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REGRESSION WITH NON COMPACTLY SUPPORTED BASES

F. COMTE AND V. GENON-CATALOT

Abstract. This paper is about nonparametric regression function estimation, first in
the independent setting and in a second stage, in the context of an autoregressive model
or of discrete time observation of a diffusion process, both settings corresponding to
dependent variables. Our estimator is a one step projection estimator obtained by least-
squares contrast minimization. The specificity of our work is to consider a new model
selection procedure including a cutoff for the underlying matrix inversion, and to provide
theoretical risk bounds that apply to non compactly supported bases, a case which was
specifically excluded of all previous results.

January 23, 2018

1. Introduction

Consider observations (Xi, Yi)1≤i≤n drawn from the regression model

(1) Yi = b(Xi) + εi, E(εi) = 0, Var(εi) = σ2
ε , i = 1, . . . , n.

The random design variables (Xi)1≤i≤n are real-valued, independent and identically dis-
tributed (i.i.d.) with common density denoted by f , the noise variables (εi)1≤i≤n are
i.i.d. real-valued and the two sequences are independent. The problem is to estimate the
function b(.) : R→ R from observations (Xi, Yi)1≤i≤n.
Classical nonparametric estimation strategies are of two types. First, Nadaraya (1964)

and Watson (1964) methods rely on quotient estimators of type b̂ = b̂f/f̂ , where b̂f and

f̂ are projection or kernel estimators of bf and f . Those methods are popular, especially
in the kernel setting. However, they require the knowledge or the estimation of f (see
Efromovich (1999), Tsybakov (2009)) and in the latter case, the choice of two smoothing
parameters.
The second method, proposed by Birgé and Massart (1998), Barron et al. (1999), and
improved by Baraud (2000, 2002), for fixed and random design, is based on a least squares
contrast, analogous to the one used for parametric linear regression:

1

n

n∑
i=1

[Yi − t(Xi)]
2 ,

minimized over functions t that admit a finite development over some orthonormal A-
supported L2(A, dx) basis, A ⊂ R. In other words, this is a projection method where
the coefficients of the approximate function in the finite basis play the same role as the
regression parameters in the linear model. This strategy solves part of the drawbacks of
the first one. Indeed, it provides directly an estimator of b restricted to the set A, a unique
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2 F. COMTE AND V. GENON-CATALOT

model selection procedure is required and has been proved to realize an adequate squared
bias-variance compromise under weak moment conditions on the noise (see Baraud, 2000,
2002). Lastly, there is no quotient to make, and the rate only depends on the regularity
index of b, while in the quotient method it also generally depends on the one of f . All
these arguments are very favorable to the second strategy.
Noting that the least squares contrast can be rewritten

(2) γn(t) =
1

n

n∑
i=1

[t2(Xi)− 2Yit(Xi)],

it can be seen that, for a given function t in a finite dimensional linear space included in
L2(A, dx), three norms must be compared: the integral L2(A, dx)-norm, ‖t‖2A =

∫
A t

2(x)dx,
associated with the basis, the empirical norm involved in the definition of the contrast,
‖t‖2n = n−1

