1

)−
b^

1
(1

)

Weak 2 case: Q−Q Plot

Strong case

Distribution of b1(1) − b
^

1(1)

D
e
n
s
it
y

−0.10 0.00 0.10

0
4

8

Weak 1 case

Distribution of b1(1) − b
^

1(1)

D
e
n
s
it
y

−0.10 0.00 0.10

0
4

8
1
4

Weak 2 case

Distribution of b1(1) − b
^

1(1)

D
e
n
s
it
y

−0.2 0.0 0.1 0.2

0
2

4
6

Fig 3. LSE of N = 1, 000 independent simulations of the model (37) with size n = 2, 000 and unknown

parameter θ0 = (a0
1(1), a

0
1(2), b

0
1(1), b

0
1(2))

′ = (0.90,−0.45, 0.10, 0.85)′, when the noise is respetively the strong

one de�ned by (38) (left panel), the weak one de�ned by (39) (middle panel) and the weak one de�ned by (40)

(right panels). Points (a)-(d), in the box-plots of the top panels, display the distribution of the estimation errors

θ̂(i)− θ0(i) for i = 1, . . . , 4. The panels of the middle present the Q-Q plot of the estimates θ̂(3) = b̂01(1) of the
last parameter. The bottom panels display the distribution of the same estimates. The kernel density estimate

is displayed in full line, and the entered Gaussian density with the same variane is plotted in dotted line.
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Fig 4. Comparison of standard and modi�ed estimates of the asymptoti ovariane matrix Ω of the LSE,

on the simulated models presented in Figure 3. Weak 1 ARMARC orresponds to Model (37)�(39) and Weak

2 to Model (37)�(40). The diamond symbols represent the mean, over the N = 1, 000 repliations, of the

standardized squared errors n
{

â0
1(1)− 0.90

}2
for (a) (0.54 in the strong ase and 0.60 (resp. 0.59) in the weak

1 ase (resp. weak 2 ase)), n
{

â0
1(2) + 0.45

}2
for (b) (1.06 in the strong ase and 0.91 (resp. 2.24) in the weak

1 ase (resp. weak 2 ase)), n
{

b̂01(1)− 0.10
}2

for () (2.25 in the strong ase and 1.36 (resp. 8.05) in the weak

1 ase (resp. weak 2 ase)) and n
{

b̂01(2) − 0.85
}2

for (d) (1.04 in the strong ase and 0.90 (resp. 1.41) in the

weak 1 ase (resp. weak 2 ase)).
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Table 1

Perentages of rejetion of standard WS and modi�ed WM Wald tests for testing the null hypothesis

H0 : b0
1
(1) = 0, in the ARMARC(1, 1) model (37). The nominal asymptoti level of the tests is

α = 5%. The number of repliations is N = 1, 000. The line in bold orresponds to the null hypothesis

H0.

n = 500 n = 2, 000 n = 10, 000
b01(1) WS WM WS WM WS WM

Strong ARMARC-Model (37)�(38)

0.9 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0

0.2 84.7 84.5 100.0 100.0 100.0 100.0

0.1 34.6 36.4 85.5 85.2 100.0 100.0

0.0 5.9 8.6 4.7 5.2 5.8 6.0

-0.1 27.4 29.4 78.8 79.2 100.0 100.0

-0.2 73.6 74.0 100.0 100.0 100.0 100.0

-0.4 99.1 98.9 100.0 100.0 100.0 100.0

-0.9 86.7 86.6 99.6 99.6 100.0 100.0

Weak ARMARC-Model (37)�(39)

0.9 100.0 100.0 100.0 100.0 100.0 100.0

0.4 99.7 100.0 100.0 100.0 100.0 100.0

0.2 57.4 96.2 100.0 100.0 100.0 100.0

0.1 3.5 52.4 50.3 98.0 100.0 100.0

0.0 0.2 5.8 0.0 4.7 0.0 5.6

-0.1 2.8 39.5 37.6 93.8 100.0 100.0

-0.2 34.1 89.6 99.9 100.0 100.0 100.0

-0.4 96.0 99.6 100.0 100.0 100.0 100.0

-0.9 86.1 89.7 99.7 99.7 100.0 100.0

Weak ARMARC-Model (37)�(40)

0.9 100.0 100.0 100.0 100.0 100.0 100.0

0.4 99.7 96.9 100.0 100.0 100.0 100.0

0.2 86.4 63.7 99.6 92.4 100.0 100.0

0.1 62.4 31.5 85.0 48.3 99.8 92.5

0.0 46.8 14.1 53.6 9.5 54.2 5.3

-0.1 60.2 26.2 84.1 44.1 99.9 92.0

-0.2 80.9 52.9 97.8 87.6 100.0 99.9

-0.4 98.9 89.2 100.0 99.4 100.0 100.0

-0.9 74.0 67.3 95.7 93.1 100.0 100.0

a stationary proess, provided that the series onverges, whih we prove now. Let us pik for

|| · || a subordinate norm on the set of matries. By independene of the proesses (∆t)t∈Z and

(ǫt)t∈Z, and using the fat that the latter is square integrable, we easily get, for k ≥ 1,

E

(

||Ψ(∆t) . . .Ψ(∆t−k+1)ω̃t−k||2
)

≤ E

(

||Ψ(∆t) . . .Ψ(∆t−k+1)||2 . ||ω̃t−k||2
)

= E

(

||Ψ(∆t) . . .Ψ(∆t−k+1)||2
)

E

(

||ω̃t−k||2
)

≤ CE

(

||ω̃0||2
)

ρk,
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the last inequality stemming from (41), so that series (42) onverges in L2
. Note that we prove

that Z̃t (hene Xt) is in L4
by replaing || · ||2 by || · ||4 in the above inequalities, using again

(41) and the fat that (ǫ)t∈Z is in L4
, see assumption (A3). Similarly, de�ning

Zt(θ) := (ǫt(θ), . . . , ǫt−q+1(θ),Xt, . . . ,Xt−p+1)
′, ωt = (Xt, 0, . . . ,Xt, . . . , 0)

′
(43)

where Xt in the latter is in (q + 1)th position, we also get that Zt(θ) satis�es

Zt(θ) = Φ(∆t, θ)Zt−1(θ) + ωt.

A solution andidate to the above solution is

Zt(θ) =
∞
∑

k=0

k−1
∏

j=0

Φ(∆t−j, θ)ωt−k, t ∈ Z. (44)

Similarly to the proof leading to (42), onvergene of (44) is obtained thanks to (41) as well

as stationarity of (Xt)t∈Z and the fat that Xt ∈ L4
.

We hek that ωt = MZ̃t and ǫt(θ) = w1Zt(θ), whih, plugged into (42) and (44) yields (8)

with oe�ients ci(θ,∆t, . . . ,∆t−i+1) given by (9). Finally, let us verify that (ci(θ,∆t, . . . ,∆t−i+1))i∈N
is the unique sequene verifying (8). Let us then pik a sequene of r.v. (di)i∈N in H suh that

ǫt(θ) =
∑∞

i=0 ci(θ,∆t, . . . ,∆t−i+1)ǫt−i =
∑∞

i=0 diǫt−i. We then get, by independene from

(ǫt)t∈Z as well as by the fat that the latter is a weak white noise:

0 = E





[

∞
∑

i=0

(ci(θ,∆t, . . . ,∆t−i+1)− di)ǫt−i

]2


 = σ2
E

(

∞
∑

i=0

(ci(θ,∆t, . . . ,∆t−i+1)− di)
2

)

hene (ci(θ,∆t, . . . ,∆t−i+1))i∈N = (di)i∈N a.s. �

Proof of Lemma 3.3. The fat that the θ 7→ ci(θ,∆t, . . . ,∆t−i+1), θ 7→ ∇[ci(θ,∆t, . . . ,∆t−i+1)]
2

and θ 7→ ∇2[ci(θ,∆t, . . . ,∆t−i+1)]
2
are polynomial funtions (of several variables) an be ver-

i�ed easily using the fat that, for all s ∈ S, θ 7→ Φ(s, θ) and θ 7→ Ψ(θ) are a�ne funtions.
We turn to (12). Using Minkovski's inequality, the fat that the matrix norm || · || is submul-
tipliative entails
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(45)

for some onstant C > 0. The Cauhy-Shwarz inequality as well as (A5a) yields

[

E

(
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θ∈Θ

||Φ(∆i, θ) . . .Φ(∆i−k+1, θ)||2ν+4 ||Ψ(∆i−k) . . .Ψ(∆1)||2ν+4
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)] 1
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(4ν+8) ≤ κρ
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whih, plugged in (45), yields inequality (12) for ci(θ,∆i, . . . ,∆1). The inequalities for∇j[ci(θ,∆i, . . . ,∆1)],
j = 2, 3, are proved similarly. As to cei (t, θ,∆t, . . . ,∆t−i+1), (11) yields the upper bound
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so that upper bound (13) for cei (t, θ,∆t−1, . . . ,∆t−i) follows again by a Cauhy-Shwarz argu-

ment. The upper bound (13) for ∇cei (t, θ,∆t−1, . . . ,∆t−i) is obtained similarly. �

A.2. Proofs of Lemma 3.4 and Proposition 3.5

Proof of Lemma 3.4.We �rst prove Point 1. Using deomposition (8) of ǫt(θ), independene
of the white noise from the modulating proess, as well as stationarity of the former, we obtain
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whih is a onverging series beause of (12). As to et(θ), we use this time deomposition (10)

as well as (13) in order to get

sup
t≥0

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

4

≤
∞
∑

i=0

sup
t≥0

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|cei (θ,∆t, . . . ,∆t−i+1)|
∣

∣

∣

∣

∣

∣

∣

∣

4

.||ǫ0||4 < +∞.

In order to prove Point 2, we remind the following notations. From (4) and (5), we have

Zt(θ) = ωt +Φ(∆t, θ)Zt−1(θ) ∀t ∈ Z,

and

Ze
t (θ) = ωe

t +Φ(∆t, θ)Z
e
t−1(θ) t = 1, . . . , n,

where Ze
t (θ) := (et(θ), . . . , et−q+1(θ), X̃t, . . . , X̃t−p+1)

′, ωe
t = (X̃t, 0, . . . , X̃t, . . . , 0)

′, so that

ωe
t = ωt for t ≥ r+1 (where r = max(p, q)), ωe

t (θ) = 0p+q for t ≤ 0. We reall that the proesses

(X̃t)t∈Z and (et(θ))t∈Z verify (5). Note that ||supθ∈Θ |ǫt(θ)− et(θ)|||2 −→ 0 is equivalent to

||supθ∈Θ ||Ze
t (θ)− Zt(θ)||||2 −→ 0 as t → ∞. Now, sine X̃t = Xt for t ≥ 1, we easily see that

Ze
t (θ)− Zt(θ) = Φ(∆t, θ)[Z

e
t−1(θ)− Zt−1(θ)], ∀t ≥ r + 1, (46)

Ze
t (θ)− Zt(θ) = ωe

t − ωt +Φ(∆t, θ)[Z
e
t−1(θ)− Zt−1(θ)], for t = 1, . . . , r. (47)

Now, using (46) and (47) we obtain

Ze
t (θ)− Zt(θ) =

t−r−1
∏

j=0

Φ(∆t−j , θ)[Z
e
r (θ)− Zr(θ)], ∀t ≥ r + 1,

=

t−r−1
∏

j=0

Φ(∆t−j, θ)





r−1
∑

i=0

i−1
∏

j=0

Φ(∆r−j, θ)[ω
e
r−i − ωr−i]

r−1
∏

j=0

Φ(∆r−j, θ)ω0



 . (48)
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Let us furthermore note that

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|X̃t −Xt|
∣

∣

∣

∣

∣

∣

∣

∣

4

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|
r
∑

i=t

gai (∆t, θ)Xt−i +

r
∑

j=t

gbj(∆t, θ)ǫt−i(θ)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4

< +∞ for t = 1, . . . , r

as indeed Xt ∈ L4
(as proved in the proof of Proposition 3.1) and || supθ∈Θ ǫt(θ)||4 < +∞ as

proved in Point 1. In view of (48), using Minkowski's and Hölder's inequalities and (A5a),

we thus have

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||Ze
t (θ)− Zt(θ)||

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ Cρt,

for some onstant C > 0 and 0 < ρ < 1 (independent from θ).
Let us turn to Point 3. This is due to

P

(

tα sup
θ∈Θ

|ǫt(θ)− et(θ)| > η

)

≤ t2+2α ||supθ∈Θ |ǫt(θ)− et(θ)|||22
t2η2

= o

(

1

t2

)

, ∀η > 0,

the last equality thanks to Point 2, and using Borel-Cantelli's lemma.

