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Abstract
During the last two decades, MRI has been increasingly used for providing valuable

quantitative information about spinal cord morphometry, such as quantification of the spinal
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cord  atrophy  in  various  diseases.  However,  despite  the  significant  improvement  of  MR
sequences adapted to the spinal cord, automatic image processing tools for spinal cord MRI
data are not yet as developed as for the brain. There is nonetheless great interest in fully
automatic and fast processing methods to be able to propose quantitative analysis pipelines
on large datasets without user bias. The first step of most of these analysis pipelines is to
detect the spinal cord, which is challenging to achieve automatically across the broad range
of MRI contrasts, field of view, resolutions and pathologies. In this paper, a fully automated,
robust and fast method for detecting the spinal cord centerline on MRI volumes is introduced.

The algorithm uses a global optimization scheme that attempts to strike a balance
between a probabilistic localization map of the spinal cord center point and the overall spatial
consistency of the spinal cord centerline (i.e. the rostro-caudal continuity of the spinal cord).
Additionally, a new post-processing feature, which aims to automatically split brain and spine
regions is introduced, to be able to detect a consistent spinal cord centerline, independently
from the field of view. We present data on the validation of the proposed algorithm, known as
“OptiC”,  from a  large  dataset  involving  20 centers,  4  contrasts  (T2-weighted  n=287,  T1-
weighted n=120, T2

∗-weighted n=307, diffusion-weighted n=90), 501 subjects including 173
patients  with  a  variety  of  neurologic  diseases.  Validation  involved  the  gold-standard
centerline coverage, the mean square error between the true and predicted centerlines and the
ability to accurately separate brain and spine regions.

Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a mean
square error of 1.02mm. OptiC achieved superior results compared to a state-of-the-art spinal
cord localization technique based on the Hough transform, especially on pathological cases
with an averaged mean square error of 1.08mm vs. 13.16mm (Wilcoxon signed-rank test p-
value<0.01). Images containing brain regions were identified with a 99% precision, on which
brain and spine regions were separated with a distance error of 9.37mm compared to ground-
truth.

Validation results on a challenging dataset suggest that OptiC could reliably be used
for  subsequent  quantitative  analyses  tasks,  opening  the  door  to  more  robust  analysis  on
pathological cases. 

Keywords: Spinal  cord,  MRI,  Detection,  Segmentation,  Global  Optimization,  Machine
learning

Abbreviations:

SC: Spinal Cord
PMJ: Pontomedullary junction
FOV: Field of View
(S-I) axis: Superior-Inferior axis
HOG: Histogram of Oriented Gradient
SVM: Support Vector Machine
MS: Multiple Sclerosis

DCM: Degenerative Cervical Myelopathy
NMO: Neuromyelitis Optica
SCI: Spinal Cord Injury
ALS: Amyotrophic Lateral Sclerosis
SYR: Syringomyelia
MSE: Mean Square Error
HC: Healthy Controls

1. Introduction
The spinal cord (SC) plays a key role in the central nervous system by ensuring the

conduction of both motor and sensory signaling between the brain and the peripheral nervous
systems.  Although  SC  magnetic  resonance  imaging  (MRI)  has  long  been  technically
challenging, MRI has been increasingly used in the last  two decades to provide valuable
quantitative information through SC morphometry (Fradet et al., 2014; Martin et al., 2017b;
Papinutto et al., 2015) and to evaluate SC damage a range of neurologic disorders such as
multiple sclerosis, traumatic, and neurodegenerative diseases  (Cawley et al., 2017; Cohen-
Adad et al., 2013, 2011; Ellingson et al., 2008; Grabher et al., 2017; Martin et al., 2017a;
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Nakamura et al., 2008). With newer acquisition techniques that enhance the quality of SC
MRI data (Stroman et al., 2014), there is a need for improved image processing methods to
propose robust automated quantitative analysis pipelines.

Localizing the SC on MRI scans is a key step for automating quantitative analysis
pipelines such as SC (De Leener et al., 2014; Horsfield et al., 2010) and grey matter (Dupont
et al., 2017; Prados et al., 2017, 2016) segmentations, template registration (De Leener et al.,
2017b; Stroman et al.,  2008) and B0 susceptibility-related distortion  correction  (Johanna
Vannesjo  et  al.,  2017;  Topfer  et  al.,  2016).  While  localizing  the  SC might  appear  as  a
rudimentary  computerized  task,  it  is  much  more  challenging  to  achieve  it  robustly  and
accurately across a broad range of SC shapes,  craniocaudal  vertebral length,  pathologies,
image field of view (FOV), image resolution and orientation, types of contrast and image
artifacts (e.g. susceptibility, motion, chemical shift, ghosting, blurring, Gibbs). For instance,
about 20 recently-published SC segmentation methods still require manual intervention for
initialization  and  optimization  (De  Leener  et  al.,  2016),  especially  to  identify  specific
anatomic landmarks within the SC. Hence, SC segmentation methods could be made fully
automatic if initialized with a robust automated SC centerline localization module.

