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Abstract. Multimodal damping can be achieved by coupling a mechanical
structure to an electrical network exhibiting similar modal properties. Focusing
on a plate, a new topology for such an electrical analogue is found from a finite
difference approximation of the Kirchhoff-Love theory and the use of the direct
electromechanical analogy. Discrete models based on element dynamic stiffness
matrices are proposed to simulate square plate unit cells coupled to their electrical
analogues through two-dimensional piezoelectric transducers. A setup made of a
clamped plate covered with an array of piezoelectric patches is built in order to
validate the control strategy and the numerical models. The analogous electrical
network is implemented with passive components as inductors, transformers
and the inherent capacitance of the piezoelectric patches. The effect of the
piezoelectric coupling on the dynamics of the clamped plate is significant as it
creates the equivalent of a multimodal tuned mass damping. An adequate tuning
of the network then yields a broadband vibration reduction. In the end, the use of
an analogous electrical network appears as an efficient solution for the multimodal
control of a plate.
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1. Introduction

In 1991, Hagood and von Flotow [1] showed that
the resonant piezoelectric shunt made of an inductor
and a resistor is equivalent to a tuned mass damper.
About 20 years later, distributed control solutions
involving an array of resonant piezoelectric shunts
have been proposed in order to damp vibrations
of plates [2, 3, 4, 5]. One of the main limits
is that the required inductance values are usually
very large [6, 7]. It is still possible to generate
synthetic inductors with operational amplifiers [8,
7] but the system then requires a power supply.
Furthermore, the narrow bandwidth of classical
resonant shunt in the low-frequency range means
that two modes cannot be controlled simultaneously
with a single inductor. For this purpose, multiple-
mode shunt circuits were proposed [9, 8, 10] but the
number of electrical components makes the practical
implementation difficult when considering a large
array of piezoelectric patches. A broadband control
can still be implemented with negative capacitance,
which simplifies the electrical layout and offers good
performances [11, 12, 13]. The main drawback is that
a negative capacitance needs to be synthesized with
an active circuit and the control can thus suffer from
stability issues.

A solution that generates a passive and broadband
control of a plate was proposed by Vidoli and
dell’Isola [14]. It consists of an interconnection of
piezoelectric patches through distributed impedances,
which reduce the inductance requirements [15]. The
objective is to build a distributed controller that
gives rise to 2D electrical modes approximating the
mechanical modes of interest over the whole area of
the structure. The electrical network thus needs to
offer resonances at specific target frequencies, as well
as a correlation between the electrical and mechanical
mode shapes in order to generate an adequate
electromechanical coupling. As presented by Batra et
al. [16], interconnections with passive branches made
of inductors and capacitors allow creating suitable
multimodal networks. However, this solution is
based on the use of external capacitors, while it has
been noted that such additional components decreases
the coupling and thus the damping performances
[6, 17]. No external capacitors are yet required
when considering the implementation of analogous
electrical networks because one can rely on the

inherent capacitance of the piezoelectric patches [18].
Then, it has been shown that the energy transfer
between the mechanical and electrical systems is
maximized when considering an electrical network
which offers partial differential equations analogous
to those of the structure to control. This means
that the electrical analogue represents the optimal
passive network to be used for multimodal vibration
control [19, 20]. Therefore, suitable topologies can be
found by applying an electromechanical analogy [21].
Around 1950’s, MacNeal et al. already proposed and
validated electrical analogues for numerous mechanical
structures as rods, beams [22, 23], plates [22, 24] and
shells [25]. Those passive networks finally reappeared
for the analogous control of one-dimensional structures
[18, 20]. With this approach, the number of
components per piezoelectric patch is independent of
the number of modes that are targeted. For the
control of thin plates, Alessandroni et al. [26, 27]
introduced an analogous network ensuring a broadband
piezoelectric damping. Unfortunately, the large
number of electrical components makes difficult its
practical implementation. A simpler electrical network
can be obtained by reconsidering the Kirchhoff-Love
theory. A new topology is presented in this paper
together with a modeling of the two-dimensional
piezoelectric coupling. The control strategy is then
applied to the damping of a clamped plate, effectively
implementing a distributed multimodal tuned mass
damper. Interested readers can refer to [28] for more
details about the robustness of the control strategy.

The present paper is organized as follows. In
section 2, the plate electrical analogue is obtained
by extending a procedure previously applied to
rods and beams [29, 30]. It consists in a
finite difference approximation of the equations
describing the mechanical medium, followed by a direct
electromechanical analogy. In section 3, a square
piezoelectric laminate is modeled by an equivalent
two-dimensional circuit. A discrete modeling of
the mechanical and electrical unit cells then allows
the definition of a unified dynamic stiffness matrix
formulation involving both mechanical and electrical
variables. For the purpose of validating the numerical
model as well as the damping strategy, an experimental
setup is presented in section 4. An array of
piezoelectric patches covers a clamped aluminum
plate and an analogous network is built with passive
electrical components. In section 5, the model
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is validated through experiments that also show
the efficiency of the proposed multimodal control.
Depending on the application, the electrical network
is tuned by adding resistors or by modifying the values
of the inductors. Significant vibration reduction is
observed, which validates the interest of the damping
strategy.

.

2. Electrical analogue of a square plate unit cell

A finite difference method is applied to the Kirchhoff-
Love plate equation of motion in order to get a
discrete mechanical model. This model is then
converted in the electrical domain by applying a direct
electromechanical analogy. Some elements are finally
added to the electrical circuit for later modeling of the
electrical analogue.