We now turn to Point 4. The fat that

∣

∣

∣

∣supθ∈Θ ||∇jǫ0(θ)||
∣

∣

∣

∣

4
and supt≥0

∣

∣

∣

∣supθ∈Θ ||∇jet(θ)||
∣

∣

∣

∣

4
are �nite is proved similarly to Point 1 and using estimates (12) and (13). We then pass on to

the limit of tα ||supθ∈Θ ||∇(et − ǫt)(θ)||||4/3 as t → ∞. Let i ∈ S. Deriving (46) with respet

to θi yields

∂

∂θi
[Ze

t (θ)−Zt(θ)] = Φ(∆t, θ)
∂

∂θi
[Ze

t−1(θ)−Zt−1(θ)]+
∂

∂θi
Φ(∆t, θ)[Z

e
t−1(θ)−Zt−1(θ)], ∀t ≥ p+1,

(49)

hene we may write

∂

∂θi
[Ze

t (θ)− Zt(θ)] =

t−p
∑

k=0

k−1
∏

j=0

Φ(∆t−j , θ)
∂

∂θi
Φ(∆t−k, θ)[Z

e
t−k(θ)− Zt−k(θ)],

hene, using Minkovski's and Hölder's inequalities, and lettingMΦ := maxs∈S,θ∈Θ

∣

∣

∣

∂
∂θi

Φ(s, θ)
∣

∣

∣
,

we get

tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θi
[Ze

t (θ)− Zt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

8/5

≤ MΦ

t−p
∑

k=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|
k−1
∏

j=0

Φ(∆t−j , θ)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8

.tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||Ze
t−k(θ)− Zt−k(θ)||

∣

∣

∣

∣

∣

∣

∣

∣

2

. (50)

Now, sine

∣

∣

∣

∣

∣

∣
supθ∈Θ ||∏k−1

j=0 Φ(∆t−j, θ)||
∣

∣

∣

∣

∣

∣

8
≤ κρk for some κ > 0 and ρ < 1 thanks to (A5a),

and sine tα
∣

∣

∣

∣ supθ∈Θ ||Ze
t−k(θ)− Zt−k(θ)||

∣

∣

∣

∣

2
is uniformly bounded in t and k ≤ t, and tends

to 0 as t → ∞, the dominated onvergene theorem yields that tα
∣

∣

∣

∣

∣

∣supθ∈Θ || ∂
∂θi

[Ze
t (θ)− Zt(θ)]||

∣

∣

∣

∣

∣

∣

8/5
−→

0 as t → ∞, proving tα ||supθ∈Θ ||∇(et − ǫt)(θ)||||8/5 −→ 0 as t → ∞ in Point 4. Let us now

prove that tα
∣

∣

∣

∣supθ∈Θ ||∇2(et − ǫt)(θ)||
∣

∣

∣

∣

4/3
−→ 0. Deriving again (49) with respet to θℓ,

ℓ ∈ S, we obtain
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∂2

∂θℓ∂θi
[Ze

t (θ)−Zt(θ)] = Φ(∆t, θ)
∂2

∂θℓ∂θi
[Ze

t−1(θ)−Zt−1(θ)]+
∂

∂θℓ
Φ(∆t, θ)

∂

∂θi
[Ze

t−1(θ)−Zt−1(θ)]

+
∂

∂θi
Φ(∆t, θ)

∂

∂θℓ
[Ze

t−1(θ)− Zt−1(θ)] +
∂2

∂θℓ∂θi
Φ(∆t, θ)[Z

e
t−1(θ)− Zt−1(θ)], ∀t ≥ p+ 1,

(51)

so that, in the same spirit as (49), we obtain

tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θℓ∂θi
[Ze

t (θ)− Zt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

≤ M ′
Φ

t−p
∑

k=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|
k−1
∏

j=0

Φ(∆t−j , θ)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8

.tα

[

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||Ze
t−k(θ)− Zt−k(θ)||

∣

∣

∣

∣

∣

∣

∣

∣

8/5

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θℓ
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

8/5

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θi
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

8/5

]

, (52)

for some positive onstant M ′
Φ. Using Point 2 (so that tα

∣

∣

∣

∣ supθ∈Θ ||Ze
t−k(θ)− Zt−k(θ)||

∣

∣

∣

∣

8/5

tends to 0 as t → ∞, sine 8/5 < 2) and the previous estimate

tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θi
[Ze

t (θ)− Zt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

8/5

−→ 0

for all i ∈ S, we onlude by a dominated onvergene theorem that

tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θℓ∂θi
[Ze

t (θ)− Zt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

, hene tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θℓ∂θi
(et − ǫt)(θ)||

∣

∣

∣

∣

∣

∣

∣

∣

4/3

,

tends to 0.
We �nish by skething the proof leading to tα

∣

∣

∣

∣supθ∈Θ ||∇3(et − ǫt)(θ)||
∣

∣

∣

∣

1
−→ 0. The starting

point is again deriving (51) with respet to θℓ′ , ℓ
′ ∈ S, whih yields, as in (52), the following

estimate:

tα
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂3

∂θ′ℓ∂θℓ∂θi
[Ze

t (θ)− Zt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ M ′′
Φ

t−p
∑

k=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|
k−1
∏

j=0

Φ(∆t−j, θ)|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8

.tα

[

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||Ze
t−k(θ)− Zt−k(θ)||

∣

∣

∣

∣

∣

∣

∣

∣

4/3

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θℓ
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂

∂θi
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θℓ∂θi
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θ′ℓ∂θi
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|| ∂2

∂θ′ℓ∂ℓ
[Ze

t−k(θ)− Zt−k(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

]

,

for some onstant M ′′
Φ, so that we onlude similarly. �

Proof of Proposition 3.5. In this proof, C will denote a generi positive onstant that will

hange from line to line. Let us start with Point 1. The fat that Qn(θ) onverges a.s. to
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O∞(θ) = E(ǫ0(θ)) as n → ∞ is a onsequene of the fat that supθ∈Θ |ǫt(θ)−et(θ)|2 −→ 0 (it-
self a onsequene of Point 3 of Lemma 3.4) and is justi�ed by the same exat proof of Lemma

7 in Franq and Zakoïan (1998). We now prove that nα ||supθ∈Θ |Qn(θ)−On(θ)|||1. Let α ∈
(0, 1). Using the upper bound supθ∈Θ |et(θ)2−ǫt(θ)

2| ≤ [supθ∈Θ |et(θ)|+ supθ∈Θ |ǫt(θ)|] . supθ∈Θ |et(θ)−
ǫt(θ)|, as well as Cauhy-Shwarz and Minkovski's inequalities, we get the following

nα

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|Qn(θ)−On(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ 1

n1−α

n
∑

t=1

[∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

]

.

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

.

Sine ||supθ∈Θ |et(θ)|||2 is upper bounded by Point 1 of Lemma 3.4, and ||supθ∈Θ |ǫt(θ)|||2 is

onstant in t and �nite, there thus exists some onstant C > 0 suh that

nα

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|Qn(θ)−On(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ C
1

n1−α

n
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

. (53)

Let us write the right hand side of the above inequality in the form

1
n1−α

∑n
t=1[t

1−α − (t −
1)1−α] 1

t1−α−(t−1)1−α ||supθ∈Θ |et(θ)− ǫt(θ)|||2. Sine

1

t1−α − (t− 1)1−α

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

∼t→∞
1

(1− α)t−α

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

,

whih tends to 0 as t → ∞ (a onsequene of Point 2 of Lemma 3.4), Toeplitz's lemma implies

that the right hand side of (53) tends to 0 as n → ∞, and this proves Point 1.

We now prove Point 2. We have for all θ ∈ Θ

||∇[et(θ)
2 − ǫt(θ)

2]|| = ||2et(θ)∇[et(θ)− ǫt(θ)] + 2[et(θ)− ǫt(θ)]∇ǫt(θ)||
≤ 2||et(θ)∇[et(θ)− ǫt(θ)]||+ 2|et(θ)− ǫt(θ)|.||∇ǫt(θ)||. (54)

so that

sup
θ∈Θ

||∇(Qn(θ)−On(θ))|| ≤
1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)|. sup
θ∈Θ

||∇[et(θ)− ǫt(θ)]||

+
1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)− ǫt(θ)|. sup
θ∈Θ

||∇ǫt(θ)||. (55)

Lemma 3.4, Points 2 and 4, along with Borel-Cantelli's lemma, yields that supθ∈Θ |ǫt(θ)−et(θ)|
and supθ∈Θ ||∇(ǫt − et)(θ)|| a.s. tend to 0 as t → ∞. The seond term on the right hand side

of (55) if then a.s. upper bounded thanks to Cauhy-Swharz inequality by

[

1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)− ǫt(θ)|2
]1/2

.

[

1

n

n
∑

t=1

sup
θ∈Θ

||∇ǫt(θ)||2
]1/2

,

whih tends to zero thanks to Cesaro's Lemma and the ergodi theorem. And sine, by

Minkowski's inequality,

[

1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)|2
]1/2

≤
[

1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)− ǫt(θ)|2
]1/2

+

[

1

n

n
∑

t=1

sup
θ∈Θ

|ǫ(θ)|2
]1/2

,



Y. Boubaar Maïnassara and L. Rabehasaina/Estimating weak ARMARC models 27

we have that

[

1
n

∑n
t=1 supθ∈Θ |et(θ)|2

]1/2
is a.s. upper bounded in n ≥ 1, again by a Cesaro

and ergodi theorem argument. The �rst term on the right hand side of (55) if then again a.s.

upper bounded thanks to Cauhy-Swharz inequality by

[

1

n

n
∑

t=1

sup
θ∈Θ

||∇(et − ǫt)(θ)||2
]1/2

.

[

1

n

n
∑

t=1

sup
θ∈Θ

|et(θ)|2
]1/2

,

whih tends to zero as t → ∞. Hene (55) implies that supθ∈Θ ||∇(Qn(θ)−On(θ))|| a.s. tends
to 0 as n → ∞. Proof of a.s. onvergene of supθ∈Θ ||∇j(Qn(θ)− On(θ))|| to 0 for j = 2, 3 is

obtained similarly, using arguments related to Points 3 and 4 from Lemma 3.4.

Let us now prove Point 3. Let α ∈ (0, 1). We dedue from (54), using Minkowski and Hölder

inequalities, that

nα

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇(Qn(θ)−On(θ))||
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ C

n1−α

n
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

4

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇[et(θ)− ǫt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

+
C

n1−α

n
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇ǫt(θ)||
∣

∣

∣

∣

∣

∣

∣

∣

2

. (56)

Using Point 1 of Lemma 3.4, we have that ||supθ∈Θ |et(θ)|||4 is upper bounded by some onstant
C. The �rst term in the righthandside of (56) may thus be upper bounded by

C
1

n1−α

n
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇[et(θ)− ǫt(θ)]||
∣

∣

∣

∣

∣

∣

∣

∣

4/3

.

Noting that ||supθ∈Θ ||∇[et(θ)− ǫt(θ)]||||4/3 ≤ C ′ ||supθ∈Θ ||∇[et(θ)− ǫt(θ)]||||8/5 for some on-
stant C ′

, the above expression is, similarly to the argument in (53), a quantity that tends to

0 as n → ∞ thanks to Point 4 in Lemma 3.4 oupled with Toeplitz's lemma. Hene the �rst

term in the right hand side of (56) tends to 0 as n → ∞. Again using Point 1 and Point 2 of

the same lemma, and with the same argument, we also have that the seond term in the right

hand side of (56) tends to 0 as n → ∞, whih proves Point 2. �

A.3. Proofs of Proposition 3.6 and Theorem 3.7

Proof of Proposition 3.6. Independene of the proesses (∆t)t∈Z and (ǫt)t∈Z as well their

ergodiity yields that, for �xed j ∈ N, the proess ((∆t−1, ...,∆t−j , ǫt−j)) is ergodi. We thus

dedue from Expression (8), and using the fat that (ǫt)t∈Z is a weak white noise, that On(θ)
de�ned by (14) veri�es

2On(θ) −→ 2O∞(θ) := σ2
∞
∑

j=0

E
(

[cj(θ,∆0, ...,∆−j)]
2
)

= σ2+σ2
∞
∑

j=1

E
(

[cj(θ,∆0, ...,∆−j)]
2
)

a.s.