Most  of  the  existing  automatic  SC  localization  methods  took  advantage  of  the
ellipsoid  shape  of  the  SC  in  cross-section  and  are  based  on  the  Hough  transform with
vesselness filtering (De Leener et al., 2014), active contour (Koh et al., 2010), or continuous
max-flow with cross-sectional similarity prior (Pezold et al., 2015). Other methods are based
on energy-minimization methods through image-based strategies, by pattern registration with
partial volume effect modelization (Carbonell-Caballero et al., 2006) or atlas registration with
topology constraint (Chen et al., 2013). While these automatic algorithms have shown good
performance (De Leener et al., 2016), they often require a specific  region of interest or are
limited to specific contrast and resolution.

This paper introduces a novel fully automatic, accurate and fast algorithm (OptiC) to
detect  the  center  of  the  SC.  OptiC is  based  on a  supervised  machine  learning  detection
method combined with a distance-transform-based global optimization. Its performance was
evaluated on non-processed data (i.e., not cropped, filtered, reoriented, intensity-normalized,
etc.) across a large multi-center dataset from 20 sites (n=20) including a variety of image
quality, resolution and pathologies across four image contrasts: T2-weighted (T2w, n=287), T1-
weighted (T1w, n=120), T2

*-weighted (T2
*w, n=307) and diffusion weighted (DWI, n=90) 3D

images. For the sake of transparency and reproducibility, we have made this method publicly
available  as  part  of  the  Spinal  Cord  Toolbox1 (v3.0.2  and  above)  free  and  open-source
software (De Leener et al., 2017a) and on the webpage of the CREATIS lab2.

The main contributions of this work are (i) an original framework to robustly find the
SC centerline,  based on machine learning and global  curve optimization,  (ii)  an efficient
algorithm to solve the optimization problem in a non-iterative way with linear complexity,
(iii) a robust ponto-medullary junction (PMJ) detector to separate brain and spine regions and
(iv) an extensive validation on a broad dataset involving several centers, pathologies, MR
contrasts and image resolutions.

In the following sections, the theoretical aspects of OptiC will be detailed, along with
the optimization of its hyperparameters and the evaluation across the testing dataset. Second,
the results of the training and testing steps will be presented. Finally, the key contributions of
OptiC method will be discussed.

1 sourceforge.net/projects/spinalcordtoolbox/ 
2 creatis.insa-lyon.fr/site7/en/ctrDetect
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2. Material and Methods

2.1. Theory
In the following subsections, the OptiC approach will be detailed and a new algorithm

will be proposed to efficiently find a global minimum to the optimization problem. The final
section presents an automatic post-processing method to differentiate brain and spinal cord
regions in order to prevent analysis of the brain region.

2.1.1. OptiC SC centerline detection
The OptiC method relies on two prior anatomical sets of knowledge: (i) the SC has a

specific tubular shape and (ii) the SC centerline is continuous along the superior-inferior (S-I)
(cranio-caudal)  axis.  Consequently,  the OptiC approach encodes  these priors in 2 distinct
steps (see Figure 1): (i) step 1: a  SC localization map is computed, using standard object
detection tools, (ii) step 2: an optimization problem is solved to take into account the global
tubular shape of the SC. As a result, the SC centerline is modeled as a curve compromising
the tubular similarity and the curve continuity.



Figure 1. OptiC pipeline overview. OptiC is based on two steps: (1) The spinal cord (SC)
probabilistic localization map is computed from the input image, (2) The SC centerline is
modeled as  a  regularized  curve,  constrained by a  trade-off  between the localization map
values and the SC continuity in the superior-to-inferior (S-I) axis.

2.1.1.1. Step1: Spinal cord localization map

The goal of the first step is to compute a localization map of the SC, in a supervised
manner, based on the detection of its specific ellipsoidal shape. It is achieved by predicting
the presence of the SC in a given 2D image-patch with a classification model, as commonly
done for object detection. Trained on labeled image-patches, the classification model assigns
to each voxel a confidence of SC presence within the corresponding patch, resulting in a SC
localization map.