2.1. Finite difference model of a plate

The Kirchhoff-Love differential equation for an elastic
plate of thickness h and density ρ is given by

−D
(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= ρh

∂2w

∂t2
. (1)

The constant D = Y h3

12(1−ν2) represents the bending

stiffness, where Y is the Young’s modulus of the plate,
ν is its Poisson’s ratio. Furthermore, w = W (x, y)g(t)
is the transverse displacement, x and y are the two
space variables and t is the time variable. Under
harmonic motion, g(t) is a trigonometric function
which satisfy ∂2g/∂t2 = −ω2g, where ω is the angular
frequency. The state variable formulation of the
differential equation (1) can then be expressed as
follows:
∂Qx

∂x +
∂Qy

∂y = −ρhaω2W

Qx = ∂Mx

∂x −
∂Mxy

∂y

Qy =
∂My

∂y −
∂Mxy

∂x

Mx = −aD
(
∂2W
∂x2 + ν ∂

2W
∂y2

)
My = −aD

(
∂2W
∂y2 + ν ∂

2W
∂x2

)
Mxy = aD(1− ν) ∂

2W
∂x∂y

. (2)

This corresponds to the classical variables used by
Timoshenko [31] in which we have introduced the
constant a, that is the side of a square plate unit cell,
in order to get variables Q and M homogeneous to
forces and moments. The variables Qx and Qy are
shear forces, while Mx, My and Mxy are respectively
the bending moments along x, the bending moment
along y and the twisting moment. Equation (1) can

Figure 1: Finite difference grid for a square unit cell.

also be written as
∂Qx

∂x +
∂Qy

∂y = −ρhaω2W

Qx = −∂M∂x
Qy = −∂M∂y
M = aD

(
∂θx
∂x +

∂θy
∂y

)
θx = ∂W

∂x

θy = ∂W
∂y

. (3)

The variables Qx and Qy still represent shear forces
and their definition is actually the same as in
equation (2). The angles along the principal directions,
θx and θy, satisfy the Kirchhoff-Love assumption which
states that the segments normal to the undeformed
midplane remain straight after deformation. Yet, the
moment variable M appearing in equation (3) does not
refer to any classical variable of the plate theory [31].
It is here introduced for the definition of an adequate
finite difference model.

The continuous plate element is discretized by
applying the finite difference scheme(

∂[·]
∂x

)
L

= [·]I−[·]L
a/2(

∂[·]
∂x

)
I

= [·]R−[·]L
a(

∂[·]
∂x

)
R

= [·]R−[·]I
a/2

and

(
∂[·]
∂y

)
B

= [·]I−[·]B
a/2(

∂[·]
∂y

)
I

= [·]T−[·]B
a(

∂[·]
∂y

)
T

= [·]T−[·]I
a/2

, (4)

where ’I’ is the position at the center of the square
unit cell and ’L’, ’R’, ’B’ and ’T’ refer to the left,
right, bottom and top sides, according to the grid in
figure 1. The finite difference approximation is applied
to equation (3), which gives

QR −QL +QT −QB = −mω2WI

QL = −MI−ML

a/2

QR = −MR−MI

a/2

QB = −MI−MB

a/2

QT = −MT−MI

a/2

MI = D (θR − θL + θT − θB)
θL = WI−WL

a/2

θR = WR−WI

a/2

θB = WI−WB

a/2

θT = WT−WI

a/2

, (5)

where m = ρha2 is the mass of the square plate unit
cell.
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2.2. Analogous electrical circuit

The finite difference model in equation (5) can be
converted into its equivalent circuit model made
of discrete electrical components. Previous studies
on plate electrical analogues [27, 22] were based
on the indirect or force-current electromechanical
analogy. Here, we rather focus on the direct
electromechanical analogy, which is compatible with
the passive representation of a piezoelectric transducer
[21, 32]. With this analogy, electromechanical
problems involving piezoelectric coupling can be
modeled with passive electrical networks [29, 30]. The
direct analogy is based on the velocity-current and
force-voltage equivalences. Then, considering that the
dot notation refer to the time derivative and that ’j’ is
the imaginary unit, equation (5) can be written as

-QL − (QB −QT) +QR = jωmẆI

-ML +MI = -a2QL

-MI +MR = -a2QR

-MB +MI = -a2QB

-MI +MT = -a2QT

-MI = D
jω

(
θ̇L − θ̇R + θ̇B − θ̇T

)
a
2 θ̇L = ẆI − ẆL

a
2 θ̇R = ẆR − ẆI

a
2 θ̇B = ẆI − ẆB

a
2 θ̇T = ẆT − ẆI

(6)

which corresponds to the constitutive equations of the
electrical circuit in figure 2. The inductance represents
the mass m of the unit cell and the capacitance is
the inverse of the bending stiffness D, in agreement
with the direct electromechanical analogy [21, 33].
Furthermore, the electrical transformers generate the
forward and backward finite differences that satisfy
the definition of θ and Q as spatial derivatives of
w and −M , respectively. The proposed unit cell
can finally be seen as a two-dimensional extension of
the beam electrical analogue [20, 30]. The electrical
circuit in figure 2 has to be replicated along the
x and y directions in order to create the electrical
analogue of a plate. We obtain a network with fewer
electrical components than the topology introduced
by Alessandroni et al. [26, 27]. As a consequence,
the proposed electrical analogue simplifies the practical
implementation.

2.3. Modified electrical unit cell

When considering the implementation of a direct
electrical analogue for a piezoelectric damping purpose
[30], it is actually not required to build electrical
unit cells with and inductance L = m, a capacitance
C = 1/D and a transformer ratio â = a. Indeed,
we only need to ensure that the modal properties
of the electrical network are identical to those of

the considered discretized mechanical structure. By
considering a discrete formulation of equation (1),
it is found that two finite difference models based
on different plate dimensions and material properties
would still lead to an identical eigenvalue problem if
they offer the same ratio D/(a4ρh). As m = ρha2,
when focusing on an analogous network the previous
condition becomes

1

â2
1

LC
=

1

a2
D

m
. (7)

This equation thus gives a solution for subsequent
tuning of the electrical network, which has to
approximate the modal properties of the structure to
control in order to optimize the piezoelectric coupling
[15].