(57)

as n → ∞ (remember that c0(θ,∆0) = 1). By uniqueness of deomposition (8) in Proposition

3.1, and sine ǫt(θ0) = ǫt, we have that (ci(θ,∆t−1, . . . ,∆t−i))i∈N = (1, 0, ...) if and only

if θ = θ0, and that O∞(θ) given in (57) is minimum at θ = θ0, with minimum given by

O∞(θ0) = σ2
. Let us then dedue that the estimator θ̌n de�ned in (15) onverges a.s. towards
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θ0. For this we let a subsequene (θ̌nk
)k∈N onverging to some θ∗ in the ompat set Θ and

we prove that θ∗ = θ0. Indeed, by de�nition of the estimator θ̌nk
we have

Onk
(θ0) ≥ Onk

(θ̌nk
) (58)

for all k ∈ N. A Taylor expansion yields the inequality

|Onk
(θ̌nk

)−Onk
(θ∗)| ≤ ||θ̌nk

− θ∗||. 1
nk

nk
∑

t=1

sup
θ∈Θ

[|ǫt(θ)|.||∇ǫt(θ)||]. (59)

But, using the ergodi theorem, we have

1

nk

nk
∑

t=1

sup
θ∈Θ

[|ǫt(θ)|.||∇ǫt(θ)||] ≤
1

2nk

nk
∑

t=1

[

sup
θ∈Θ

|ǫt(θ)|2 + sup
θ∈Θ

||∇ǫt(θ)||2
]

−→ 1

2

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|ǫ0(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

2

+
1

2

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇ǫ0(θ)||
∣

∣

∣

∣

∣

∣

∣

∣

2

2

< +∞,

so that we get from (59) that Onk
(θ̌nk

)−Onk
(θ∗) −→ 0 as k → ∞. Sine Onk

(θ∗) −→ O∞(θ∗),
we obtain, passing to the limit in (58), that

O∞(θ0) ≥ O∞(θ∗),

hene θ∗ = θ0 thank to uniqueness of the minimum of O∞(θ). �

Proof of Theorem 3.7. Similarly to the proof of the previous theorem, we let a subsequene

(θ̂nk
)k∈N onverging to some θ∗ in the ompat set Θ and we prove that θ∗ = θ0 by proving

that O∞(θ0) = O∞(θ∗). By de�nition of θ̂nk
we have

Qnk
(θ0) ≥ Qnk

(θ̂nk
), ∀k ≥ 0. (60)

Now, a Taylor expansion yields, for all θ′ and θ′′ in Θ, similarly to the argument in the proof

of Proposition 3.6,

|Qnk
(θ′)−Qnk

(θ′′)| ≤ ||θ′ − θ′′||. 1

2nk

nk
∑

t=1

[

sup
θ∈Θ

|et(θ)|2 + sup
θ∈Θ

||∇et(θ)||2
]

. (61)

Using inequality (a + b)2 ≤ 2(a2 + b2) for all a and b, we dedue that supθ∈Θ |et(θ)|2 ≤
2(supθ∈Θ |et(θ) − ǫt(θ)|2) + supθ∈Θ |ǫt(θ)|2. Sine a onsequene of Point 3 of Lemma 3.4 is

that supθ∈Θ |et(θ)− ǫt(θ)|2 tends to 0 as t → ∞, the ergodi theorem yields that

1

nk

nk
∑

t=1

[

sup
θ∈Θ

|et(θ)|2 + sup
θ∈Θ

||∇et(θ)||2
]

−→
∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

|ǫ0(θ)|
∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

sup
θ∈Θ

||∇ǫ0(θ)||
∣

∣

∣

∣

∣

∣

∣

∣

2

2

< +∞

as k → ∞. Thanks to (61) and Point 1 of Proposition 3.5, we thus dedue that Qnk
(θ0) −→

O∞(θ0) and Qnk
(θ̂nk

) −→ O∞(θ∗) as k → ∞, and we onlude in the same way as in proof of

Theorem 3.6. �



Y. Boubaar Maïnassara and L. Rabehasaina/Estimating weak ARMARC models 29

A.4. Proofs of Theorem 3.8

Let us introdue the following matries and vetors

In(θ) := Var
(√

n∇On(θ)
)

= (In(l, r)(θ))l,r=1...(p+q)K ∈ R
(p+q)K×(p+q)K, n ∈ N, ,(62)

Yk(θ) := ǫk(θ)∇ǫk(θ) = (Yk(l)(θ))l=1...(p+q)K ∈ R
(p+q)K×1, k ∈ Z, (63)

Theorem 3.8 an be established using the following lemmas.

Lemma A.1 (Davydov (1968)). Let p, q and r three positive numbers suh that p−1 + q−1 +
r−1 = 1. Then

|Cov(X,Y )| ≤ K0‖X‖p‖Y ‖q [α {σ(X), σ(Y )}]1/r , (64)

where ‖X‖pp = E(Xp), K0 is an universal onstant, and α {σ(X), σ(Y )} denotes the strong

mixing oe�ient between the σ-�elds σ(X) and σ(Y ) generated by the random variables X
and Y , respetively.

Lemma A.2. Let the assumptions of Theorem 3.8 be satis�ed. For all l, r in 1,. . . ,(p+ q)K
and θ ∈ Θ we have

In(l, r)(θ) −→ I(l, r)(θ) :=

∞
∑

k=−∞

ck(l, r)(θ), n → +∞,

where ck(l, r)(θ) = Cov (Yt(l)(θ), Yt−k(r)(θ)), k ∈ Z, the former being a onvergent series.

Proof of Lemma A.2: Let us write

∇ǫt(θ) =

(

∂ǫt(θ)

∂θ1
, . . . ,

∂ǫt(θ)

∂θ(p+q)K

)′

,

where ǫt(θ) is given by (8). The proess (Yk(θ))k is stritly stationary and ergodi. Moreover,

we have

In(θ) = Var

(√
n
∂

∂θ
On(θ)

)

= Var

(

1√
n

n
∑

t=1

Yt(θ)

)

=
1

n

n
∑

t,s=1

Cov (Yt(θ), Ys(θ))

=
1

n

n−1
∑

k=−n+1

(n− |k|)Cov (Yt(θ), Yt−k(θ)) .

From Proposition 3.1 and Lemma 12, we have

ǫt(θ) =

∞
∑

i=0

ci(θ,∆t, . . . ,∆t−i+1)ǫt−i and
∂ǫt(θ)

∂θl
=

∞
∑

i=0

ci,l(θ,∆t, . . . ,∆t−i+1)ǫt−i, for l = 1, . . . , (p+q)K,

where we reall that ci(θ,∆t, . . . ,∆t−i+1) is de�ned by (9), and

ci,l(θ,∆t, . . . ,∆t−i+1) =
∂

∂θl
ci(θ,∆t, . . . ,∆t−i+1)

=
∂

∂θl

(

i
∑

k=0

w1Φ(∆t, θ) . . .Φ(∆t−k+1, θ)MΨ(∆t−k) . . .Ψ(∆t−i+1)w
′
p+1

)

,
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with the following upper bound holding thanks to (13):

E sup
θ∈Θ

(ci(θ,∆t, . . . ,∆t−i+1))
2 ≤ Cρi and E sup

θ∈Θ
(ci,l(θ,∆t, . . . ,∆t−i+1))

2 ≤ Cρi, ∀i.

Let

βi,j,i′,j′,k(l, r)(θ) = E [ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1)ci′(θ,∆t−k, . . . ,∆t−k−i′+1)

cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)
]

E
[

ǫt−iǫt−jǫt−k−i′ǫt−k−j′
]

−E [ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1)]

×E
[

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)
]

E [ǫt−iǫt−j ]

×E
[

ǫt−k−i′ǫt−k−j′
]

= E [ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1)ci′(θ,∆t−k, . . . ,∆t−k−i′+1)

cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)
]

Cov

(

ǫt−iǫt−j, ǫt−k−i′ǫt−k−j′
)

+Cov (ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1), ci′(θ,∆t−k, . . . ,∆t−k−i′+1)

cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)
)

E [ǫt−iǫt−j ]E
[

ǫt−k−i′ǫt−k−j′
]

. (65)

We then obtain

ck(l, r)(θ) =

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

βi,j,i′,j′,k(l, r)(θ), k ∈ Z.

The Cauhy-Shwarz inequality implies that

|E[ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1)ci′(θ,∆t−k, . . . ,∆t−k−i′+1)

× cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)]
∣

∣ ≤
(

E[ci(θ,∆t, . . . ,∆t−i+1)cj,l(θ,∆t, . . . ,∆t−j+1)]
2
)1/2

×
(

E[ci′(θ,∆t−k, . . . ,∆t−k−i′+1)cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)]
2
)1/2 ≤

(

E[ci(θ,∆t, . . . ,∆t−i+1)]
4

× E[cj,l(θ,∆t, . . . ,∆t−j+1)]
4
)1/4 (

E[ci′(θ,∆t−k, . . . ,∆t−k−i′+1)]
4
E[cj′,r(θ,∆t−k, . . . ,∆t−k−j′+1)]

4
)1/4

≤ Cρi+j+i′+j′ . (66)

First, suppose that k ≥ 0, for all l, r in 1,. . . ,(p+ q)K and θ ∈ Θ, in view of (66) it follows

that

|ck(l, r)(θ)| = |ov (Yt(l)(θ), Yt−k(r)(θ))| =

∣

∣

∣

∣

∣

∣

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

βi,j,i′,j′,k(l, r)(θ)

∣

∣

∣

∣

∣

∣

≤ g1 + g2 + g3 + g4 + g5 + h1 + h2 + h3,

where

g1 =
∑

i>[k/2]

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j, ǫt−k−i′ǫt−k−j′
)∣

∣ ,

g2 =

∞
∑

i=0

∑

j>[k/2]

∞
∑

i′=0

∞
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)∣

∣
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g3 =
∞
∑

i=0

∞
∑

j=0

∑

i′>[k/2]

∞
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)∣

∣ ,

g4 =
∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∑

j′>[k/2]

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)∣

∣

g5 =

[k/2]
∑

i=0

[k/2]
∑

j=0

[k/2]
∑

i′=0

[k/2]
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)∣

∣ ,

h1 = σ4
∑

i>[k/2]

∞
∑

i′=0

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1),

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣ ,

h2 = σ4
∞
∑

i=0

∑

i′>[k/2]

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1),

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣ ,

h3 = σ4

[k/2]
∑

i=0

[k/2]
∑

i′=0

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1),

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣ .

Note that, in the strong noise ase, we easily hek that the Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)

term

in (65) is non zero only for indies i, j, i′, j′ suh that i = j = k+ i′ = k+ j′. This fat entails
that, instead of onsidering �ve sums g1,..., g5, we only need to onsider one sum in the form

κ
∑∞

j=k ρ
2(2j−k)

, whih is a O(ρk).
Beause

∣

∣

Cov

(

ǫt−iǫt−j, ǫt−k−i′ǫt−k−j′
)∣

∣ ≤
√

E [ǫt−iǫt−j]
2
E
[

ǫt−k−i′ǫt−k−j′
]2 ≤ E |ǫt|4 < ∞

by Assumption (A3), we have

g1 =
∑

i>[k/2]

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j, ǫt−k−i′ǫt−k−j′
)∣

∣ ≤ κ1ρ
k/2,

for some positive onstant κ1. Using the same arguments we obtain that gi (i = 2, 3, 4)
is bounded by κiρ

k/2
. Furthermore, (A3) and the Cauhy-Shwarz inequality yields that

‖ǫiǫi′‖2+ν < +∞ for any i and i′ in Z. Lemma A.1 thus entails that

g5 =

[k/2]
∑

i=0

[k/2]
∑

j=0

[k/2]
∑

i′=0

[k/2]
∑

j′=0

κρi+j+i′+j′
∣

∣

Cov

(

ǫt−iǫt−j , ǫt−k−i′ǫt−k−j′
)∣

∣

≤
[k/2]
∑

i=0

[k/2]
∑

j=0

[k/2]
∑

i′=0

[k/2]
∑

j′=0

κ5ρ
i+j+i′+j′ ‖ǫt−iǫt−j‖2+ν

∥

∥ǫt−k−i′ǫt−k−j′
∥

∥

2+ν

×
{

αǫ

(

min
[

k + j′ − i, k + i′ − i, k + j′ − j, k + i′ − j
])}ν/(2+ν) ≤ κ′αν/(2+ν)

ǫ ([k/2]) .