2.1.1.2. Step2: Spinal cord centerline modeling

From the previously computed SC localization map, the goal of the second step is to
model  the  SC as  a  curve  which  constrains  the  centerline  continuity.  Thus,  the  resulting
centerline  C  is a regularized curve compromising the localization map S  values and
the SC continuity, which could be expressed as the solution of the following optimization
problem (Eq. 1):

minc0 ,... ,cn−1
Cn−1(c0, ... , cn−1)=−∑

z=0

n−1

Sz(cz)+ λ∑
z=0

n−2

||cz+1−cz||❑
2 (Eq. 1)

with λ , a regularization coefficient; cz , the SC center and Sz , the localization map
on the zth slice; n , the number of slice in the 3D input MRI volume. Thus, the optimization
problem has to make a trade-off between the classifier confidence in the SC localization, and
the SC continuity between adjacent slices, respectively encoded by the first and second terms
of (Eq 1).



2.1.1.3. Optimization problem resolution

The optimization problem (Eq. 1) could be solved using a gradient descent approach.
This  would  be  efficient  but  would  not  ensure  finding  the  global  solution.  A brute  force
algorithm  would  find  the  global  solution  but  would  be  impractical  with  a  O(sn

)

complexity, where s  is the number of voxels per slice and n  the number of slices in the
3D MRI volume). 

In this section, a novel algorithm is detailed to efficiently solve (Eq. 1) and guarantee
robustness of the optimization problem since it provides a global solution. Based on distance-
transforms, this approach has a complexity linear with the number of voxels, in O(s .n) .

To solve the problem,  an auxiliary sequence of 2D images (M k)  is defined as:

M k (xk)=minx0 , ... , x k−1
Ck (x0 , ... , xk ). (Eq. 2)

with k the slice number. Slices above the index k  are removed, and the problem is seen as
a function of the center on slice k  only. If the M n−1  image is known, the relation

minxn−1
M n−1(xn−1)=minx0 ,... , xn−1

Cn−1(x0 , ... , xn−1) , (Eq. 3)
enables finding the center solution on the last slice:

cn−1=arg minxn −1
M n−1(xn−1) .

However, computing the M n−1 image is as difficult as solving the original problem.
Fortunately, the sequence (M k)  satisfies the following recurrence relationship:

M k (xk)=minx0 , ... , x k−1
−∑

z=0

k

Sz( xz)+ λ∑
z=0

k−1

||x z+1−x z||❑
2

      ¿−Sk (xk)+λ minxk−1{M k −1(xk−1)

λ +||xk−xk−1||❑
2}

      ¿−Sk (xk)+λ D(
M k−1

λ )(xk)

with  D  defined  by  the  image  operator  D( f )(x )=min y f ( y )+||x− y||❑2 .  This
recurrence relation not only enables us to practically compute the (Mk), it also provides a way
to infer the full centerline, solution of (Eq. 1), from the top to the bottom. Indeed, given ck

, ck−1  can be expressed as:

ck−1=argmin xk−1 {M k−1(xk−1)

λ +||ck−xk−1||❑
2}



        ¿ N (
M k−1

λ )(ck)

(Eq. 4)
where  N is  the  proximity  operator  defined  as  N ( f )(x )=argmin y { f ( y)+||x− y||❑

2
} .

D  and N  are important operators for convex optimization and image processing. They
can be used to compute the distance transform and the nearest neighbors transform of an
image. As proposed previously (Felzenszwalb and Huttenlocher, 2004; Meijster et al., 2002),
these two transforms can be computed efficiently (with linear complexity) when the input
function is uniformly sampled, i.e. is an image.

The resolution of (Eq. 1) is formalized in Algorithm 1. Fast distance and nearest-
neighbor transforms are first used to compute the sequences  (M k)  and (N k)  from the
bottom to the top of the volume. On the top slice, the SC center is then found as the minimum

of M n−1 . The complete centerline sequence 
c

(¿¿k )
¿

 is then inferred by back-tracking on

the nearest-neighbor-transforms (N k ) . As the computation of M k  and N k  is linear,

in O(s) , the complexity of OptiC is also linear, in O(s .n) .
The proof that the Algorithm 1 finds a global solution of the problem defined by (Eq.

1) is fairly simple. Using (Eq. 3), the minimal value of  Cn−1 ,  Ĉn−1 , is given by the
global minimization of  M n−1 . This global minimization is performed by looping on the
pixel of the M n−1 2D image. The backtracking procedure given by (Eq. 4) ensures finding

a path, a 
c

(¿¿k )
¿

 sequence, satisfying Cn−1(c0 , ... , cn−1)=Ĉ n−1 and thus it enables finding

a global solution of the optimization problem.  