The unit cell of the analogous network is
represented in figure 3 with the electrical variables that
are going to be used in the following electromechanical
models. Here, we take into account the inherent
damping present in passive electrical components. The
damping in the inductor can be modeled by a series
resistance RLs and a parallel resistance RLp . Resistors

RTs /2 and RT
?

s are also introduced to model the joule
effect in the windings of the transformers, which is
usually non negligible. A last damping element to
consider is the eventual resistance R+

s that can be
added in series with the inductors L for a tuning
purpose. In the end, note the addition of capacitors
C0/2 in the electrical circuit. Those are represented
to allow the definition of a ”dynamic stiffness matrix”
in the following section. Indeed, equation (5) shows
that the displacements are not independent variables.
If all four angles have prescribed values, the choice of a
single displacement enforces the value of the other ones.
In order to relax these kinematic constraints linking
angles and displacements, virtual degrees of freedom
have to be added through capacitors in both electrical
circuits representing the mechanical and electrical unit
cells. Therefore, the capacitance C0 in figure 3 is only
a numerical parameter. It has to be small compared to
C but high enough to avoid numerical issues. A value
of C0 equal to C×10−6 is appropriate for the following
computations.

3. Modeling of the coupled problem

The 3D linear theory of piezoelectricity leads to
a global model describing a square piezoelectric
laminate. From this model, it is drawn an electrical
circuit representing the two-dimensional piezoelectric
coupling. This new building block allows coupling
the finite difference model of a plate unit cell
to its analogous electrical network. A discrete
electromechanical unit cell is thus defined and it is then
refined under a more accurate macro unit cell.



Multimodal damping of a plate by coupling to its electrical analogue 5

Figure 2: Electrical unit cell as a direct analogue of the plate finite difference model.

Figure 3: Modified unit cell for the calculation of an element dynamic stiffness matrix.
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3.1. Square piezoelectric plate

According to the IEEE Standards on piezoelectricity
[34], the 3D linear theory for a transverse isotropic PZT
ceramic polarized in the direction ’3’ can be expressed
as

ε1
ε2
ε3
ε4
ε5
ε6
D1

D2

D3


=



sE11 s
E
12 s

E
13 0 0 0 0 0 d31

sE12 s
E
11 s

E
13 0 0 0 0 0 d31

sE13 s
E
13 s

E
33 0 0 0 0 0 d33

0 0 0 sE44 0 0 0 d15 0
0 0 0 0 sE44 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 εσ11 0 0
0 0 0 d15 0 0 0 εσ11 0
d31 d31 d33 0 0 0 0 0 εσ33





σ1
σ2
σ3
σ4
σ5
σ6
E1

E2

E3


(8)

where εi, σi, Di and Ei represent respectively the
strain, the stress, the electric displacement and the
electric field along the three space directions (i =
{1, 2, 3}). The constants sEij refer to the elastic
compliance at constant electric field, dij represents
the piezoelectric constants and εσij is the permittivity
at constant stress. Regarding a thin piezoelectric
plate whose thickness corresponds to the direction of
polarization, a classical hypothesis is to consider that
the electric field is equal to zero along the principal
directions [35], i.e. E1 = E2 = 0. The plane stress
hypothesis σ3 = 0 then leads to the reduced matrix
ε1
ε2
ε4
ε5
ε6
D3

 =


sE11 s

E
12 0 0 0 d31

sE12 s
E
11 0 0 0 d31

0 0 sE44 0 0 0
0 0 0 sE44 0 0
0 0 0 0 sE66 0
d31 d31 0 0 0 εσ33




σ1
σ2
σ4
σ5
σ6
E3

 . (9)

Consequently, it is found that

ε1 + ε2 = (sE11 + sE12)(σ1 + σ2) + 2d31E3

D3 = d31(σ1 + σ2) + εσ33E3
. (10)

From the definition of the material constants sE11 and
sE12 [34, 35], we get sE11 + sE12 = (1− νp)/Y Ep , where νp

is the Poisson’s ratio of the piezoelectric material and
Y Ep = 1/sE11 is its Young’s modulus when the transverse
electric field is equal to zero (E3 = 0). Equation (10)
can then be reorganized into

σ1 + σ2 =
Y E
p

1−νp (ε1 + ε2)− d31
2Y E

p

1−νpE3

D3 = d31
Y E
p

1−νp (ε1 + ε2) + εε
?

33E3

, (11)

where

εε
?

33 = εσ33

(
1− 2

1− νp

d231
sE11ε

σ
33

)
(12)

is the equivalent permittivity of a piezoelectric plate
which is blocked along its principal directions, i.e. ε1 =
ε2 = 0.

For a plate subjected to bending motion, the
strains ε1 and ε2 can be expressed as

ε1 = −z ∂θx∂x and ε2 = −z ∂θy∂y , (13)

where x and y refer to the principal directions ’1’
and ’2’, and z refers to the transverse direction ’3’.
Considering the plate theory [31] for a square unit cell
of side lp, the bending moments Mx and My that have
been defined in equation (2) are related to the stresses
σ1 and σ2 through

Mx = lp
∫
z
σ1zdz and My = lp

∫
z
σ2zdz . (14)

Furthermore, the total electric charge qp and the
voltage Vp between the two electrodes of the
piezoelectric element are defined as

qp = −
∫
x

∫
y
D3dxdy and E3 = −Vp

hp
, (15)

where hp is the thickness of the piezoelectric plate [7,
36]. As we consider a thin piezoelectric plate compared
to its distance λ from the mid-surface, i.e. λ � hp so

that
∫ λ+hp/2

λ−hp/2
zdz/hp ≈ λ, then equation (11) gives

Mx +My = −Y
E
p Ip

1−νp

(
∂θx
∂x +

∂θy
∂y

)
+ λlpd31

2Y E
p

1−νpVp

qp = λlpd31
Y E
p

1−νp (∆θx + ∆θy) + εε
?