Sine

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1), ci′(θ,∆t−k, . . . ,∆t−k−i′+1)
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× ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣ ≤ Cρi+i′ ,

we have

h1 = σ4
∑

i>[k/2]

∞
∑

i′=0

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1),

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣ ≤ κ′1ρ
k/2,

for some positive onstant κ′1. Using the same arguments we obtain that h2 is bounded by

κ′2ρ
k/2

. The α−mixing property (see Theorem 14.1 in Davidson (1994), p. 210) and Lemma

A.1, along with (12), entail that

h3 = σ4

[k/2]
∑

i=0

[k/2]
∑

i′=0

|Cov(ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1),

ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∣

∣

≤
[k/2]
∑

i=0

[k/2]
∑

i′=0

κ6 ‖ci(θ,∆t, . . . ,∆t−i+1)ci,l(θ,∆t, . . . ,∆t−i+1)‖2+ν

×
∥

∥ci′(θ,∆t−k, . . . ,∆t−k−i′+1)ci′,r(θ,∆t−k, . . . ,∆t−k−i′+1))
∥

∥

2+ν

×{α∆ (k + 1− i)}ν/(2+ν) ≤ κ′3α
ν/(2+ν)
∆ ([k/2]) .

It follows that

∞
∑

k=0

|ck(l, r)(θ)| ≤ κ

∞
∑

k=0

ρ|k|/2 + κ′
∞
∑

k=0

αν/(2+ν)
ǫ ([k/2]) + κ′′

∞
∑

k=0

α
ν/(2+ν)
∆ ([k/2]) < ∞,

by Assumption (A2). The same bounds learly holds for

0
∑

k=−∞

|ck(l, r)(θ)| ,

whih shows that

∞
∑

k=−∞

|ck(l, r)(θ)| < ∞.

Then, the dominated onvergene theorem gives

In(l, r)(θ) =
1

n

n−1
∑

k=−n+1

(n− |k|)ck(l, r)(θ) −→ I(l, r)(θ) :=

∞
∑

k=−∞

ck(l, r)(θ), n → +∞,

and ompletes the proof. �

Lemma A.3. Under the assumptions of Theorem 3.8, we have onvergene in distribution of

the random vetor √
n∇Qn(θ0)

D→ N (0, I), as n → ∞
where we reall that matrix I is given by (18).
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Proof of Lemma A.3: In view of Proposition 3.5, it is easy to see that

√
n∇ (Qn −On) (θ0) = oP(1).

Thus ∇Qn(θ0) and ∇On(θ0) have the same asymptoti distribution. Therefore, it remains to
show that √

n∇On(θ0)
D→ N (0, I), as n → ∞.

For l, in 1,. . . ,(p + q)K and θ ∈ Θ, we have

∂ǫt(θ)

∂θl
=

∞
∑

i=1

ci,l(θ,∆t, . . . ,∆t−i+1)ǫt−i, (67)

where the sequene ci,l(θ,∆t, . . . ,∆t−i+1) is suh that E supθ∈Θ |(ci,l(θ,∆t, . . . ,∆t−i+1))
2 → 0

at a geometri rate as i → ∞ (see Lemma 3.3). Moreover, note that

√
n
∂On(θ)

∂θl
=

1√
n

n
∑

t=1

Yt(l)(θ) =
1√
n

n
∑

t=1

∞
∑

i=0

ci(θ,∆t, . . . ,∆t−i+1)ǫt−i

∞
∑

j=1

cj,l(θ,∆t, . . . ,∆t−j+1)ǫt−j .

Sine ∇ǫt(θ0) belongs to the Hilbert spae Hǫ(t− 1), the random variables ǫt(θ0) and ∇ǫt(θ0)
are orthogonal and it is easy to verify that E [

√
n∇On(θ0)] = 0. Now, we have for all m

√
n
∂On(θ0)

∂θl
=

1√
n

n
∑

t=1

Yt,m(l) +
1√
n

n
∑

t=1

Zt,m(l)

where

Yt,m(l) =
m
∑

j=1

cj,l(θ0,∆t, . . . ,∆t−j+1)ǫtǫt−j

Zt,m(l) =

∞
∑

j=m+1

cj,l(θ0,∆t, . . . ,∆t−j+1)ǫtǫt−j .

Let

Yt,m := Yt,m(θ0) = (Yt,m(1), . . . , Yt,m((p + q)K))′ and

Zt,m := Zt,m(θ0) = (Zt,m,(1), . . . , Zt,m((p+ q)K))′ .

The proesses (Yt,m)t and (Zt,m)t are stationary and entered. Moreover, under Assumption

(A2) and m �xed, the proess Y = (Yt,m)t is strong mixing (see Davidson (1994), Theorem

14.1 p. 210), with mixing oe�ients αY (h) ≤ α∆,ǫ (max{0, h−m}) ≤ α∆ (max{0, h −m+ 1})+
αǫ (max{0, h−m}), by independene of (∆t)t∈Z and (ǫt)t∈Z. Applying the entral limit theo-
rem (CLT) for mixing proesses (see Herrndorf (1984)) we diretly obtain

1√
n

n
∑

t=1

Yt,m
D→ N (0, Im), Im =

∞
∑

h=−∞

Cov (Yt,m, Yt−h,m) .

In the strong noise ase, the in�nite sum in Im redues to one term orresponding to h = 0,
and Im simply equals Cov (Yt,m, Yt,m).
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As in Franq and Zakoïan (1998) (see Lemma 3), we an show that I = limm→∞ Im exists.

Sine ‖Zt,m‖2 → 0 at an exponential rate when m → ∞, using the arguments given in

Franq and Zakoïan (1998) (see Lemma 4), we show that

lim
m→∞

lim sup
n→∞

P

{∥

∥

∥

∥

∥

n−1/2
n
∑

t=1

Zt,m

∥

∥

∥

∥

∥

> ε

}

= 0 (68)

for every ε > 0 (see the following lemma A.4). From a standard result (see e.g. Brokwell and Davis

(1991), Proposition 6.3.9), we dedue that

1√
n

n
∑

t=1

∇On(θ0) =
1√
n

n
∑

t=1

Yt,m +
1√
n

n
∑

t=1

Zt,m
D→ N (0, I),

whih ompletes the proof. �

Lemma A.4. Under the assumptions of Theorem 3.8, (68) holds, that is

lim
m→∞

lim sup
n→∞

P

{∥

∥

∥

∥

∥

n−1/2
n
∑

t=1

Zt,m

∥

∥

∥

∥

∥

> ε

}

= 0.

Proof of Lemma A.4: For l = 1, . . . , (p + q)K, by stationarity we have

Var

(

1√
n

n
∑

t=1

Zt,m(l)

)

=
1

n

n
∑

t,s=1

Cov(Zt,m(l), Zs,m(l))

=
1

n

∑

|h|<n

(n− |h|)Cov(Zt,m(l), Zt−h,m(l))

≤
∞
∑

h=−∞

|Cov(Zt,m(l), Zt−h,m(l))| .

Consider �rst the ase h ≥ 0. Beause E supθ∈Θ(cj,l(θ0,∆t, . . . ,∆t−j+1))
2 ≤ κρj (see 12),

using also E|ǫt|4 < ∞, for [h/2] ≤ m, it follows from the Hölder inequality that

sup
h

|Cov(Zt,m(l), Zt−h,m(l))| = sup
h

|E(Zt,m(l)Zt−h,m(l))| ≤ κρm. (69)

Let h > 0 suh that [h/2] > m. Write

Zt,m = Zh−

t,m(l) + Zh+

t,m(l),

where

Zh−

t,m(l) =

[h/2]
∑

j=m+1

cj,l(θ0,∆t, . . . ,∆t−j+1)ǫtǫt−j , Zh+

t,m(l) =

∞
∑

j=[h/2]+1

cj,l(θ0,∆t, . . . ,∆t−j+1)ǫtǫt−j .

Note that Zh−

t,m(l) belongs to the σ-�eld generated by {∆t, . . . ,∆t−[h/2]+1, ǫt, ǫt−1, . . . , ǫt−[h/2]}
and that Zt−h,m(l) belongs to the σ-�eld generated by {∆t−h,∆t−h−1, . . . , ǫt−h, ǫt−h−1, . . . }.
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Note also that, by (A3), E|Zh−

t,m(l)|2+ν < ∞ and E|Zt−h,m(l)|2+ν < ∞. The α−mixing prop-

erty and Lemma A.1 then entail that

∣

∣

∣
Cov(Zh−

t,m(l), Zt−h,m(l))
∣

∣

∣
≤ κ1

[h/2]
∑

j=m+1

∞
∑

j′=m+1

∥

∥cj′,l(θ0,∆t−h, . . . ,∆t−h−j′+1)ǫtǫt−j′
∥

∥

2+ν

×‖cj,l(θ0,∆t, . . . ,∆t−j+1)ǫtǫt−j‖2+ν [α∆,ǫ([h/2])]
ν/(2+ν)

≤ κ2

[h/2]
∑

j=m+1

∞
∑

j′=m+1

ρjρj
′

[

αν/(2+ν)
ǫ ([h/2]) + α

ν/(2+ν)
∆ ([h/2])

]

≤ κρm
[

αν/(2+ν)
ǫ ([h/2]) + α

ν/(2+ν)
∆ ([h/2])

]

. (70)

By the argument used to show (69), we also have

∣

∣

∣
Cov(Zh+

t,m(l), Zt−h,m(l))
∣

∣

∣
≤ κρhρm. (71)

In view of (69), (70) and (71), we obtain

∞
∑

h=0

|Cov(Zt,m(l), Zt−h,m(l))| ≤ κmρm+
∞
∑

h=m

{

κρhρm + κρm
[

αν/(2+ν)
ǫ ([h/2]) + α

ν/(2+ν)
∆ ([h/2])

]}

→ 0

as m → ∞ by (A2). This implies that

sup
n

Var

(

1√
n

n
∑

t=1

Zt,m(l)

)

−−−−→
m→∞

0. (72)

We have the same bound for h < 0. The onlusion follows from (72). �

Lemma A.5. Under the assumptions of Theorem 3.8, almost surely

∇2Qn(θ0) −→ J, n → ∞,

where J given by (17) exists and is invertible.

Proof of Lemma A.5: For all l, r in 1, . . . , (p+ q)K, in view of Proposition 3.5, we have

almost surely

∣

∣

∣

∣

∂2

∂θl∂θr
(Qn(θ0)−On(θ0))

∣

∣

∣

∣

→ 0, as t → ∞.