Algorithm 1 Centerline Extraction Procedure: OptiC

1: procedure ExtractCenterline( S , λ )
2: M 0=−S0

3: for z=1:n-1 do

4: M z=−Sz+ λ D(
M z−1

λ )

5: N z=N (
M z−1

λ )

6: cn−1=argmin xn−1
M n−1(xn−1)

7: for z=n-2:0 do
8: cz=N z+1(c z+1)

2.1.1.4. Implementation details

In the optimization problem, the z coordinate was assumed to be the (S-I) axis for all
input  volumes.  Thus,  for  each  MRI  volume,  preprocessing  steps  involved  imposing  a
common image orientation (RPI, i.e. Right-to-left, Posterior-to-anterior, Inferior-to-superior)
based on the image header (NIFTI input).

In order to be robust to the native image resolution, the input image is re-interpolated
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to the resolution 1×1×pz mm using trilinear interpolation,  pz being the native pixel size in z
direction. To account for the image resolution in the (S-I) axis, the regularization coefficient λ
is parameterized with a resolution independent parameter λ '  and the interslice distance pz:

λ=
λ '
pz

2

The  SC localization  map  was  computed  using  a  Support  Vector  Machine  (SVM)
trained with Histogram of Oriented Gradient features (HOG) as described previously (Dalal
and Triggs, 2005). The HOG features were computed on patches of 32×32 size, from 2D
axial slices, using the OpenCV library (Bradski and Kaehler, 2008) with default parameters
and signed gradients. Note that the use of a small patch size as well as the sophisticated
normalization  scheme of  HOG makes the  computation  of  the  localization  map robust  to
inhomogeneity artifacts and intensity scale changes.
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2.1.2. Pontomedullary junction detection
Typical cervical SC scans include a part (or all) of the brain, which therefore needs to

be  excluded  in  the  SC  centerline  output  of  the  proposed  algorithm.  Here,  an  automatic
method is introduced to detect the presence and position of the PMJ and subsequently crop
the SC centerline above it. This method is included in OptiC as a post-processing module.
The choice of the PMJ is driven by previous studies showing that this anatomical landmark
could  be  used  as  a  reference  for  SC  template-based  analyses  (Stroman  et  al.,  2008).
Moreover, this anatomical landmark can be precisely identified from multiple image contrasts
and its neighboring voxels exhibit appropriate features for machine learning methods. 

Figure  2  details  the  post-processing  pipeline  to  detect  the  PMJ.  The  SC  is  first
straightened along the extracted centerline,  with a robust algorithm that preserves the SC
topology and its internal and adjacent structure (De Leener et al., 2017b). Straightening of the
SC is used to normalize the shape of the PMJ regardless of the patient position during the
MRI scan. To detect the presence of the PMJ on the straightened volumes, a HOG+SVM 2D
classifier  (as  described  in  section  2.1.1.4.)  is  trained  on  the  midsagittal  slice  of  the
straightened training data, resampled to a 1×1mm resolution. When the PMJ is detected on
the testing data, the centerline is cropped above it.

Figure 2. Automatic post-processing pipeline to restrict the OptiC centerline below the
ponto-medullary  junction  (PMJ).  The  spinal  cord  (SC)  is  first  straightened  along  the
regularized SC centerline (blue). A classifier localization map (heat probabilistic map) allows
detection  of  the  PMJ  on  the  straightened  image  (middle).  Finally,  the  SC  centerline  is
restricted below the detected PMJ (right).
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2.2. Materials
To make sure the algorithm performs well in a large variety of data (i.e., robust to

MRI vendor, contrast, sequence parameters, artifacts, types of pathology, etc.), retrospective
data from 20 research and clinical centers were collected. The dataset was composed of 501
subjects, including 173 patients with neurologic conditions [multiple sclerosis (MS) n=79,
degenerative cervical myelopathy (DCM) n=63, neuromyelitis optica (NMO) n=19, traumatic
spinal cord injury (SCI) n=5, amyotrophic lateral sclerosis (ALS) n=5, syringomyelia (SYR)
n=2]. Volumes were acquired on 3T systems using standard coils, spanning a broad range of
FOVs (e.g. cervical, thoracic, including or not brain sections) and four different contrasts:
T2w (n=287),  T1w (n=120),  T2

∗w (n=307) and DWI (n=90).  Spatial  resolutions  included
isotropic (n=366, from 0.7 to 1.3mm) and anisotropic data with axial (n=430, in plane: from
0.3 to 1.5mm, slice thickness: from 1.0 to 24.5mm), or sagittal orientation (n=8, in plane:
from 0.4 to 0.7mm, slice thickness:  from 0.8 to 2.8mm). Demography and resolution are
summarized in Figure 3.



Figure 3. Demography and resolution. Retrospective data from a large variety of pathologies
(1) and contrasts  (2) were used.  For clarity  purposes,  the distribution of subjects  is  only
shown for pathologies and contrasts. Volumes were acquired at 3T, spanning a large range of
slice  orientations,  in  plane  resolutions  (3a)  and  slice  thickness  (3b).  Abbreviations:  MS:
multiple  sclerosis;  DCM:  degenerative  cervical  myelopathy;  NMO:  neuromyelitis  optica;
SCI: Traumatic spinal cord injury; ALS: amyotrophic lateral sclerosis; SYR: syringomyelia.