33
l2p
hp
Vp

, (16)

where ∆θx = 1
lp

∫ lp
0

∆θx(y)dy and ∆θy =

1
lp

∫ lp
0

∆θy(x)dx represent the average differences of the

angles at opposite sides, and Ip = lp
∫ λ+hp/2

λ−hp/2
z2dz is

the second moment of area. Recall that the sum of the
bending moment is related to the variable M defined
in equation (3) through

Mp = − 1

1 + ν
(Mx +My) . (17)

So, equation (16) is equivalent to

Mp = lpD
E
p

(
∂θx
∂x +

∂θy
∂y

)
− 2ep

1−ν2
p
Vp

qp =
ep

1−νp (∆θx + ∆θy) + CεpVp

, (18)

where DE
p =

Y E
p Ip

(1−ν2
p)lp

is the short-circuited bending

stiffness, Cεp = εε
?

33
l2p
hp

is the blocked piezoelectric

capacitance and ep = λlpd31Y
E
p is the coupling

coefficient. It is noticed that equation (18) does
not offer a symmetrical reciprocity [21], i.e. the
global coefficients related to the piezoelectric coupling
are not the same for the mechanical and electrical
contributions. To model the coupling with a passive
circuit involving an electrical transformer [32, 29, 30],
the symmetry condition is yet required. Equation (18)
is thus written as

Mp = lpD
E
p

(
∂θx
∂x +

∂θy
∂y

)
−
√

2(1 + νp)
ep

1−ν2
p

[√
2

1+νp
Vp

][√
2

1+νp
qp

]
=
√

2(1 + νp)
ep

1−ν2
p

(∆θx + ∆θy) + Cεp

[√
2

1+νp
Vp

] , (19)
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Figure 4: Square piezoelectric laminate with a single
piezoelectric patch.

which is equivalent to

Mp = lpD
E
p

(
∂θx
∂x +

∂θy
∂y

)
− e?pV ?p

q?p = e?p
(
∆θx + ∆θy

)
+ CεpV

?
p

, (20)

where e?p =

√
2(1+νp)

1−ν2
p

ep, q?p =
√

2
1+νp

qp and V ?p =√
2

1+νp
Vp. Finally, equation (20) is based on a

symmetrical coupling formulation that can be extended
to the case of a square unit cell involving a piezoelectric
patch covering an elastic substrate.

3.2. Global model for a square piezoelectric laminate

A piezoelectric laminate is made of a superposition of
piezoelectric and purely elastic layers [36]. A simple
laminate is represented in figure 4, where a square
piezoelectric patch of side lp and thickness hp covers an
elastic structure of side a and thickness hs. On a global
scale, if we consider that the piezoelectric laminate
can be approximated by a homogeneous piezoelectric
medium, a similar form as in equation (20) can be
used to describe the piezoelectric coupling in the whole
laminate:

M = aDE
(
∂θx
∂x +

∂θy
∂y

)
− eθVθI

qθI = eθ
(
∆θx + ∆θy

)
+ CεVθI

. (21)

If νs is the Poisson’s ratio of the elastic structure, the
global bending stiffness of the laminate DE is defined
from

1

DE
=

lp
Ys

1−ν2
s
Is +

Y E
p

1−ν2
p
Ip

+
a− lp
Ys

1−ν2
s
Is
, (22)

which corresponds to a series of two bending stiffness
elements, one for the segment with piezoelectric
material and one for the segments without piezoelectric
material. Is and Ip are the second moments of area for
the elastic and piezoelectric plates. When the mid-
surface is at a constant position (hs + hp)/2 from the
free surface of the piezoelectric patch, as represented
in figure 4, the second moments of area are

Ip = lp

∫ hs+hp
2

hs−hp
2

z2dz = lp
(hs + hp)3 − (hs − hp)3

24

Is = a

∫ hs−hp
2

−hs+hp
2

z2dz = a
(hs − hp)3 + (hs + hp)3

24

.(23)

This expression is valid only if the Young’s moduli of
both material have close values and if the piezoelectric
plate covers most of the elastic surface (lp ≈ a), which
is verified in the following application. If this is not
the case, a position of the mid-surface different from
(hs + hp)/2 would lead to another expression for the
second moments of area.

The global coupling coefficient eθ in equation (21)
could be eventually obtained from 3D calculations [37]
but it has been remarked that the bonding layer
between the main structure and the patches has
usually a non-negligible influence. A more direct
method to get the actual value for eθ is to compare
the short- and open-circuited responses of the whole
piezoelectric structure. A lack of precise modeling of
the bonding layer leads us to use the latter approach
in the following comparisons with experimental results.
The same conclusions arise for the determination of
the blocked capacitance Cε which would require a
precise 3D modeling. This can be avoided by direct
measurement of the piezoelectric capacitance when
blocking transverse displacement of the mechanical
structure.

3.3. Discrete electromechanical unit cell

The square piezoelectric laminate in figure 4 defines
the unit cell of a system based on a periodic array of
piezoelectric patches covering an elastic plate. When
considering large wavelength compared to the length a
of a unit cell,

∂θx
∂x ≈

θR−θL
a ,

∂θy
∂y ≈

θT−θB
a

∆θx ≈ θR − θL , ∆θy ≈ θT − θB
, (24)

where θR, θL, θT and θB are the angles on the 4
sides of the unit cell (right, left, top and bottom sides
respectively). So, equation (21) is written as

MI = DE (θR − θL + θT − θB)− eθVθI
qθI = eθ (θR − θL + θT − θB) + CεVθI

. (25)
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Figure 5: Circuit model of the piezoelectric coupling
for a square piezoelectric laminate.

Under harmonic regime, θ̇ = jωθ on any side of the
unit cell and q̇θI = jωqθI so that

−MI = DE

jω

(
θ̇L − θ̇R + θ̇B − θ̇T

)
+ eθVθI

VθI = 1
jωCε

[
q̇θI + eθ

(
θ̇L − θ̇R + θ̇B − θ̇T

)] . (26)

Note that MI has now the same form as in equation (6)
when the piezoelectric coupling coefficient eθ is equal
to zero. With q̇θI = q̇θL− q̇θR + q̇θB− q̇θT , equation (26)
can be represented by the electrical circuit in figure 5.
This corresponds to a two-dimensional extension of
the model used to represent a piezoelectric unit cell
subjected to one-dimensional bending motion [30, 32].