Thus ∂2Qn(θ0)/∂θl∂θr and ∂2On(θ0)/∂θl∂θr have almost surely the same asymptoti distri-

bution. From (8) and (12), there exists a sequene (ci,l,r(θ,∆t−1, . . . ,∆t−i))i∈N suh that

∂2ǫt(θ)

∂θl∂θr
=

∞
∑

i=1

ci,l,r(θ,∆t, . . . ,∆t−i+1)ǫt−i with E(ci,l,r(θ,∆t, . . . ,∆t−i+1))
2 ≤ Cρi, ∀i. (73)

This implies that ∂2ǫt(θ)/∂θl∂θr belongs to L2
. On the other hand, we have

∂2On(θ)

∂θl∂θr
=

1

n

n
∑

t=1

ǫt(θ)
∂2ǫt(θ)

∂θl∂θr
+

1

n

n
∑

t=1

∂ǫt(θ)

∂θl

∂ǫt(θ)

∂θr
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−→ E

(

ǫt(θ)
∂2ǫt(θ)

∂θl∂θr

)

+ E

(

∂ǫt(θ)

∂θl

∂ǫt(θ)

∂θr

)

, as n → ∞,

by the ergodi theorem. Using the unorrelatedness between ǫt(θ0) and the linear pastHǫ(t−1),
∂ǫt(θ0)/∂θl ∈ Hǫ(t− 1), and ∂2ǫt(θ0)/∂θl∂θr ∈ Hǫ(t− 1), we have

E

(

∂2On(θ0)

∂θl∂θr

)

= E

(

∂ǫt(θ0)

∂θl

∂ǫt(θ0)

∂θr

)

= J(l, r). (74)

Therefore, J is the ovariane matrix of ∂ǫt(θ0)/∂θ. If J is singular, then there exists a vetor

c = (c1, . . . , c(p+q)K)′ 6= 0 suh that c
′Jc = 0. Thus we have

(p+q)K
∑

k=1

ck
∂ǫt(θ0)

∂θk
= 0, a.s. (75)

Di�erentiating the two sides of (4) yields

−
p
∑

i=1

(gai )
∗(∆t, θ0)Xt−i =

(p+q)K
∑

k=1

ck
∂ǫt(θ0)

∂θk
−

q
∑

j=1

gbj(∆t, θ0)

(p+q)K
∑

k=1

ck
∂ǫt−j(θ0)

∂θk
−

q
∑

j=1

(gbj)
∗(∆t, θ0)ǫt−j(θ0)

where

(gai )
∗(∆t, θ0) =

(p+q)K
∑

k=1

ck
∂gai (∆t, θ0)

∂θk
and (gbj)

∗(∆t, θ0) =

(p+q)K
∑

k=1

ck
∂gbj(∆t, θ0)

∂θk
.

Beause (75) is satis�ed for all t, we have

p
∑

i=1

(gai )
∗(∆t, θ0)Xt−i =

q
∑

j=1

(gbj)
∗(∆t, θ0)ǫt−j(θ0).

The latter equation yields a ARMARC(p− 1, q− 1) representation at best. The identi�ability

assumption (see Proposition 3.1) exludes the existene of suh representation.

Thus

(gai )
∗(∆t, θ0) =

(p+q)K
∑

k=1

ck
∂gai (∆t, θ0)

∂θk
= 0 and (gbj)

∗(∆t, θ0) =

(p+q)K
∑

k=1

ck
∂gbj(∆t, θ0)

∂θk
= 0

and the onlusion follows. �

Proof of Theorem 3.8: For all i, j, k = 1, . . . ,K(p+ q) we have

∂3On(θ)

∂θi∂θj∂θk
=

1

n

n
∑

t=1

{

ǫt(θ)
∂3ǫt(θ)

∂θi∂θj∂θk

}

+
1

n

n
∑

t=1

{

∂ǫt(θ)

∂θi

∂2ǫt(θ)

∂θj∂θk

}

+
1

n

n
∑

t=1

{

∂2ǫt(θ)

∂θi∂θj

∂ǫt(θ)

∂θk

}

+
1

n

n
∑

t=1

{

∂ǫt(θ)

∂θj

∂2ǫt(θ)

∂θi∂θk

}

.
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Using the ergodi theorem, the Cauhy-Shwarz inequality and Lemma 3.4, we obtain

sup
n

sup
θ∈Θ

∣

∣

∣

∣

∂3On(θ)

∂θi∂θj∂θk

∣

∣

∣

∣

< +∞. (76)

In view of Proposition 3.5, we have almost surely

sup
θ∈Θ

∣

∣

∣

∣

∂3

∂θi∂θj∂θk
(Qn(θ)−On(θ))

∣

∣

∣

∣

−→ 0, as n → ∞.

Thus ∂3Qn(θ)/∂θi∂θj∂θk and ∂2On(θ)/∂θi∂θj∂θk have almost surely the same asymptoti

distribution. In view of Theorem 3.6 and (A4), we have almost surely θ̂n −→ θ0 ∈
◦
Θ. Thus

∇Qn(θ̂n) = 0
R(p+q)K for su�iently large n, and a Taylor expansion gives for all r ∈ {1, ..., (p+

q)K},
0 =

√
n

∂

∂θr
Qn(θ0) +∇ ∂

∂θr
Qn(θ

∗
n,r)

√
n
(

θ̂n − θ0

)

, (77)

where θ∗n,r lies on the segment in R
(p+q)K

with endpoints θ̂n and θ0. Using again a Taylor

expansion, Theorem 3.7 and (76), we obtain for all l = 1, . . . , (p + q)K,

∣

∣

∣

∣

∣

∂2Qn(θ
∗
n,r)

∂θl∂θr
− ∂2Qn(θ0)

∂θl∂θr

∣

∣

∣

∣

∣

≤ sup
n

sup
θ∈Θ

∥

∥

∥

∥

∇
(

∂2

∂θl∂θr
Qn(θ)

)∥

∥

∥

∥

∥

∥θ∗n,r − θ0
∥

∥

−→ 0 a.s. as n → ∞.

This, along with (77), implies that, as n → ∞
√
n
(

θ̂n − θ0

)

= −
[

∇2Qn(θ0)
]−1√

n
∂Qn(θ0)

∂θ
+ oP(1).

From Lemma A.3 and Lemma A.4, we obtain that

√
n(θ̂n − θ0) has a limiting normal distri-

bution with mean 0 and ovariane matrix J−1IJ−1
. �

A.5. Proofs of Theorem 3.10

The proof of Theorem 3.10 is based on a series of lemmas.

Consider the regression of Υt on Υt−1, . . . ,Υt−r de�ned by

Υt =
r
∑

i=1

Φr,iΥt−i + ur,t, (78)

where ur,t is orthogonal to {Υt−1 . . .Υt−r} for the L2
inner produt. If Υ1, . . . ,Υn were ob-

served, the least squares estimators of Φr = (Φr,1 · · ·Φr,r) and Σur = Var(ur,t) would be given

by

Φ̆r = Σ̂Υ,Υr
Σ̂−1
Υr

and Σ̂ŭr =
1

n

n
∑

t=1

(

Υt − Φ̆rΥr,t

)(

Υt − Φ̆rΥr,t

)′

where Υr,t = (Υ′
t−1 · · ·Υ′

t−r)
′,

Σ̂Υ,Υr
=

1

n

n
∑

t=1

ΥtΥ
′
r,t, Σ̂Υr

=
1

n

n
∑

t=1

Υr,tΥ
′
r,t,
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with by onvention Υt = 0 when t ≤ 0, and assuming Σ̂Υr
is non singular (whih holds true

asymptotially).

Atually, we just observe X1, . . . ,Xn. The residuals ǫ̂t := et(θ̂n) are then available for

t = 1, . . . , n and the vetors Υ̂t obtained by replaing θ0 by θ̂n in (19) are available for

t = 1, . . . , n. We therefore de�ne the least squares estimators of Φr = (Φr,1 · · ·Φr,r) and

Σur = Var(ur,t) by

Φ̂r = Σ̂Υ̂,Υ̂r
Σ̂−1

Υ̂r

and Σ̂ûr =
1

n

n
∑

t=1

(

Υ̂t − Φ̂rΥ̂r,t

)(

Υ̂t − Φ̂rΥ̂r,t

)′

where Υ̂r,t = (Υ̂′
t−1 · · · Υ̂′

t−r)
′,

Σ̂Υ̂,Υ̂r
=

1

n

n
∑

t=1

Υ̂tΥ̂
′
r,t, Σ̂Υ̂r

=
1

n

n
∑

t=1

Υ̂r,tΥ̂
′
r,t,

with by onvention Υ̂t = 0 when t ≤ 0, and assuming Σ̂Υ̂r
is non singular (whih holds true

asymptotially).

We speify a bit more the matrix norm de�ned at the end of Setion 2 and we use in the

sequel the multipliative matrix norm de�ned by

‖A‖ = sup
‖x‖≤1

‖Ax‖ = ̺1/2(A′Ā), (79)

where A is a C
d1×d2

matrix, ‖x‖2 = x′x̄ is the Eulidean norm of the vetor x ∈ C
d2×1

, and

̺(·) denotes the spetral radius. This norm satis�es

‖A‖2 ≤
∑

i,j

a2i,j, when A is a R
d1×d2

matrix (80)

with obvious notations. This hoie of the norm is ruial for the following lemma to hold

(with e.g. the Eulidean norm, this result is not valid). Let

ΣΥ,Υr
= EΥtΥ

′
r,t, ΣΥ = EΥtΥ

′
t, ΣΥr

= EΥr,tΥ
′
r,t, Σ̂Υ̂ =

1

n

n
∑

t=1

Υ̂tΥ̂
′
t.

In the sequel, C and ρ denote generi onstant suh as K > 0 and ρ ∈ (0, 1), whose exat

values are unimportant.

Lemma A.6. Under the assumptions of Theorem 3.10,

sup
r≥1

max
{

∥

∥ΣΥ,Υr

∥

∥ ,
∥

∥ΣΥr

∥

∥ ,
∥

∥

∥
Σ−1
Υr

∥

∥

∥

}

< ∞.

Proof. The proof is an extension of Setion 5.2 of Grenander and Szegö (1958). We readily

have

‖ΣΥr
x‖ ≤ ‖ΣΥr+1

(x′, 0′(p+q)K)′‖ and ‖ΣΥr
x‖ ≤ ‖ΣΥr+1

(0′(p+q)K , x′)′‖

for any x ∈ R
K(p+q)r

and 0(p+q)K = (0, . . . , 0)′ ∈ R
(p+q)K

. Therefore

0 < ‖Var (Υt)‖ =
∥

∥ΣΥ1

∥

∥ ≤
∥

∥ΣΥ2

∥

∥ ≤ · · ·
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and

∥

∥ΣΥ,Υr

∥

∥ ≤
∥

∥

∥
ΣΥr+1

∥

∥

∥
,

so that it su�es to prove that supr≥1

∥

∥ΣΥr

∥

∥

and supr≥1

∥

∥

∥Σ−1
Υr

∥

∥

∥ are �nite to prove the result.

Let us write matrix ΣΥr
in blokwise form

ΣΥr
= [C(i− j)]i,j=1,...,r , C(k) = E(Υ0Υ

′
k) ∈ R

K(p+q)×K(p+q), k ∈ Z.

Let now f : R −→ C
K(p+q)×K(p+q)

be the spetral density of (Υt)t∈Z de�ned by

f(ω) =
1

2π

∞
∑

k=−∞

C(k)eiωk, ω ∈ R.

A diret onsequene of (19) and Lemma A.2 is that f(ω) is absolutely summable, and that

supω∈R ‖f(ω)‖ < +∞, for any norm ‖.‖ on C
K(p+q)×K(p+q)

(in partiular, one whih is inde-

pendent from r ≥ 1). Another onsequene is that we have the inversion formula

C(k) =

∫ π

−π
f(x)e−ikxdx, ∀k ∈ Z. (81)

Last, it is easy to hek that f(ω) is an hermitian matrix for all ω ∈ R, i.e. f(ω) = f(ω)′, where

z̄ is the onjugate of any vetor or matrix z with entries in C. Let then δ(r) =
(

δ
(r)
1

′
, ..., δ

(r)
r

′)

∈
R
rK(p+q)×1

be an eigenvetor for ΣΥr
, with δ

(r)
j ∈ R

K(p+q)×1
, j = 1, ..., r, suh that ‖δ(r)‖ = 1

and

δ(r)
′
ΣΥr

δ(r) = ‖ΣΥr
‖ = ̺

(

ΣΥr

)

, (82)

where ‖ΣΥr
‖ is the norm of matrix ΣΥr

de�ned in (79). We then hek that

δ(r)
′
ΣΥr

δ(r) =

r
∑

i,j=1

δ
(r)
i

′
C(i− j)δ

(r)
j =

∫ π

−π

(

r
∑

m=1

δ(r)m ei(m−1)x

)′

f(x)

(

r
∑

m=1

δ
(r)
m ei(m−1)x

)

dx,

(83)

the last equality a diret onsequene of (81). f(x) being hermitian, (X,Y ) ∈ C
K(p+q)×1 ×

C
K(p+q)×1 7→ X ′f(x)Ȳ de�nes a semi de�nite non negative bilinear form, hene we have for

all x ∈ R and X ∈ C
K(p+q)×1

:

0 ≤ X ′f(x)X̄ ≤ ‖f(x)‖.X ′X̄ ≤ sup
ω∈R

‖f(ω)‖.X ′X̄.