For each of the four contrasts, the dataset (N tot volumes) was randomly split into two
independent subsets, the validation (Nvalid volumes) and the testing (Ntest volumes) datasets, as
illustrated in Figure 4. The training-validation dataset (used to train and validate the model)
involved 40 healthy controls (HC), and the testing dataset involved the rest of the HC, and



patients.  The  reason  for  not  including  patient  data  for  the  training-validation  was  for
providing an unbiased and generic model, which would then be tested on patients (ultimately,
this algorithm could be applied for diagnosis purposes, hence without prior knowledge of the
possible pathology). The center of the SC was manually localized using FSLView (Jenkinson
et al., 2012) on each slice of each volume as ground truth for the SC centerline. Similarly, the
PMJ position was manually localized on the midsagittal slice of each straightened T1w and
T2w volume with brainstem section.

Figure 4. Training-validation and testing dataset breakdown. The dataset of each contrast
(Ntot) was randomly split into two independent subsets: the training-validation (Nvalid=40) and
the testing (Ntest=Ntot-Nvalid)  datasets.  The training-validation dataset  only involved healthy
controls (HC, in blue) whereas the testing dataset involved both patients (in purple) and HC.
The training-validation data were also split into 2 independent subsets: the first (nvalid

(1)) for
model training, the second (nvalid

(2)) for evaluation.

2.3. Hyperparameters optimization
Three hyperparameters were investigated: the number of training volumes, the effect

of rotation augmentation in training, and the regularization coefficient  λ ' . To do so, for
each hyperparameter,  100 bootstrap  iterations  were run  on the  training-validation  dataset
(Nvalid),  split  into  two  independent  data  subsets:  one  for  training  (nvalid

(1) from which  the
training volumes were selected), the other for evaluation (nvalid

(2), common for all the tested
values of the current hyperparameter), as detailed in Figure 4. The best model was selected by
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computing the Mean Square Error (MSE) between the predicted  Ĉ and the ground-truth
C  centerlines:

MSE=√❑

with  n is the number of 2D axial  slices.  For each hyperparameter,  significant differences
between the tested values were investigated with a Kruskal-Wallis H-test. After optimization,
each hyperparameter was fixed for the remainder of the study.

2.3.1. Number of training images
In this part, we investigated if increasing the number of 3D images used to train the

model  yielded  a  more  robust  SC detection.  Based  on  metrics  measured  on  a  validation
dataset, models with the following number of training volumes were compared: 1, 5, 10, 15.
The number of training 3D images (ntrain) achieving the best results were retained for the rest
of the study (i.e. nvalid

(1)=ntrain and nvalid
(2)=Nvalid-ntrain).

2.3.2. Rotation training augmentation
Data augmentation is a common strategy to increase detection robustness in  machine

learning.  This  study  investigated  whether  the  model  can  be  made  rotation  invariant  or
whether  adding  a  rotation  to  the  input  volume  improved  the  model  generalization  and
prevented overfitting. Rotations around the (S-I) axis were applied to the training data (n train)
with different angular ranges (±30° and ±180°) and angular increments (each 5° and each
10°).

2.3.3. Regularization coefficient
The regularization coefficient  λ '  is a hyperparameter that affects the (S-I) axis

regularization of the extracted centerline. The higher λ '  is, the more the centerline points
from two adjacent slices tend to  converge in  the X-Y plane.  To optimize  λ ' ,  discrete
values were investigated from 0 to 4. Note that, when λ '  is null, the centerline is given by
the  maximal  values  of  the  SC  localization  map,  and  when  λ '  goes  to  infinity,  the
centerline will tend to be a vertical straight line.

2.4. Evaluation
Once the OptiC hyperparameters were selected, OptiC performance was evaluated on 

the testing dataset (Ntest), using both HC and patients (see Figure 4).

2.4.1. OptiC SC centerline detection
For each contrast, an OptiC optimized model was evaluated on the testing dataset and

compared to a recently-published automatic SC localization method (De Leener et al., 2015),
based on the Hough transform detection with vesselness filtering (referred as Hough in the
following paragraphs). Validation metrics were MSE between the predicted and ground truth
SC centerlines and the localization rate, defined as the percentage of slices for which the
predicted centerline was included in the manually-segmented SC.

https://paperpile.com/c/AYlxlb/oMRq


2.4.2. Pontomedullary junction detection
To achieve fully automatic pipelines involving multi-center datasets with a variety of

FOVs, the PMJ detection is a mandatory post-processing step to restrict the centerline curve
to  SC regions.  The proposed method to  detect  the  PMJ was evaluated  on T2w and T1w
datasets that included a large number of volumes with brain sections: PMJ appeared on 45%
of T2w and 90% of T1w volumes of the testing dataset. The training and testing datasets were
the same as in the previous section.