The proposed circuit that models the piezoelectric
effect along two directions offers a way to couple a
square plate unit cell to it analogous electrical network.
Indeed, the circuit in figure 5 can be inserted between
the unit cell involving mechanical variables in figure 2
and its electrical counterpart in figure 3. The short-
circuited bending stiffness DE thus replaces the purely
mechanical bending stiffness D involved in section 2
and the blocked capacitance Cε is used instead of C.
In the end, we get a discrete electromechanical unit
cell represented by an electrical circuit involving four
external ports per side, i.e. 16 ports in total. The whole
set of discrete equations defining the electromechanical
unit cell is written down, the internal variables are then
eliminated and the system of equations is solved for the
side force and voltage variables as linear combinations
of the displacement and electric charge variables. We
obtain a 16×16 element ”dynamic stiffness matrix” of
the coupled system under the form

F e
c = De

cq
e
c . (27)

The considered ”force” and ”displacement” vectors are

F e
c =

[
F e

B F e
L F e

R F e
T

]T
qe
c =

[
qe

B qe
L qe

R qe
T

]T , (28)

where

F e
B =

[
−QB −MB VwB VθB

]T
F e

L =
[
−QL −ML VwL VθL

]T
F e

R =
[
QR MR −VwR −VθR

]T
F e

T =
[
QT MT −VwT −VθT

]T
qe

B =
[
WB θB qwB qθB

]T
qe

L =
[
WL θL qwL qθL

]T
qe

R =
[
WR θR qwR qθR

]T
qe

T =
[
WT θT qwT qθT

]T
. (29)

The signs in the force vectors are chosen in order to
involve external forces applied to the unit cell. As,
QB, MB, QL and ML represent mechanical actions
applied by the considered unit cell to its bottom or
left neighbors, their opposite values are introduced
into the force vector. Furthermore, the signs of
the electrical variables are the opposites of the signs
of the mechanical variables because the voltages are
analogous to the opposite of the force contributions,
as shown in figure 2. The closed-form expression of
De

c is not given explicitly because the high number of
symbolic equations results in a large symbolic matrix
which cannot be written compactly. In any case, from
a classical assembly of element matrices, the numerical
model in equation (27) allows the simulation of a
discretized plate coupled to its analogous electrical
network.

3.4. Macro unit cell

A discrete model based on a large wavelength
assumption is not reliable when the considered
wavelength approaches the length of the unit cell.
In order to maintain a large wavelength condition,
one could propose to increase the number of unit
cell. However, when considering a practical system,
the number of unit cells is usually defined from the
choice of the piezoelectric array. A solution is to
define a macro unit cell where the mechanical part is
refined but the number of unit cells for the electrical
network is kept constant. This solution is represented
in figure 6(a) where the unit cell in figure 4 is divided in
four identical sub-cells. The four piezoelectric patches
are connected in parallel and the ratio of piezoelectric
material is not modified. This means that the global
constants DE , Cε and eθ appearing in equation (25)
are still the same for the macro unit cell. Also, from the
definition of the bending stiffness, the constantsDE are
equal for the macro unit cell and for the sub-cells. As
the coupling coefficient eθ is proportional to the side of
the square cells, it is divided by two when considering
four sub-cells. The piezoelectric coupling in the macro
unit cell in figure 6(a) can thus be represented by the
electrical circuit in figure 7. In fact, this new circuit
is made of four times the circuit in figure 5, around



Multimodal damping of a plate by coupling to its electrical analogue 9

(a) (b)

Figure 6: Macro unit cells: (a) With 4 sub-cells. (b) With 9 sub-cells.

Figure 7: Model of the piezoelectric coupling for a macro unit cell with 4 sub-cells.

a single global capacitance Cε. The numbering of the
electrical variables refers to figure 6(a), where the side
coordinates are written explicitly. In the end, we would
get a macro unit cell with a number of mechanical
variables that has been doubled. The element matrix
De

c in equation (27) would thus be a 24×24 matrix.
Depending on the considered wavelength, the

macro unit cell in figure 6(a) may still require a
finer mesh to generate a suitable approximation of

the continuous plate. With square elements, a refined
model involves 9 sub-cells instead of 4, which leads to
the macro unit cell represented in figure 6(b). A similar
electrical circuit as in figure 7 could be drawn with 9
transformers connected to a single capacitor. From the
whole set of equations defining the electrical unit cell
and the 9 mechanical sub-cells, a 32×32 element matrix
De

c is obtained. Here, the force vectors on the sides of
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the macro unit cell are

F e
B =

[
−QB1 −MB1 −QB2 −MB2 −QB3 −MB3 VwB VθB

]T
F e

L =
[
−QL1

−ML1
−QL4

−ML4
−QL7

−ML7
VwL VθL

]T
F e

R =
[
QR3

MR3
QR6

MR6
QR9

MR9
−VwR −VθR

]T
F e

T =
[
QT7

MT7
QT8

MT8
QT9

MT9
−VwT −VθT

]T (30)

and the displacement vectors are

qe
B =

[
WB1

θB1
WB2

θB2
WB3

θB3
qwB qθB

]T
qe

L =
[
WL1 θL1 WL4 θL4 WL7 θL7 qwL qθL

]T
qe

R =
[
WR3

θR3
WR6

θR6
WR9

θR9
qwR qθR

]T
qe

T =
[
WT7

θT7
WT8

θT8
WT9

θT9
qwT qθT

]T , (31)

where the numbering refers to figure 6(b). This last
macro unit cell based on a 32×32 element ”dynamic
stiffness matrix” is finally the one that is implemented
in the following comparisons with experimental results
in order to ensure a minimum of 10 sub-cells per
wavelength in the mechanical domain.

4. Experimental setup

The experimental setup is made of a clamped alu-
minum plate covered with an array of 20 piezoelectric
patches. Those are glued onto the plate by using a vac-
uum bagging process. Then, the analogous network is
assembled with passive electrical components, as in-
ductors and transformers, whose number depends on
the number of piezoelectric patches.