Let us point out that supω∈R ‖f(ω)‖ is a quantity whih is independent from r ≥ 1. We dedue

from (83) and the previous inequality that

δ(r)
′
ΣΥr

δ(r) ≤ sup
ω∈R

‖f(ω)‖
∫ π

−π

(

r
∑

m=1

δ(r)m ei(m−1)x

)′( r
∑

m=1

δ
(r)
m ei(m−1)x

)

dx. (84)

A short omputation yields that

1

2π

∫ π

−π

(

r
∑

m=1

δ(r)m ei(m−1)x

)′( r
∑

m=1

δ
(r)
m ei(m−1)x

)

dx =

r
∑

m=1

δ(r)m
′
δ(r)m = ‖δ(r)‖2 = 1,
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whih, oupled with (82) and (84), yields that ‖ΣΥr
‖ ≤ 2π supω∈R ‖f(ω)‖ < +∞, an upper

bound independent from r ≥ 1. By similar arguments, the smallest eigenvalue of ΣΥr
is greater

than a positive onstant independent of r. Using the fat that ‖Σ−1
Υr

‖ is equal to the inverse

of the smallest eigenvalue of ΣΥr
, the proof is ompleted. �

The following lemma is neessary in the sequel.

Lemma A.7. Let us suppose that (A1) and that Stationarity ondition (A5a) for ν = 6

(A6) lim sup
t→∞

1

t
lnE



sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Φ(∆i, θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

32


 < 0, lim sup
t→∞

1

t
lnE





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∏

i=1

Ψ(∆i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

32


 < 0

hold. We assume that ǫt ∈ L4ν+8
. Sequenes (ǫt(θ))t∈Z and (et(θ))t∈Z satisfy

1. ||supθ∈Θ |ǫ0(θ)|||16 < +∞ and supt≥0 ||supθ∈Θ |et(θ)|||16 < +∞,

2. ||supθ∈Θ |ǫt(θ)− et(θ)|||4 tends to 0 exponentially fast as t → ∞,

3. For all α > 0, tα supθ∈Θ |ǫt(θ)− et(θ)| −→ 0 a.s. as t → ∞,

4. For all j = 1, 2, 3,
∣

∣

∣

∣supθ∈Θ ||∇jǫ0(θ)||
∣

∣

∣

∣

16
< +∞, supt≥0

∣

∣

∣

∣supθ∈Θ ||∇jet(θ)||
∣

∣

∣

∣

16
< +∞

and we have tα ||supθ∈Θ ||∇(et − ǫt)(θ)||||16/5 −→ 0 , as t → ∞ for all α > 0.

Proof of Lemma A.7 is similar to the proofs of Lemmas 3.3 and 3.4. �

Denote by Υt(i) the i-th element of Υt.

Lemma A.8. Let (ǫt) be a sequene of entered and unorrelated variables, with E |ǫt|8+4ν < ∞
and

∑∞
h=0 [αǫ(h)]

ν/(2+ν) < ∞ for some ν > 0. Then there exits a �nite onstant C1 suh that

for m1,m2 = 1, . . . , (p + q)K and all s ∈ Z,

∞
∑

h=−∞

|Cov {Υ1(m1)Υ1+s(m2),Υ1+h(m1)Υ1+s+h(m2)}| < C1.

Proof. Reall that

∂ǫt(θ0)

∂θl
=

∞
∑

i=0

ci,l(θ0,∆t, . . . ,∆t−i+1)ǫt−i, for l = 1, . . . , (p + q)K, (85)

where ci(θ0,∆t, . . . ,∆t−i+1) is de�ned by (9) and ci,l(θ0,∆t, . . . ,∆t−i+1) = ∂ci(θ0,∆t, . . . ,∆t−i+1)/∂θl,
and with the following upper bound holding thanks to (13):

E sup
θ∈Θ

(ci(θ,∆t, . . . ,∆t−i+1))
2 ≤ Cρi and E sup

θ∈Θ
(ci,l(θ,∆t, . . . ,∆t−i+1))

2 ≤ Cρi, ∀i.

Let

γi,j,i′,j′,s,h(m1,m2)(θ0) = E [ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1)

×ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
]

×Cov
(

ǫtǫt−iǫt+sǫt+s−j, ǫt+hǫt+h−i′ǫt+s+hǫt+s+h−j′
)

+Cov (ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1),

ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)

×E [ǫtǫt−iǫt+sǫt+s−j]E
[

ǫt+hǫt+h−i′ǫt+s+hǫt+s+h−j′
]

. (86)
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The Cauhy-Shwarz inequality implies that

|E[ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1)

×ci′,m1
(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2

(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)]
∣

∣ ≤ Cρi+j+i′+j′ .(87)

In view of (85) and (86), we have

∞
∑

h=−∞

Cov {Υ1(m1)Υ1+s(m2),Υ1+h(m1)Υ1+s+h(m2)}

=
∞
∑

h=−∞

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

γi,j,i′,j′,s,h(m1,m2)(θ0).

Without loss of generality, we an take the supremum over the integers s > 0, and onsider

the sum for positive h. Let m0 = m1 ∧m2 and Yt,h1 = ǫtǫt−h1 − E(ǫtǫt−h1). We �rst suppose

that h ≥ 0. It follows that

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

|Cov (ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1),

ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)∣

∣

≤ v1 + v2 + v3 + v4 + v5,

where

v1 = v1(h) =
∑

i>[h/2]

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

∣

∣

∣Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣ ,

v2 = v2(h) =

∞
∑

i=0

∑

j>[h/2]

∞
∑

i′=0

∞
∑

j′=0

∣

∣

∣
Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣

v3 = v3(h) =
∞
∑

i=0

∞
∑

j=0

∑

i′>[h/2]

∞
∑

j′=0

∣

∣

∣
Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
,

v4 = v4(h) =
∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∑

j′>[h/2]

∣

∣

∣
Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
,

v5 = v5(h) =

[h/2]
∑

i=0

[h/2]
∑

j=0

[h/2]
∑

i′=0

[h/2]
∑

j′=0

∣

∣

∣
Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
,

where

cti1,m = ci1,m(θ0,∆t, . . . ,∆t−i1+1).

One immediate remark is that cti1,m is measurable with respet to ∆r, r ∈ {t, ..., t − i1 + 1}.
Sine

∣

∣

∣Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣ ≤ Cρi+i′+j+j′,

we have

v1 =
∑

i>[h/2]

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

∣

∣

∣
Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
≤ κ1ρ

h/2,
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for some positive onstant κ1. Using the same arguments we obtain that vi, i = 2, 3, 4 are

bounded by κiρ
h/2

. The α−mixing property (see Theorem 14.1 in Davidson (1994), p. 210)

and Lemmas A.1 and A.7, entail that

v5 =

[h/2]
∑

i=0

[h/2]
∑

j=0

[h/2]
∑

i′=0

[h/2]
∑

j′=0

∣

∣

∣Cov

(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣

≤
4
∑

k=1

∑

(i,j,i′,j′)∈Ck

κ6

∥

∥

∥
cti,m1

ct+s
j,m2

∥

∥

∥

2+ν

∥

∥

∥
ct+h
i′,m1

ct+h+s
j′,m2

∥

∥

∥

2+ν

{

α
(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)}ν/(2+ν)
,

where α(U, V ) denotes the strong mixing oe�ient between the σ−�eld generated by the

random variable U and that generated by V and where

C1 = C1(h) =
{

(i, j, i′, j′) ∈ {0, 1, . . . , [h/2]}4 : i ≥ j − s, j′ ≤ i′ + s
}

,

C2 = C2(h) =
{

(i, j, i′, j′) ∈ {0, 1, . . . , [h/2]}4 : i ≥ j − s, j′ ≥ i′ + s
}

,

C3 = C3(h) =
{

(i, j, i′, j′) ∈ {0, 1, . . . , [h/2]}4 : i ≤ j − s, j′ ≤ i′ + s
}

,

C4 = C4(h) =
{

(i, j, i′, j′) ∈ {0, 1, . . . , [h/2]}4 : i ≤ j − s, j′ ≥ i′ + s
}

.

We hek easily that cti,m1
ct+s
j,m2

and ct+h
i′,m1

ct+h+s
j′,m2

are respetively measurable with respet to

∆r, r ∈ {t − i + 1, ..., t + s} and ∆r, r ∈ {t − i′ + h + 1, ..., t + h + s} when (i, j, i′, j′) ∈ C1.
We have t− i+ 1 ≤ t+ s− j + 1, t+ h− i′ + 1 ≤ t+ h+ s− j′ + 1 and we thus dedue that

∣

∣

∣
α
(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
≤ α∆

(

h− i′ − s+ 1
)

, ∀h ≥ i′ + s− 1,
∣

∣

∣
α
(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
≤ α∆ (−i− h− s+ 1) , ∀h ≤ −i− s+ 1,

∣

∣

∣
α
(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)∣

∣

∣
≤ α∆ (0) ≤ 1/4, ∀h = −i− s+ 1, . . . , i′ + s− 1.

Note also that, by the Hölder inequality,

∥

∥

∥
cti,m1

ct+s
j,m2

∥

∥

∥

2+ν
≤
∥

∥cti,m1

∥

∥

4+2ν

∥

∥

∥
ct+s
j,m2

∥

∥

∥

4+2ν
≤ Cρi+j.

Therefore

∞
∑

h=0

∑

(i,j,i′,j′)∈C1

∥

∥

∥
cti,m1

ct+s
j,m2

∥

∥

∥

2+ν

∥

∥

∥
ct+h
i′,m1

ct+h+s
j′,m2

∥

∥

∥

2+ν

{

α
(

cti,m1
ct+s
j,m2

, ct+h
i′,m1

ct+h+s
j′,m2

)}ν/(2+ν)
,

≤ C2
∞
∑

i,j,i′,j′=0

ρi+j+i′+j′

(

i′ + 2s− 1 + i+

∞
∑

r=0

α
ν/(2+ν)
∆ (r)

)

< ∞.

Continuing in this way, we obtain that

∑∞
h=0 v5(h) < ∞. It follows that

∞
∑

h=0

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

|Cov (ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1),

ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)∣

∣

≤
∞
∑

h=0

5
∑

i=1

vi(h) < ∞. (88)
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The same bounds learly holds for

0
∑

h=−∞

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

|Cov (ci,m1(θ0,∆t−1, . . . ,∆t−i)cj,m2(θ0,∆t+s−1, . . . ,∆t+s−j),

ci′,m1
(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2

(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)∣

∣ < ∞,

whih shows that

∞
∑

h=−∞

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

|Cov (ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1),

ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)∣

∣ < ∞.

A slight extension of Corollary A.3 in Franq and Zakoïan (2010) shows that

∞
∑

h=−∞

∣

∣

Cov

(

Y1,iY1+s,j, Y1+h,i′Y1+s+h,j′
)∣

∣ < ∞. (89)

Beause, by Cauhy-Shwarz inequality

|E [ǫtǫt−iǫt+sǫt+s−j]| ≤ E |ǫt|4 < ∞

by the assumption that E |ǫt|8+4ν < ∞ and in view of (87) it follows that

∞
∑

h=−∞

|Cov {Υ1(m1)Υ1+s(m2),Υ1+h(m1)Υ1+s+h(m2)}|

≤ κ

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

ρi+j+i′+j′
∞
∑

h=−∞

∣

∣

Cov

(

Y1,iY1+s,j, Y1+h,i′Y1+s+h,j′
)∣

∣

+κ′
∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

∞
∑

h=−∞

|Cov (ci,m1(θ0,∆t, . . . ,∆t−i+1)cj,m2(θ0,∆t+s, . . . ,∆t+s−j+1),

ci′,m1(θ0,∆t+h, . . . ,∆t+h−i′+1)cj′,m2(θ0,∆t+s+h, . . . ,∆t+s+h−j′+1)
)∣

∣

The onlusion follows from (88) and (89). �

Let Σ̂Υ be the matrix obtained by replaing Υ̂t by Υt in Σ̂Υ̂.

Lemma A.9. Under the assumptions of Theorem 3.10,

√
r‖Σ̂Υr

−ΣΥr
‖, √r‖Σ̂Υ −ΣΥ‖, and√

r‖Σ̂Υ,Υr
− ΣΥ,Υr

‖ tend to zero in probability as n → ∞ when r = o(n1/3).