The detection performance was assessed with recall (measure of completeness) and
precision (measure of exactness) metrics:

recall=
TP

TP+FN

precision=
TP

TP+FP
where TP (true positives) and FN (false negatives) are the number of volumes with brain 
section where the PMJ is respectively detected and not detected; FP (false positives) are the 
number of volumes on which PMJ is detected even though the brain section is not present.

For volumes with detected PMJ, the localization accuracy is evaluated by computing 
the distance between the predicted and true PMJ position along the (S-I) axis.

2.4.3. Proof-of-concept: application to SC segmentation
SC  segmentation  provides  relevant  morphometric  information  about  SC  atrophy

(Yiannakas et al., 2016)  and is an important step in template-based analysis pipelines  (De
Leener et al.,  2017a). Thus, as a proof-of-concept application, a SC segmentation method
PropSeg (De Leener et al., 2015), which uses propagation of 3D meshes, was initialized using
an OptiC centerline to compare its  benefit  over the default  initialization.  Dice coefficient
(Dice, 1945), between the predicted and ground-truth segmentations (done by experienced
users), evaluated the quality of the segmentation of the testing subjects. The computation time
was also measured for the SC segmentation process when initialized with OptiC versus with
the default version.

https://paperpile.com/c/AYlxlb/aJCp
https://paperpile.com/c/AYlxlb/oMRq
https://paperpile.com/c/AYlxlb/TRg4
https://paperpile.com/c/AYlxlb/TRg4
https://paperpile.com/c/AYlxlb/aqCX


3. Results
Figure 5 presents the results of the hyperparameter optimization for each contrast. The

selected hyperparameters were chosen through a bootstrap analysis, as a trade-off between
detection  accuracy  (measured  by  the  MSE)  and  simplicity  of  the  model.  The  OptiC
hyperparameter (filled in green) was the same for all  contrast,  selected as either the best
tested value or not significantly different from the best tested value, according to Kruskal-
Wallis H-tests.



Figure 5. Hyperparameter Optimization.  Three hyperparameters were investigated (from
left  to  right):  the  number  of  training  3D images,   the effect  of  rotation  augmentation in
training and the regularization coefficient. The optimization was done for the four contrasts
(from top to bottom): T2w, T1w, T2

*w, DWI. Here, Avg. ± Std. of the Mean Square
Error (MSE) between the estimated centerline and the ground truth across
100  bootstrap  iterations  are  plotted  in  red.  For  each  hyperparameter
optimization,  (*)  indicates  significant  differences  between  the  selected
value (filled in green) and the other tested values, according to Kruskal-
Wallis H-tests (*: p≤0.05, **: p≤0.01).



3.1. OptiC SC centerline detection
Figure 6 shows qualitative examples of SC centerline detection on healthy controls

(HC) and patient  volumes from the testing dataset.  On both axial  and sagittal  views, SC
centerlines were predicted closely to the ground-truth centerlines.

Figure 6. Examples of automatic spinal cord (SC) centerline detection on healthy controls
(HC) and patients, on T2w (top-left), T2

∗w (top-right), T1w (bottom-left) and DWI (bottom-
right) images. This include a comparison between ground-truth (red) and automatic (blue) SC
centerlines on axial and sagittal views. MS: multiple sclerosis; DCM: degenerative cervical
myelopathy;  NMO:  neuromyelitis  optica;  SCI:  traumatic  spinal  cord  injury;  ALS:
amyotrophic lateral sclerosis. 

OptiC  performance  was  evaluated  on  testing  datasets  containing  four  contrasts,
including HC and a large number of patients. OptiC was compared to the Hough method in
Figure 7 in terms of localization rate and MSE. The localization rates were 98.77 ± 4.49% for
OptiC and 63.75 ± 48.79% for Hough (averaged across contrasts n=644, Wilcoxon signed-
rank test p-value<0.01). The MSE results, for subjects with a detected cord (i.e. localization
rate > 0%), were 1.02 ± 1.10mm for OptiC and 9.95 ± 13.76mm for Hough (averaged across
contrasts  n=485,  Wilcoxon  signed-rank  test  p-value<0.01).  Note  that  the  Hough  method
performed adequately on HC but failed on most patients, whereas OptiC performed similarly
well on both HC and patients.