4.1. Clamped plate

The mechanical structure to control is a clamped
aluminum plate, whose dimensions and material
properties are listed in table 1. With the considered
geometry, the plate corresponds to a set of 5×4
identical squares of side 80 mm. The clamping
frame is made of square aluminum bars reinforced
with steel angle channels, as seen in figures 8(a)
and 8(b). Two rows of bolts are equally tightened
with a torque wrench to ensure zero deflection and zero
slope boundary conditions. A white noise excitation is
generated with a shaker which is placed at a position
x = 80 mm and y = 120 mm from the bottom left
hand corner of the plate. The input force is measured
with a force sensor placed between the shaker and the
plate, while the transverse velocity field is measured
with a laser scanning laser vibrometer. The force signal
is then processed together with the velocity signal to
compute velocity frequency response functions (FRFs).

Note that the considered bolted frame offers
an adequate approximation of clamped boundary
conditions up to 500 Hz. Above this frequency, the
two rows of bolts still lead to a satisfactory clamping
but the frame and its connections to the table are not

Table 1: Geometry and material properties.

Plate (Al 1050) Patches (PZT-5H)

Length lx = 400 mm lp = 72.4 mm
Width ly = 320 mm lp = 72.4 mm
Thickness hs = 1.9 mm hp = 0.27 mm

Density ρs = 2700 kg/m3 ρp = 7800 kg/m3

Young’s modulus Ys = 69 GPa 1/sE11 = 62 GPa
Charge constant - d31 = −320 pC/N
Permittivity - εσ33 = 33.6 nF/m

stiff enough, which generates undesired low-frequency
frame modes. So, the velocity FRFs are measured over
a frequency range spanning from 50 Hz to 500 Hz.

4.2. Array of piezoelectric patches

The aluminum plate is covered with an array of
20 square PZT-5H patches, whose dimensions and
properties are given in table 1. As performed by Anton
et al. [38], the patches are glued onto the plate by
using a vacuum bagging process, which allows reducing
the thickness of the bonding layer. We chose the
3M DP460 two-part epoxy adhesive for its high shear
strength and its adequate working life. The epoxy
adhesive is applied on one side of the piezoelectric
patches before their positioning onto the plate. The
plate is then placed in the vacuum bag shown in
figure 9(a). After 24 hours, we obtain the functional
piezoelectric plate in figure 9(b), which can be inserted
into its clamping frame.

The addition of piezoelectric patches does not
strongly influence the modal distribution of the
plate because both stiffness and mass are increased.
Compared to a case without any patch, bonding open-
circuited patches increases the natural frequency of
the first mode by only 1.5 %. Furthermore, we can
evaluate the difference in terms of natural frequencies
when the patches are short- or open-circuited. As
a reference, the first mode of the plate is around
140 Hz with open-circuited patches and this frequency
is decreased by 3.5 % once the patches are short-
circuited. By comparing this experimental result with
simulations from the model developed in section 3, the
global coupling coefficient appearing in equation (26)
is updated to eθ = 1.4× 10−3 N·m/V.

With the vacuum bagging process, the bonding
layer is actually so thin that we get a direct contact
between the plate and at least one corner of the
piezoelectric patches, which creates a short circuit even
with a ”nonconductive” adhesive. The plate and its
clamping frame are thus defined as the ground of
the electrical circuit when considering the coupling to
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(a) (b)

Figure 8: Clamped aluminum plate: (a) Front of the plate with reflective tape for velocity measurement with a
scanning laser vibrometer. (b) Shaker exciting the back of the plate.

(a)

(b)

Figure 9: Vacuum bonding process: (a) Plate in
the vacuum bag. (b) Plate covered with piezoelectric
patches after vacuum bonding.

an electrical network. The piezoelectric capacitance
is evaluated by direct measurement on the patches
at the corners of the clamped plate. There, the
boundary conditions naturally constrain the transverse

displacement and it is found that the capacitance is
Cε = 340 nF.

4.3. Analogous electrical network

The analogue of a clamped plate is built by referring
to the electrical unit cell in figure 3. No capacitors
C0/2 are required because this element has only been
introduced to allow numerical simulations. Moreover,
we do not need to consider external capacitors C
because the electrical network is intended for coupling
to the plate through the array of piezoelectric patches
that offer a capacitance Cε. The analogous electrical
network is thus implemented by connecting together
5×4 identical unit cells, which corresponds to the
number of piezoelectric patches.

The electrical states along the edges of the network
have to satisfy an analogy with mechanical boundary
conditions. As we focus on the analogue of a clamped
plate, the zero-displacement and zero-angle boundary
conditions, W = 0 and θ = 0 leads to qw = 0
and qθ = 0 along the boundaries of the network.
This means that we have to leave the corresponding
electrical ports open-circuited. Then, no current flows
through the inductors and transformers along the four
edges of the network. Those components are therefore
not required and can be removed from the network.
Furthermore, the pairs of â/2 ratio transformers can
be replaced by single transformers of ratio â. For
practical reasons related to the design of the magnetic
components, a ratio â = 4 has been chosen. In the
end, the network is assembled with 17 transformers of
ratio 4:1, 6 transformers of ratio 1:1 and 6 inductors
L = 0.9 H. This value comes from the modal coupling
condition in equation (7) with the bending stiffness
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(a) (b)

Figure 10: Implementation of the analogous network: (a) Electrical unit cell. (b) Network made of 5×4 unit cells.

DE and the capacitance Cε. Under this condition,
an infinite number of unit cells would lead to identical
modal properties for the plate and for its analogous
electrical network. Practical applications does not
offer an infinite number of unit cells, but still, the
inductance is tuned for optimal damping around at
least the first mode of the plate.