Proof. For 1 ≤ m1,m2 ≤ K(p+q) and 1 ≤ r1, r2 ≤ r, the element of the {(r1 − 1)(p + q)K +m1}-
th row and {(r2 − 1)(p + q)K +m2}-th olumn of Σ̂Υr

is of the form n−1
∑n

t=1 Zt where

Zt := Zt,r1,r2(m1,m2) = Υt−r1(m1)Υt−r2(m2). By stationarity of (Zt), we have

Var

(

1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
C1

n
, (90)
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where, by Lemma A.8, C1 is a onstant independent of r1, r2,m1,m2 and r, n. Now using the

Thebyhev inequality, we have

∀β > 0, P

{√
r‖Σ̂Υr

−ΣΥr
‖ > β

}

≤ 1

β2
E

{

r‖Σ̂Υr
− ΣΥr

‖2
}

.

In view of (80) and (90) we have

E

{

r‖Σ̂Υ − ΣΥ‖2
}

≤ E

{

r‖Σ̂Υ,Υr
− ΣΥ,Υr

‖2
}

≤ E

{

r‖Σ̂Υr
− ΣΥr

‖2
}

≤ r

K(p+q)r
∑

m1,m2=1

Var

(

1

n

n
∑

t=1

Zt

)

≤ C1K
2(p+ q)2r3

n
= o(1)

as n → ∞ when r = o(n1/3). Hene, when r = o(n1/3)

√
r‖Σ̂Υr

− ΣΥr
‖ = oP(1),√

r‖Σ̂Υ − ΣΥ‖ = oP(1) and
√
r‖Σ̂Υ,Υr

− ΣΥ,Υr
‖ = oP(1).

The proof is omplete. �

We now show that the previous lemma applies when Υt is replaed by Υ̂t.

Lemma A.10. Under the assumptions of Theorem 3.10,

√
r‖Σ̂Υ̂r

−ΣΥr
‖, √r‖Σ̂Υ̂−ΣΥ‖, and√

r‖Σ̂Υ̂,Υ̂r
− ΣΥ,Υr

‖ tend to zero in probability as n → ∞ when r = o(n1/3).

Proof. We �rst show that the replaement of the unknown initial values {Xu, u ≤ 0} by

zero is asymptotially unimportant. Let Σ̂Υr,n
be the matrix obtained by replaing et(θ̂n) by

ǫt(θ̂n) in Σ̂Υ̂r
. We start by evaluating E‖Σ̂Υ̂r

− Σ̂Υr,n
‖2. We �rst note that

Σ̂Υ̂r
− Σ̂Υr,n

=

[

1

n

n
∑

t=1

at−i,t−i′,m1,m2(θ̂n)

]

for i, i′ = 1, . . . , r and m1,m2 = 1, . . . ,K(p+ q) and where

at−i,t−i′,m1,m2(θ̂n) = et−i(θ̂n)et−i′(θ̂n)
∂et−i(θ̂n)

∂θm1

∂et−i′(θ̂n)

∂θm2

−ǫt−i(θ̂n)ǫt−i′(θ̂n)
∂ǫt−i(θ̂n)

∂θm1

∂ǫt−i′(θ̂n)

∂θm2

.

Using (80), we have

‖Σ̂Υ̂r
− Σ̂Υr,n

‖2 ≤
r
∑

i,i′=1

K(p+q)
∑

m1,m2=1

[

1

n

n
∑

t=1

at−i,t−i′,m1,m2
(θ̂n)

]2

.

We thus dedue the following L2
estimate:

E‖Σ̂Υ̂r
− Σ̂Υr,n

‖2 ≤
r
∑

i,i′=1

K(p+q)
∑

m1,m2=1

∥

∥

∥

∥

∥

1

n

n
∑

t=1

at−i,t−i′,m1,m2(θ̂n)

∥

∥

∥

∥

∥

2

2

≤
r
∑

i,i′=1

K(p+q)
∑

m1,m2=1

1

n

n
∑

t=1

∥

∥

∥
at−i,t−i′,m1,m2(θ̂n)

∥

∥

∥

2

2
,
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by Minkowski's inequality. Thanks to Hölder's inequality:

∥

∥

∥
at−i,t−i′,m1,m2(θ̂n)

∥

∥

∥

2
≤

4
∑

j=1

Aj
t−i,t−i′,m1,m2

, with

A1
t−i,t−i′,m1,m2

=

∥

∥

∥

∥

sup
θ∈Θ

|et−i(θ)− ǫt−i(θ)|
∥

∥

∥

∥

4

sup
t≥0

∥

∥

∥

∥

sup
θ∈Θ

|et(θ)|
∥

∥

∥

∥

12

(

sup
t≥0

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂et(θ)

∂θ

∥

∥

∥

∥

∥

∥

∥

∥

12

)2

A2
t−i,t−i′,m1,m2

=

∥

∥

∥

∥

sup
θ∈Θ

|ǫt(θ)|
∥

∥

∥

∥

12

∥

∥

∥

∥

sup
θ∈Θ

|et−i′(θ)− ǫt−i′(θ)|
∥

∥

∥

∥

4

(

sup
t≥0

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂et(θ)

∂θ

∥

∥

∥

∥

∥

∥

∥

∥

12

)2

A3
t−i,t−i′,m1,m2

=

(∥

∥

∥

∥

sup
θ∈Θ

|ǫt(θ)|
∥

∥

∥

∥

16

)2 ∥
∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂

∂θ
(et−i(θ)− ǫt−i(θ))

∥

∥

∥

∥

∥

∥

∥

∥

16/5

sup
t≥0

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂et(θ)

∂θ

∥

∥

∥

∥

∥

∥

∥

∥

16

A4
t−i,t−i′,m1,m2

=

(∥

∥

∥

∥

sup
θ∈Θ

|ǫt(θ)|
∥

∥

∥

∥

16

)2 ∥
∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂ǫt(θ)

∂θ

∥

∥

∥

∥

∥

∥

∥

∥

16

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂

∂θ
(et−i′(θ)− ǫt−i′(θ))

∥

∥

∥

∥

∥

∥

∥

∥

16/5

.

We deal with A1
t−i,t−i′,m1,m2

and A2
t−i,t−i′,m1,m2

, as A3
t−i,t−i′,m1,m2

and A4
t−i,t−i′,m1,m2

are dealt

with similarly. In view of Lemma A.7, we have

1

n

n
∑

t=1

A1
t−i,t−i′,m1,m2

≤ κ1
1

n

n
∑

t=1

∥

∥

∥

∥

sup
θ∈Θ

|et−i(θ)− ǫt−i(θ)|
∥

∥

∥

∥

4

≤ κ1
n

(

n−r
∑

t=1

∥

∥

∥

∥

sup
θ∈Θ

|et(θ)− ǫt(θ)|
∥

∥

∥

∥

4

+ r

∥

∥

∥

∥

sup
θ∈Θ

|ǫ0(θ)|
∥

∥

∥

∥

4

)

= O

(

1

n
+

r

n

)

= O
( r

n

)

,

independent from i, i′, m1 and m2. Similarly, we have

1

n

n
∑

t=1

A3
t−i,t−i′,m1,m2

≤ κ3
1

n

n
∑

t=1

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂

∂θ
(et−i(θ)− ǫt−i(θ))

∥

∥

∥

∥

∥

∥

∥

∥

16/5

≤ κ3
1

n

(

n−r
∑

t=1

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂

∂θ
(et(θ)− ǫt(θ))

∥

∥

∥

∥

∥

∥

∥

∥

16/5

+r

∥

∥

∥

∥

sup
θ∈Θ

∥

∥

∥

∥

∂ǫ0(θ)

∂θ

∥

∥

∥

∥

∥

∥

∥

∥

16/5

)

= O

(

1

n
+

r

n

)

= O
( r

n

)

,

beause

∑∞
t=1 ‖supθ∈Θ ‖∂ (et(θ)− ǫt(θ))/∂θ‖‖16/5 < ∞ and ‖supθ∈Θ ‖∂ǫ0(θ)/∂θ‖‖16/5 < ∞

(see Lemma A.7, Point 4). GatheringA1
t−i,t−i′,m1,m2

,A2
t−i,t−i′,m1,m2

,A3
t−i,t−i′,m1,m2

andA4
t−i,t−i′,m1,m2

,

we arrive at

E‖Σ̂Υ̂r
− Σ̂Υr,n

‖2 ≤
r
∑

i,i′=1

K(p+q)
∑

m1,m2=1





1

n

n
∑

t=1

4
∑

j=1

Aj
t−i,t−i′,m1,m2





2

= O

(

r2
{ r

n

}2
)

= O

(

r4

n2

)

.

We thus dedue that

√
r‖Σ̂Υ̂r

− Σ̂Υr,n
‖ = oP(1), when r = r(n) = o

(

n2/5
)

. (91)
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We now prove that

√
r‖Σ̂Υr,n

− Σ̂Υr
‖ = oP(1), when r = r(n) = o

(

n1/3
)

.

Taylor expansions around θ0 yield

∣

∣

∣ǫt(θ̂n)− ǫt(θ0)
∣

∣

∣ ≤ rt

∥

∥

∥θ̂n − θ0

∥

∥

∥ ,

∣

∣

∣

∣

∣

∂ǫt(θ̂n)

∂θm
− ∂ǫt(θ0)

∂θm

∣

∣

∣

∣

∣

≤ st(m)
∥

∥

∥θ̂n − θ0

∥

∥

∥ (92)

with rt = supθ∈Θ ‖∂ǫt(θ)/∂θ‖, st(m) = supθ∈Θ
∥

∥∂2ǫt(θ)/∂θ∂θm
∥

∥

where m = m1 = m2. De�ne

Zt as in the proof of Lemma A.9, and let Zt,n be obtained by replaing Υt(m) by Υt,n(m) =

ǫt(θ̂n)∂ǫt(θ̂n)/∂θm in Zt. Using (92), for i, i
′ = 1, . . . , r and m1,m2 = 1, . . . ,K(p+ q), we have

∣

∣

∣

∣

∣

ǫt−i(θ̂n)ǫt−i′(θ̂n)
∂ǫt−i(θ̂n)

∂θm1

∂ǫt−i′(θ̂n)

∂θm2

− ǫt−i(θ0)ǫt−i′(θ0)
∂ǫt−i(θ0)

∂θm1

∂ǫt−i′(θ0)

∂θm2

∣

∣

∣

∣

∣

≤
4
∑

j=1

Bj
t−i,t−i′,m1,m2

,(93)

with

B1
t−i,t−i′,m1,m2

= rt−i

∥

∥

∥
θ̂n − θ0

∥

∥

∥
sup
θ∈Θ

|ǫt−i′(θ)| sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i(θ)

∂θm1

∣

∣

∣

∣

sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i′(θ)

∂θm2

∣

∣

∣

∣

B2
t−i,t−i′,m1,m2

= rt−i′

∥

∥

∥θ̂n − θ0

∥

∥

∥ sup
θ∈Θ

|ǫt−i(θ)| sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i(θ)

∂θm1

∣

∣

∣

∣

sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i′(θ)

∂θm2

∣

∣

∣

∣

B3
t−i,t−i′,m1,m2

= st−i(m1)
∥

∥

∥
θ̂n − θ0

∥

∥

∥
sup
θ∈Θ

|ǫt−i(θ)| sup
θ∈Θ

|ǫt−i′(θ)| sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i′(θ)

∂θm2

∣

∣

∣

∣

B4
t−i,t−i′,m1,m2

= st−i′(m2)
∥

∥

∥
θ̂n − θ0

∥

∥

∥
sup
θ∈Θ

|ǫt−i(θ)| sup
θ∈Θ

|ǫt−i′(θ)| sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i(θ)

∂θm1

∣

∣

∣

∣

.