∑n
i=1 t

2(Xi), and its expectation, corresponding to a L2(A, f(x)dx)-norm,
‖t‖2f =

∫
A t

2(x)f(x)dx. Due to this difficulty, only compactly supported bases have been
considered i.e. the set A on which estimation is done is generally assumed to be compact.
This allows to assume that f is lower bounded on A, a condition which would not hold on
non compact A. Then, if f is upper and lower bounded on A, the L2(A, f(x)dx) and the
L2(A, dx) norms are equivalent and this makes the problem simpler.
Our aim in this work is to obtain theoretical results in regression function estimation by
a projection method in the case of non compact support A of the basis. Indeed, several
bases, such as the Laguerre (A = R+) or the Hermite (A = R) basis, are not compactly
supported. Nonparametric density estimation by a projection method on these bases has
been the subject of several recent contributions (see e.g. Comte et al. 2015, Comte and
Genon-Catalot, 2015, 2017, Belomestny et al. 2016), showing that theses bases are conve-
nient and easy to handle. In this paper, we propose a new definition of the model selection
procedure for regression function estimation on a set A whether compact or not and prove
that it reaches a bias-variance tradeoff in a way that generalizes part of Baraud’s (2002)
theorems to the non compact case. We also extend the method to dependent models,
namely autoregressive models in geometric β-mixing framework (extension of Baraud et
al. (2001a)) and discretely observed diffusion models (extension of Comte et al. (2007)).
The plan of the paper is the following. We first define the estimator and check that the
most elementary risk bound holds without any basis or support constraint. Then we pro-
pose a model selection strategy on a random collection of models taking into account a
possible inversion problem of the matrix allowing a unique definition of the estimator. A
risk bound for the adaptive estimator is provided: it generalizes existing results to non
compactly supported bases. In Section 3, we show how to recover previous results for com-
pactly supported bases, while the Hermite and Laguerre bases are considered in Section
4. Lastly, Section 5 is devoted to dependent contexts: discrete time autoregressive and
discrete observation of a diffusion process. Most proofs are gathered in Section 7 while
Section 8 gives theoretical tools used along the proofs. Section 6 gives some concluding
remarks. An appendix is devoted to numerical illustrations.
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2. Regression model

Recall that f denotes the density of X1. In the following, ‖.‖2,p denotes the euclidean
norm in Rp. For A ⊂ R, ‖.‖A denotes the integral norm in L2(A, dx), ‖.‖f the integral
norm in L2(A, f(x)dx) and ‖.‖∞ the supremum norm on A.

2.1. Definition of the projection estimator. Consider model (1). Let A ⊂ R and let
(ϕj , j = 0, . . . ,m − 1) be an orthonormal system of A-supported functions belonging to
L2(A, dx). Define Sm = span(ϕ0, . . . , ϕm−1), the linear space spanned by (ϕ0, . . . , ϕm−1).
Note that the ϕj ’s may depend on m but for simplicity, we omit this in the notation.
We assume that for all j,

∫
ϕ2
j (x)f(x)dx < +∞ so that Sm ⊂ L2(A, f(x)dx) and define a

projection estimator of the regression function b on A, by

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is defined in (2). Clearly, γn(t) = n−1
∑n

i=1[Yi − t(Xi)]
2 − n−1

∑n
i=1 Y

2
i , so

that we recognize a classical least squares contrast. For functions s, t, we set

‖t‖2n =
1

n

n∑
i=1

t2(Xi) and 〈s, t〉n :=
1

n

n∑
i=1

s(Xi)t(Xi),

and write

〈~u, t〉n =
1

n

n∑
i=1

uit(Xi)

when ~u is the vector (u1, . . . , un)′, ~u ′ denotes the transpose of ~u and t is a function. We
introduce the classical matrices

Φ̂m = (ϕj(Xi))1≤i≤n,0≤j≤m−1,

and

(3) Ψ̂m = (〈ϕj , ϕk〉n)
0≤j,k≤m−1

=
1

n
Φ̂′mΦ̂m, Ψm =

(∫
ϕj(x)ϕk(x)f(x)dx

)
0≤j,k≤m−1

= E(Ψ̂m).

We set ~Y = (Y1, . . . , Yn)′, and define ~̂a(m) = (â
(m)
0 , . . . , â

(m)
m−1)′ as the m-dimensional vector

such that b̂m =
∑m−1

j=0 â
(m)
j ϕj . Classical computations give, assuming that Ψ̂m is invertible,

that

(4) b̂m =
m−1∑
j=0

â
(m)
j ϕj , with ~̂a(m) = (Φ̂′mΦ̂m)−1Φ̂′m~Y =

1

n
Ψ̂−1
m Φ̂′m~Y .

2.2. Risk bound on a fixed space. We now evaluate the risk of the estimator, without
any constraint on the basis support.

Proposition 2.1. Let (Xi, Yi)1≤i≤n be observations drawn from model (1) and denote by

bA = b1A. Assume that bA ∈ L2(A, f(x)dx) and that Ψ̂m is invertible. Consider the least

squares estimator b̂m of b, given by (4). Then

(5) E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm

[∫
(bA − t)2(x)f(x)dx

]
+ σ2

ε

m

n
,

where f denotes the common density of the Xi’s.