The inductors are made by winding copper wire
around type RM ferrites [39, 40]. Direct measurements
on the inductors gives a series resistance RLs = 2.6 Ω
and a parallel resistance RLp = 200 kΩ. Concerning the
transformers, they are wound around nanocrystalline
toroidal cores [39, 40]. The 4:1 transformers are
made with 3000 turns on the primary winding and
750 turns on the secondary winding, which gives a
total winding resistance RTs = 353 Ω. For the 1:1
transformers, two windings of 750 turns leads to a
winding resistance RT

?

s = 21 Ω. The positioning
of the electrical components is presented through
figures 10(a) and 10(b), where we note the frames with
dashed lines that indicate the correspondence between
the topology of the unit cell and the actual electrical
network.

5. Results and discussion

Experiments with short-circuited patches give a
reference case when no control occurs. The analogous
electrical network is then coupled to the clamped
plate through the piezoelectric array. The electrical
resonances strongly influence the dynamic response
of the plate, which is optimized by adjusting the
inductance and resistance values.

5.1. Modal analysis with short-circuited patches

The first experimental results focus on the modal
analysis of the clamped plate when the piezoelectric
patches are short-circuited. The scanning vibrometer
is used to get experimental operating deflection shapes.
For the FRF, the measurement point for the velocity
corresponds to the position x = 120 mm and y = 120
mm from the bottom left hand corner of the plate.
Figure 11 shows four resonances over the considered

frequency range. Actually, the 4th resonance is the

result of a combination of the 4th and 5th modes that
exhibit close natural frequencies.

The coupled models developed in section 3 can
be used for a comparison with the experimental
results involving short-circuited patches by setting the
coupling coefficient eθ to zero. The bending stiffness
DE and the mass m of the unit cell are calculated
from its geometry and material properties. The model
involving a macro unit cell with 9 sub-cells is then
considered. This generates a total of 15×12 sub-cells,
which ensures on a minimum of 10 mechanical unit
cells per wavelength for the first five plate modes of
the clamped plate. When comparing experimental and
numerical FRFs, we have noticed the non-negligible
influence of the mass m̃ = 7.6 g of the element which
is added between the force sensor and the plate for
connecting one to the other. Consequently, there is a
difference between the simulated force Fsim acting on
the plate and the force Fexp measured by the force
sensor. If Fexp is the force applied by the force sensor
to the mass m̃ and Fsim is the force applied to the
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Figure 11: Experimental operating deflection shapes with respect to the velocity FRF - (—) experimental FRF,
(−−) simulated FRF computed with 15×12 sub-cells.

plate

Fexp − Fsim = −ω2m̃W̃ , (32)

where W̃ is the displacement of the plate that has been
computed at the point of excitation. Consequently,
if a displacement field has first been computed with
Fsim = 1, it has to be divided by 1 − ω2m̃W̃ to
find the actual values taking into account the added
mass. This improves the correlation between numerical
and experimental results but we still note that neither
mass of bonding layers and electrical wires nor eventual
softening effect due to imperfect clamping conditions
are considered in the model. For this reason, the
parameter related to the mass of the unit cell might
need to be updated. This finally led to a negligible
1 % increase of m when considering the present setup.

Another model update concerns structural damp-
ing. A viscous damping applied to the transverse dis-
placement is combined to a viscous damping applied to
the stiffness. This corresponds to the use of an equiv-
alent complex density as ρ(1− 4.0j/ω) and an equiva-
lent complex Young’s modulus as Y (1 + 3.3× 10−6jω),
whose damping coefficients were determined by com-
parison with the experimental results. This damping
model approximates the maxima of the velocity FRF
below 500 Hz. Indeed, figure 11 shows that the numeri-
cal results are in good agreement with the experimental
ones. The main difference remains in the fact that the
4th and 5th modes can be distinguished on the simu-
lated FRF. Yet, we note that refining the mesh does
not clearly improve the correlation because it cannot
overcome the bias introduced by the non-ideal clamped
boundary conditions in the experiments.

5.2. Multimodal coupling

After preliminary experiments involving short-circuited
patches, i.e. no piezoelectric coupling, the plate is cou-

Figure 12: Clamped aluminum plate covered with
piezoelectric patches connected to the multi-resonant
network.

pled to it electrical network in figure 10(b). Accord-
ing to the discrete network topology obtained for a
clamped plate, the piezoelectric patches on the corners
do not play any role. Only 16 of the 20 patches are thus
connected to the electrical network for the present ap-
plication. The resulting coupled system is presented in
figure 12. Once the network is engaged, figure 13 shows
that the coupling provides a strong modification of the
modal behavior of the plate. At 140 Hz and 230 Hz, we
remark local minima surrounded by two local maxima.
This is a characteristic of an underdamped tuned mass
control, which is here generated by the multi-resonant,
spatially-distributed network. This confirms that the
piezoelectric coupling of a 2D mechanical structure to
its electrical analogue leads to a passive control that
acts as a multimodal tuned mass damping, similarly
to what has been implemented previously for the con-
trol of 1D structures [29, 30].

The vibration reduction is also significant for the
highest modes but the tuned mass effect is less obvious.
Actually, the network does not offer a tuning that is
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Figure 13: Influence of the electrical network on the plate velocity FRF - (· · ·) experimental FRF with short-
circuited patches, (—) experimental FRF with L = 0.9 H and R+

s = 0 Ω, (−−) simulated FRF with L = 0.9 H
and R+

s = 0 Ω.
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Figure 14: Voltage frequency response function - (—) experimental FRF with L = 0.9 H and R+
s = 0 Ω,

(−−) simulated FRF with L = 0.9 H and R+
s = 0 Ω.

optimized for all the modes simultaneously. The exact
analogue of a continuous structure cannot be obtained
with a set of discrete electrical components. Therefore,
our discrete network only offers an approximation of
the continuous plate behavior at low frequency. The
lower electrical resonances thus occur at frequencies
that are close to the corresponding mechanical
resonances but for higher modes the frequency error
becomes non-negligible. Nevertheless, it would be
possible to more closely match the resonances of the
plate with the same network topology by increasing
the number of electrical unit cells.