We deal with B1
t−i,t−i′,m1,m2

and B2
t−i,t−i′,m1,m2

, as B3
t−i,t−i′,m1,m2

and B4
t−i,t−i′,m1,m2

are dealt

with similarly. We note �rst that, for all i = 1, . . . , r,

1

n

n
∑

t=1

sup
θ∈Θ

|ǫt−i(θ)|4 =
1

n

n−i
∑

t=1−i

sup
θ∈Θ

|ǫt(θ)|4 =
1

n

0
∑

t=1−i

sup
θ∈Θ

|ǫt(θ)|4 +
1

n

n−i
∑

t=1

sup
θ∈Θ

|ǫt(θ)|4

≤ r

n

1

r

0
∑

t=1−r

sup
θ∈Θ

|ǫt(θ)|4 +
1

n

n
∑

t=1

sup
θ∈Θ

|ǫt(θ)|4

=
( r

n
+ 1
)

(

∥

∥

∥

∥

sup
θ∈Θ

|ǫ0(θ)|
∥

∥

∥

∥

4

4

+ oa.s.(1)

)

, (94)

by the ergodi theorem. Similarly to (94), we have

1

n

n
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∂ǫt−i(θ)

∂θm

∣

∣

∣

∣

4

≤
( r

n
+ 1
)

(

∥

∥

∥

∥

sup
θ∈Θ

∣

∣

∣

∣

∂ǫ0(θ)

∂θm

∣

∣

∣

∣

∥

∥

∥

∥

4

4

+ oa.s.(1)

)

. (95)

By the Cauhy-Shwarz inequality and using (94) and (95), we have

r
∑

i,i′=1

K(p+q)
∑

m1,m2=1

1

n

n
∑

t=1

B1
t−i,t−i′,m1,m2

≤ r2
∥

∥

∥
θ̂n − θ0

∥

∥

∥

( r

n
+ 1
)3

(κ1 + oa.s.(1))
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= r2
∥

∥

∥
θ̂n − θ0

∥

∥

∥
O(1) (κ1 + oa.s.(1)) ,

when r = o
(

n1/3
)

and for some onstant κ1 > 0. Similar inequalities hold for Bj
t−i,t−i′,m1,m2

,

for j = 2, 3, 4. We thus dedue from (80) and (93) that

r‖Σ̂Υr,n
− Σ̂Υr

‖2 ≤ r3
∥

∥

∥
θ̂n − θ0

∥

∥

∥

2
OP(1). (96)

Sine

√
n
(

θ̂n − θ0

)

onverges in distribution, a tightness argument yields

∥

∥

∥θ̂n − θ0

∥

∥

∥ =

OP

(

n−1/2
)

and hene from (96), we obtain for r = o(n1/3)
√
r‖Σ̂Υr,n

− Σ̂Υr
‖ = oP(1). (97)

By Lemma A.9 , (91) and (97) show that

√
r‖Σ̂Υ̂r

− ΣΥr
‖ = oP(1). The other results are

obtained similarly. �

Write Φ∗
r = (Φ1 · · ·Φr) where the Φi's are de�ned by (21).

Lemma A.11. Under the assumptions of Theorem 3.10,

√
r ‖Φ∗

r −Φr‖ → 0,

as r → ∞.

Proof. Reall that by (21) and (78)

Υt = ΦrΥr,t + ur,t = Φ∗
rΥr,t +

∞
∑

i=r+1

ΦiΥt−i + ut := Φ∗
rΥr,t + u∗r,t.

Hene, using the orthogonality onditions in (21) and (78)

Φ∗
r −Φr = −Σu∗

r ,Υr
Σ−1
Υr

(98)

where Σu∗

r ,Υr
= Eu∗r,tΥ

′
r,t. Using arguments and notations of the proof of Lemma A.8, there

exists a onstant C2 independent of s and m1,m2 suh that

E |Υ1(m1)Υ1+s(m2)| ≤ C1

∞
∑

h1,h2=0

ρh1+h2‖ǫ1‖44 ≤ C2.

By the Cauhy-Shwarz inequality and (80), we then have

∥

∥

Cov

(

Υt−r−h,Υr,t

)∥

∥ ≤ C2r
1/2K(p+ q).

Thus,

‖Σu∗
r ,Υr

‖ = ‖
∞
∑

i=r+1

ΦiEΥt−iΥ
′
r,t‖ ≤

∞
∑

h=1

‖Φr+h‖
∥

∥

Cov

(

Υt−r−h,Υr,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Φr+h‖. (99)

Note that the assumption ‖Φi‖ = o
(

i−2
)

entails r
∑∞

h=1 ‖Φr+h‖ = o(1) as r → ∞. The lemma

therefore follows from (98), (99) and Lemma A.6. �

The following lemma is similar to Lemma 3 in Berk (1974).
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Lemma A.12. Under the assumptions of Theorem 3.10,

√
r‖Σ̂−1

Υ̂r

− Σ−1
Υr

‖ = oP(1)

as n → ∞ when r = o(n1/3) and r → ∞.

Proof. We have

∥

∥

∥
Σ̂−1

Υ̂r

− Σ−1
Υr

∥

∥

∥
=

∥

∥

∥

{

Σ̂−1

Υ̂r

−Σ−1
Υr

+Σ−1
Υr

}{

ΣΥr
− Σ̂Υ̂r

}

Σ−1
Υr

∥

∥

∥

≤
(∥

∥

∥
Σ̂−1

Υ̂r

− Σ−1
Υr

∥

∥

∥
+
∥

∥

∥
Σ−1
Υr

∥

∥

∥

)∥

∥

∥
Σ̂Υ̂r

− ΣΥr

∥

∥

∥

∥

∥

∥
Σ−1
Υr

∥

∥

∥
.

Iterating this inequality, we obtain

∥

∥

∥
Σ̂−1

Υ̂r

− Σ−1
Υr

∥

∥

∥
≤

∥

∥

∥
Σ−1
Υr

∥

∥

∥

∞
∑

i=1

∥

∥

∥
Σ̂Υ̂r

− ΣΥr

∥

∥

∥

i ∥
∥

∥
Σ−1
Υr

∥

∥

∥

i
.

Thus, for every ε > 0,

P

(√
r
∥

∥

∥Σ̂−1

Υ̂r

− Σ−1
Υr

∥

∥

∥ > ε
)

≤ P







√
r

∥

∥

∥
Σ−1
Υr

∥

∥

∥

2 ∥
∥

∥
Σ̂Υ̂r

− ΣΥr

∥

∥

∥

1−
∥

∥

∥Σ̂Υ̂r
− ΣΥr

∥

∥

∥

∥

∥

∥Σ−1
Υr

∥

∥

∥

> ε and
∥

∥

∥
Σ̂Υ̂r

− ΣΥr

∥

∥

∥

∥

∥

∥
Σ−1
Υr

∥

∥

∥
< 1







+P

(√
r
∥

∥

∥Σ̂Υ̂r
− ΣΥr

∥

∥

∥

∥

∥

∥Σ−1
Υr

∥

∥

∥ ≥ 1
)

≤ P







√
r
∥

∥

∥Σ̂Υ̂r
− ΣΥr

∥

∥

∥ >
ε

∥

∥

∥Σ−1
Υr

∥

∥

∥

2
+ εr−1/2

∥

∥

∥Σ−1
Υr

∥

∥

∥







+P

(√
r
∥

∥

∥
Σ̂Υ̂r

− ΣΥr

∥

∥

∥
≥
∥

∥

∥
Σ−1
Υr

∥

∥

∥

−1
)

= o(1)

by Lemmas A.9 and A.6. This establishes Lemma A.12. �

Lemma A.13. Under the assumptions of Theorem 3.10,

√
r
∥

∥

∥Φ̂r −Φr

∥

∥

∥ = oP(1)

as r → ∞ and r = o(n1/3).

Proof. By the triangle inequality and Lemmas A.6 and A.12, we have

∥

∥

∥Σ̂−1

Υ̂r

∥

∥

∥ ≤
∥

∥

∥Σ̂−1

Υ̂r

− Σ−1
Υr

∥

∥

∥+
∥

∥

∥Σ−1
Υr

∥

∥

∥ = OP(1). (100)

Note that the orthogonality onditions in (78) entail that Φr = ΣΥ,Υr
Σ−1
Υr
. By Lemmas A.6,

A.9, A.12, and (100), we then have

√
r
∥

∥

∥
Φ̂r −Φr

∥

∥

∥
=

√
r
∥

∥

∥
Σ̂Υ̂,Υ̂r

Σ̂−1

Υ̂r

− ΣΥ,Υr
Σ−1
Υr

∥

∥

∥
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=
√
r
∥

∥

∥

(

Σ̂Υ̂,Υ̂r
− ΣΥ,Υr

)

Σ̂−1

Υ̂r

+ΣΥ,Υr

(

Σ̂−1

Υ̂r

− Σ−1
Υr

)∥

∥

∥
= oP(1).

�

Proof of Theorem 3.10. In view of (20), it su�es to show that Φ̂r(1) → Φ(1) and Σ̂ur → Σu

in probability. Let the r × 1 vetor 1r = (1, . . . , 1)′ and the r(p + q)K × (p + q)K matrix

Er = I(p+q)K ⊗ 1r, where ⊗ denotes the matrix Kroneker produt and Id the d × d identity

matrix. Using (80), and Lemmas A.11, A.13, we obtain

∥

∥

∥Φ̂r(1)−Φ(1)
∥

∥

∥ ≤
∥

∥

∥

∥

∥

r
∑

i=1

(

Φ̂r,i − Φr,i

)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

r
∑

i=1

(Φr,i − Φi)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Φi

∥

∥

∥

∥

∥

=
∥

∥

∥

(

Φ̂r −Φr

)

Er

∥

∥

∥
+ ‖(Φ∗

r −Φr)Er‖+
∥

∥

∥

∥

∥

∞
∑

i=r+1

Φi

∥

∥

∥

∥

∥

≤
√

(p+ q)K
√
r
{∥

∥

∥
Φ̂r −Φr

∥

∥

∥
+ ‖Φ∗

r −Φr‖
}

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Φi

∥

∥

∥

∥

∥

= oP(1).

Now note that

Σ̂ur = Σ̂Υ̂ − Φ̂rΣ̂
′
Υ̂,Υ̂r

and, by (21)

Σu = Eutu
′
t = EutΥ

′
t = E

{(

Υt −
∞
∑

i=1

ΦiΥt−i

)

Υ′
t

}

= ΣΥ −
∞
∑

i=1

ΦiEΥt−iΥ
′
t = ΣΥ −Φ∗

rΣ
′
Υ,Υr

−
∞
∑

i=r+1

ΦiEΥt−iΥ
′
t.

Thus,

∥

∥

∥Σ̂ur − Σu

∥

∥

∥ =
∥

∥

∥Σ̂Υ̂ − ΣΥ −
(

Φ̂r −Φ∗
r

)

Σ̂′
Υ̂,Υ̂r

−Φ∗
r

(

Σ̂′
Υ̂,Υ̂r

− Σ′
Υ,Υr

)

+
∞
∑

i=r+1

ΦiEΥt−iΥ
′
t

∥

∥

∥

∥

∥

≤
∥

∥

∥
Σ̂Υ̂ − ΣΥ

∥

∥

∥
+
∥

∥

∥

(

Φ̂r −Φ∗
r

)(

Σ̂′
Υ̂,Υ̂r

− Σ′
Υ,Υr

)∥

∥

∥

+
∥

∥

∥

(

Φ̂r −Φ∗
r

)

Σ′
Υ,Υr

∥

∥

∥+
∥

∥

∥Φ∗
r

(

Σ̂′
Υ̂,Υ̂r

−Σ′
Υ,Υr

)∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

ΦiEΥt−iΥ
′
t

∥

∥

∥

∥

∥

. (101)

In the right-hand side of this inequality, the �rst norm is oP(1) by Lemma A.9. By Lemmas A.11
and A.13, we have ‖Φ̂r −Φ∗

r‖ = oP(r
−1/2) = oP(1), and by Lemma A.9, ‖Σ̂′

Υ̂,Υ̂r

− Σ′
Υ,Υr

‖ =

oP(r
−1/2) = oP(1). Therefore the seond norm in the right-hand side of (101) tends to zero in

probability. The third norm tends to zero in probability beause ‖Φ̂r −Φ∗
r‖ = oP(1) and, by

Lemma A.6, ‖Σ′
Υ,Υr

‖ = O(1). The fourth norm tends to zero in probability beause, in view
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of Lemma A.9, ‖Σ̂′
Υ̂,Υ̂r

−Σ′
Υ,Υr

‖ = oP(1), and, in view of (80), ‖Φ∗
r‖2 ≤

∑∞
i=1Tr(ΦiΦ

′
i) < ∞.

Clearly, the last norm tends to zero, whih ompletes the proof. �
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