4 F. COMTE AND V. GENON-CATALOT

Proof of Proposition 2.1. Let us denote by Πm the orthogonal projection (for the

scalar product of Rn) on the sub-space
{(
t(X1), . . . ,t(Xn)

)′
, t∈ Sm

}
of Rn and by Πmb the

projection of the vector (b(X1), . . . , b(Xn))′. The following equality holds,

(6) ‖b̂m − bA‖2n = ‖Πmb− bA‖2n + ‖b̂m −Πmb‖2n = inf
t∈Sm

‖t− bA‖2n + ‖b̂m −Πmb‖2n

By taking expectation, we obtain

(7) E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm

∫
(t− bA)2(x)f(x)dx+ E

[
‖b̂m −Πmb‖2n

]
.

Now we have:

Lemma 2.1. Under the assumptions of Proposition 2.1,

E
[
‖b̂m −Πmb‖2n

]
= σ2

ε

m

n
.

The result of the previous Lemma can be plugged in (7), thus we obtain Proposition 2.1. 2

The result above is general in the sense that it holds for any basis support, whether com-
pact or not. Moreover, let us stress that Lemma 2.1 is an equality: the variance term is
exactly equal to σ2

εm/n, and this does not depend on the basis.

It is not obvious from (5) that the bias term is small when m is large. The following
Lemma gives assumptions ensuring that the bias tends to zero when m grows to infinity.

Lemma 2.2. Assume that (ϕj)j≥0 is an orthonormal basis of L2(A, dx) such that, for all
j ≥ 0,

∫
ϕ2
j (x)f(x)dx < +∞, that f is bounded on A and that for all x ∈ A, f(x) > 0.

Then inft∈Sm
[∫

(bA − t)2(x)f(x)dx
]

tends to 0 when m tends to infinity.

The proof of Lemma 2.2 is elementary and relies on the following remarks. Note that∫
(bA−t)2(x)f(x)dx = ‖bA−t‖2f = ‖bA

√
f−t
√
f‖2A. Under the assumptions of Lemma 2.2,

the system φj = ϕj
√
f , j ≥ 0 is a complete family of L2(A, dx). Indeed, if g ∈ L2(A, dx),∫

gφj = 0, ∀j ≥ 0 means that
∫
ϕj(g
√
f) = 0 ∀j ≥ 0 and implies g = 0 using our

assumptions.
As a consequence, the bias is getting small when m grows, but the variance increases: a
compromise has to be found, if m can be chosen.

Remark 2.1. • Note that the result of Proposition 2.1 holds for any sequence (Xi)1≤i≤n
provided that it is independent of (εi)1≤i≤n with i.i.d. centered εi.
• Heteroskedastic regression. Consider the model

(8) Yi = b(Xi) + σ(Xi)εi, Var(ε1) = E(ε2
1) = 1

and the same contrast. Thus the estimator on Sm is still given by (4). Then we can prove
that under the assumptions of Proposition 2.1,

E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm

[∫
(bA − t)2(x)f(x)dx

]
+ E

[
max

1≤i≤n
σ2(Xi)

]m
n

≤ inf
t∈Sm

[∫
(bA − t)2(x)f(x)dx

]
+ c2m

n
,(9)

if for all x, σ2(x) ≤ c2.
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2.3. Adaptive procedure and risk bound. We consider now a collection of nested
spaces Sm (that is Sm ⊂ Sm′ for m ≤ m′) such that, for each m, the basis (ϕ0, . . . , ϕm−1)
of Sm satisfies

(10) ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm for c2
ϕ > 0 a constant.

For M a matrix, we denote by ‖M‖op the operator norm defined as the square root of
the largest eigenvalue of MM ′. If M is symmetric positive definite, it coincides with its
largest eigenvalue.

To select the most relevant space Sm, we proceed by choosing

(11) m̂ = arg min
m∈M̂n

{
−‖b̂m‖2n + κσ2

ε

m

n

}
where κ is a numerical constant, and M̂n is a collection of models defined by
(12)

M̂n =

{
m ∈ {1, 2, . . . , n},m(‖Ψ̂−1

m ‖2op ∨ 1) ≤ 4c
n

log(n)

}
, with c =

(
6 ∧ 1

‖f‖∞

)
1

48 c2
ϕ

.