Figure 7. Results of the spinal cord (SC) localization in terms of localization rate (top) and
Mean Square Error (MSE) between the ground-truth and predicted SC centerline (bottom).
For each metric,  the best  value is indicated in green in the y-axis. Results  are compared
between the Hough method  (De Leener et al., 2015) (left distribution plots) and the OptiC
method (right  distribution plots),  where  each point  represents  a  healthy  control  (blue)  or
patient (red). Each method was evaluated on the 4 contrast datasets: T2w, T1w, T2

*w and DWI
(from left to right). The table presents the average metrics per contrast for each method, and
for the HC and the patient (Pat.) subgroups.

https://paperpile.com/c/AYlxlb/oMRq


3.2. Pontomedullary junction detection
Table 1 shows the results of the PMJ automatic detection on the T2w and T1w testing

datasets. The proposed detection method provides good results in terms of recall (T2w: 84%;
T1w: 100%), with few FN detections, as well as high precision (T2w: 100%; T1w: 99%), with
few FP detection. Moreover, the averaged signed distance error between the predicted and the
true PMJ position along the (S-I) axis is in the range of 1 cm below the PMJ (T2w: -11.41 ±
5.71mm; T1w: -5.75 ± 10.29), resulting in an adequate separation of brain and SC structures
around the medulla oblongata (situated just caudal to the PMJ).

Recall [%]
(Best value: 100)

Precision [%]
(Best value: 100)

Distance error [mm]
(Best value: 0.00)

T2w
(n=247, nTP=111)

84 100 -11.41 ± 5.71

T1w
(n=80, nTP=72)

100 99 -5.75 ± 10.29

Table  1.  Pontomedullary  junction  (PMJ)  detection  results on  T2w  and  T1w  testing
datasets. Recall and precision evaluated the ability of the proposed method to automatically
detect the presence of the PMJ in the MRI volumes, referred to as True Positive volumes
(TP). The signed distance error measures the distance between the predicted and the true PMJ
position along the (S-I) axis.

3.3. Proof of concept: application to SC segmentation
Automatic SC segmentation tasks remain a challenging problem on a variety of MRI

data  (De Leener et al., 2016), mainly due to the difficulty to robustly detect the SC. This
localization is often the first step of automatic SC segmentation pipelines. Hence, as a proof
of  concept  of  OptiC’s  application,  we  used  OptiC  to  initialize  a  publicly  available  SC
segmentation method, PropSeg  (De Leener et al., 2015). Figure 8 compared the results of
PropSeg when initialized with the default method (called “Hough+PropSeg”) and with the
SC centerline  provided  by OptiC  (called  “OptiC+PropSeg”).  Dice  coefficients  calculated

https://paperpile.com/c/AYlxlb/oMRq
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between the  predicted  and the  ground-truth  segmentations  were  0.87  ± 0.14 when using
OptiC initialization versus 0.44 ± 0.43 when using the default initialization (averaged across
contrasts n=644, Wilcoxon signed-rank test p-value<0.01). OptiC was particularly valuable in
pathological cases with a Dice coefficient of 0.84 ± 0.14 versus 0.36 ± 0.41 when using the
default  initialization  (averaged  across  contrasts  n=259,  Wilcoxon  signed-rank  test  p-
value<0.01).

The “OptiC+PropSeg” results for T2w and T1w datasets were obtained by using the
centerline automatically cropped at the PMJ position. This additional post-processing slightly
improved the Dice coefficient of segmentations on MRI volumes with PMJ sections: Dice
coefficients  were  0.89  ±  0.13  without  cropping  versus  0.90  ±  0.11  with  PMJ  cropping
(averaged across contrasts n=183).

Moreover, the above results were obtained efficiently when using OptiC, 0.41 ± 0.46
seconds per 2D axial slice (including reading/writing tasks, on an iMac i7 4-cores 3.4 GHz
8Gb  RAM)  versus  8.05  ±  82.90  seconds  without  OptiC  initialization  (averaged  across
contrasts  n=644,  Wilcoxon  signed-rank  test  p-value<0.01).  Note  that,  OptiC  centerline
extraction is not time consuming since it is achieved in 10.00±6.98 milliseconds per 2D axial
slice (averaged across contrasts n=644).