Considering the comparison between the experi-
mental results and those coming from the model devel-
oped in section 3, an adequate correlation is observed
in figure 13. Still, we note an increasing discrepancy
over the highest frequency range, which is due to two
main reasons. First, even if the considered model in-
volves macro unit cells offering 15×12 sub-cells for the
plate, it is still a discrete model that is close to its limits
for the highest modes. Second, the approximation of
perfect clamped boundary conditions with the actual
setup becomes questionable when approaching 500 Hz.

Another solution to validate the numerical model
and to verify the tuning of the network is to measure
electrical frequency response functions. Those can
be obtained from a voltage excitation on a node of
the network and a measurement of the voltage drop
across an inductor. The measurement and excitation

points are the analogues of those defined for the
velocity FRFs. The piezoelectric coupling between
the network and the plate considerably influences the
electrical FRF presented in figure 14. We note a sharp
antiresonance around 140 Hz that characterize the first
mode of the plate. This antiresonance illustrates the
electromechanical energy transfer and its positioning
between two local maxima presenting close ordinates
shows that the tuning of the network is adequate
[29, 30]. In the end, the simulation of the electrical
FRF is very reliable, which definitely validates the
proposed model based on two-dimensional coupling to
an analogous network.

5.3. Tuning of the electrical network

Depending on the application, the electrical network
can be tuned in different ways. For example, if a
control is required at one specific frequency which is
near a mechanical resonance, the inductors can be
adjusted in order to place the corresponding electrical
resonance around the target frequency. This generates
an antiresonance, as seen in figure 13 around the first
mode of the plate. Then, the internal damping in the
components must be minimized in order to increase the
depth of the antiresonance.

On the other hand, a control over a broader
frequency range requires the introduction of additional
damping in the network. Indeed, it is shown in
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Figure 15: Addition of damping in the electrical network - (· · ·) experimental FRF with short-circuited patches,
(—) experimental FRF with L = 0.9 H and R+

s = 180 Ω, (−−) simulated FRF with L = 0.9 H and R+
s = 180 Ω.

figure 15 that 180 Ω resistors in series with the 6
inductors flatten the FRF. Note that the addition of
resistance does not necessarily increase the number
of components as it can be taken into account when
designing the inductors. A vibration reduction around
25 dB is obtained for the first two modes of the
plate. Focusing on passive control solutions, such
damping performances could not be reached with
multiple-mode shunt circuits [9, 8, 10], which require
external capacitors that decrease the electromechanical
coupling [17].

The comparison between figures 13 and 15 shows
that the introduction of resistors mainly affects the
lowest modes. Again, this is due to the fact that
the discrete electrical network yields lower coupling
at higher frequencies. With the discrete network,
a solution for a vibration reduction over a broader
frequency range is to detune the first modes to better
tune higher modes. This strategy is presented in figure
16, where the previous case involving a network with
0.9 H inductors and 180 Ω series resistors is compared
to a second case with 0.7 H inductors and the same
180 Ω resistors. The second inductance value has been
obtained from aH∞ optimization, which minimizes the
maximum of the velocity FRF over the 50 Hz to 500 Hz
frequency range:

H∞ = min (max [FRF(f, L)]) ,
L f

(33)

where f ∈ [50 Hz, 500 Hz]. By decreasing the
inductance, the electrical resonances move to higher
frequencies. In this case, we remark that the second
electrical resonance is moved from a frequency below
the second mechanical resonance to a frequency above
it. Even if the modification of the tuning is not
beneficial for the first mode, the maximum of the
amplitude over the frequency range of interest is
minimized. The decrease of the inductance moves the
highest electrical resonances closer to their mechanical
analogues, which clearly reduces the amplitude of the
FRF around its upper frequency range. In the end,
the vibration reduction is above 20 dB for the first
five modes of the plate when compared to the short-

circuited case. This shows that the analogous coupling
offers an efficient broadband control, even with a coarse
discretization of the electrical network.

6. Conclusions

A distributed control strategy has been implemented
by means of an array of piezoelectric patches that
are interconnected through an analogous electrical
network. For a square plate unit cell, a finite difference
method applied to the Kirchhoff-Love theory gives a
discrete model that is converted into its direct electrical
analogue. Focusing on clamped boundary conditions,
the novel analogous topology is implemented with a set
of purely passive electrical components, which proves
that the control solution does not require any power
supply. A significant modification of the mechanical
response is observed once the passive electrical network
is coupled to the considered clamped plate. To the
best of our knowledge, this work presents the first
experiments involving the coupling of a plate to an
analogous electrical network. Because the network is
discrete and does not offer a large number of unit
cells, an optimal coupling can only be achieved around
the lowest modes the continuous plate. Nevertheless,
an increase of the number of unit cell would allow a
broadband control up to any target frequency, as long
as the Kirchhoff-Love assumptions are still valid.

The proposed coupled model based on 2D
electromechanical unit cells is also validated from the
experiments. We note that the frequency range of
interest influences the choice of a suitable macro unit
cell. For instance, the macro unit cell offering 4 sub-
cells could have been sufficient in the low-frequency
range. On the other hand, a simulation of the present
setup above 500 Hz would require more than 9 sub-cells
to maintain a minimum of 10 elements per wavelength.
Yet, an increase of the number of sub-cell leads to
large symbolic element matrices that can be difficult
to handle. A natural perspective thus consists in
the definition of a finite element model with adaptive
mesh for the mechanical part of the unit cell [41].
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Figure 16: Broadband tuning of the network - (· · ·) experimental FRF with short-circuited patches,
(—) experimental FRF with L = 0.9 H and R+

s = 180 Ω, (−−) experimental FRF with L = 0.7 H and
R+
s = 180 Ω.

In any case, the present discrete models still offer
a suitable approximation of the continuous plate in
the low-frequency range and they allow preliminary
simulations that are essential for the design of the
electrical components. Depending on the application,
a suitable tuning of the electrical network can then
optimize the vibration amplitude around one specific
frequency or over a broad frequency range. When the
network is tuned for broadband damping, we get a
20 dB vibration reduction over the 50 Hz to 500 Hz
frequency range, which definitely shows the interest of
the passive control strategy.
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