Figure  8.  Results  of  the  spinal  cord  (SC)  segmentation in  terms  of  Dice  coefficients
between the ground-truth and predicted SC segmentation. For each metric, the best value is
indicated on green in the y-axis. Results are a comparison of PropSeg  (De Leener et al.,
2015) segmentations when centerline initialization is performed with the default method (left
distribution plots) vs. the OptiC method (right distribution plots), where each point represents
a  healthy  control  (blue)  or  patient  (red).  Each  method  was  evaluated  on  the  4  contrast
datasets: T2w, T1w, T2

*w and DWI (from left to right). The table presents the averaged metrics
per contrast for each method.
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4. Discussion

In this article, a new automatic and fast method to detect the center of the SC on MRI
data  was  presented.  The  proposed  method  is  based  on  a  supervised  machine  learning
detection  method  combined  with  a  novel  algorithm  that  efficiently  provides  the  global
solution of an optimization problem. Additionally, a new post-processing feature to detect and
correct for the PMJ landmark allows the pipeline to handle datasets with a variety of image
FOVs.

Key benefits of OptiC are (i) robustness to image artifacts (e.g. susceptibility, motion,
ghosting,  chemical  shift,  blurring,  Gibbs)  thanks  to  the sophisticated  normalization HOG
strategy (Dalal and Triggs, 2005), (ii) respect for anatomical cord continuity as a result of the
regularization along the (S-I) axis, (iii) robustness of curve extraction ensured by the finding
of the global minimum  (iv) fast computation time by reason of a linear complexity with the
number  of  voxels.  Further  efforts  to  extend  our  results  might  consider  the  use  of  more
sophisticated object detection classifier, such as Convolutional Neural Networks (Long et al.,
2015; Ronneberger et al., 2015), and/or other engineering features, such as SURF features
(Bay et al., 2008/6).

The  hyperparameter  study  shows  that  training  the  model  with  only  one  image
provides good results. It suggests the possibility to fastly and easily create a new model if
needed (e.g. adapted to a new contrast or to a specific pathology) without requiring a large
amount of training 3D images.  Rotation augmentation on the training data  did not  prove
useful to detect the SC, even if HOG features are not inherently rotation invariant. This can
probably be explained by the setting of a common image orientation in the preprocessing
steps. The regularization coefficient optimization suggests that the solving of the optimization
problem ( λ ' ≠ 0 ) provides significant improvements compared to the SC localization map
output by the classifier ( λ '=0 ).

This study evaluated the performance of the OptiC method to automatically detect the
SC on a variety of MRI data and to provide a reliable SC centerline. OptiC was validated on a
large multi-center dataset with heterogeneous contrast, resolution, FOVs. Both accuracy and
robustness of the method have been shown, even on challenging pathological  cases  with
hyperintense lesions  or cord deformations,  such as in  3D images from patients with MS
(n=79) or DCM (n=63): the averaged MSE from patients was 1.08mm vs.  0.97mm from
controls. The robustness of the proposed method provides a proof-of-concept to allow more
robust automatic analysis on pathological cases with clinical applications.

The automatic detection of the PMJ allows the extraction of a SC centerline restricted
to SC regions even on MRI volumes that include the brain. Other anatomical structures such
as  the top of C1 vertebra or  the bottom of  the medulla  oblongata might  also have been
appropriate  to  separate  the  brain  and  SC  regions,  but  these  structures  are  much  more
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challenging to label consistently and to detect automatically. The straightening of the SC is a
necessary step to robustly detect the PMJ, however, the computation of the warping fields is
time consuming. Validation results demonstrate the precision of the PMJ detection method
(low rate of FP detections) and its accuracy (<1cm below the PMJ on average). Note that, the
suggested separation position is situated on average within the medulla oblongata, below the
other (more superior) brain regions. Notably, its benefit for SC segmentation tasks was shown
by slightly improving the Dice coefficient of the segmentation. Therefore, delineating the SC
below  the  medulla  oblongata  would  have  benefits  when  integrated  on  fully  automatic
pipelines.

This paper shows the benefits of the OptiC centerline to initialize a state-of-the-art
automatic SC segmentation technique (De Leener et al., 2015). Automatic detection of the SC
has also recently been proposed to improve B0 field correction in targeted optimization of
shim currents (Johanna Vannesjo et al., 2017; Topfer et al., 2016) to adapt the shimming to
the  exact  position  of  the  SC  in  T2*-w  images.  Other  applications,  such  as  template
registration or shape analysis, could also benefit from this method.

https://paperpile.com/c/AYlxlb/h9aV+yOsI
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5. Conclusion
SC centerline detection is a key step to initialize fully automatic pipelines in various

applications  such  as  SC  segmentation,  shape  analysis,  template  registration  or  B0  field
correction. In this paper, a fully automated method for localizing the SC from MRI data was
presented,  extensively validated on a large multi-center heterogeneously acquired datasets
with  a  large  variety  of  pathologies  and successfully  compared with a  state-of-the-art  SC
localization technique. The proposed SC centerline detection method is freely available as
part of the Spinal Cord Toolbox: http://sourceforge.net/projects/spinalcordtoolbox/.

http://sourceforge.net/projects/spinalcordtoolbox/
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