In practice, we set b̂Tm = b̂m if m‖Ψ̂−1
m ‖2op ≤ 4cn/ log(n), and b̂Tm = 0 otherwise. A

theoretical counterpart of M̂n is useful:

(13) Mn =

{
m ∈ {1, 2, . . . , n},m (‖Ψ−1

m ‖2op ∨ 1) ≤ c
n

log(n)

}
,

where c is defined in (12).
To justify (11), let us explain how each term is related to the bias or the variance obtained

in Proposition 2.1. The squared bias term is equal to ‖bA − bfm‖2f = ‖bA‖2f − ‖b
f
m‖2f where

bfm is the L2(A, f(x)dx)-orthogonal projection of b on Sm. The first term ‖bA‖2f is unknown

but does not depend on m; on the other hand, ‖bfm‖2f = E[‖bfm‖2n]. Thus, the quantity

−‖b̂m‖2n approximates the squared bias, up to an additive constant, while σ2
εm/n has the

variance order. The procedure aims at performing an automatic bias-variance tradeoff.

Theorem 2.1. Let (Xi, Yi)1≤i≤n be observations from model (1). Assume that:

• for each m, the basis of Sm satisfies (10).
• ‖f‖∞ < +∞,
• E(ε6

1) < +∞ and E
[
b4(X1)

]
< +∞.

Then, there exists a numerical constant κ0 such that for κ ≥ κ0, we have

E
[
‖b̂m̂ − bA‖2n

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + σ2
ε

m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.

Remark 2.2. The constant c in the definition of M̂n depends on ‖f‖∞ which is unknown.
In practice, this quantity has to be replaced by a rough estimator. Otherwise, we can replace

the bound 4cn/ log(n) by n/ log2(n) in the definitions of the sets M̂n,Mn.
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The constant σ2
ε is also generally unknown, and must be replaced by an estimator. We

simply propose to use the residual least-squares estimator:

σ̂2
ε =

1

n

n∑
i=1

(Yi − b̂m∗(Xi))
2

where m∗ is an arbitrarily chosen dimension, which must be neither too large, nor too
small; for instance m∗ = b

√
nc. See e.g. Baraud (2000), section 6.

A bound for the more classical L2-risk can be deduced from Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, there exists a numerical constant
κ0 such that for κ ≥ κ0, we have

E
[
‖b̂m̂ − bA‖2f

]
≤ C1 inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + σ2
ε

m

n

)
+
C ′1
n

where C1 is a numerical constant and C ′1 is a constant depending on f , b, σε.

The key tool for proving Theorem 2.1 is Proposition 2.2 which relies on a matricial Bern-
stein deviation inequality proved in Tropp (2015). The result encompasses all possible
classical bases, whether compactly supported or not.

Proposition 2.2. Assume that X1, . . . , Xn are i.i.d. with common density f such that

‖f‖∞ < ∞. Let Ψ̂m be the m × m matrix defined by Equation (3). Assume that
(ϕj)0≤j≤m−1 satisfies (10). Then for all u > 0

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 2m exp

(
− nu2/2

c2
ϕm (‖f‖∞ + u/3)

)
.

3. Case of compact A and compactly supported bases

In this section, we show that Theorem 2.1 contains and improves classical results when
the bases are regular and compactly supported, a case considered by most authors.

Let us give first examples of such bases; for simplicity, we take A = [0, 1]. Classical com-
pactly supported bases are: histograms ϕj(x) =

√
m1[j/m,(j+1)/m[(x), for j = 0, . . . ,m−1;

piecewise polynomials with degree r (rescaled Legendre basis up to degree r on each subin-
terval [j/mr, (j+1)/mr[, with m = (r+1)mr); compactly supported wavelets; trigonomet-
ric basis with odd dimension m, ϕ0(x) = 1[0,1](x) and ϕ2j−1(x) =

√
2 cos(2πjx)1[0,1](x),

and ϕ2j(x) =
√

2 sin(2πjx)1[0,1](x) for j = 1, . . . , (m− 1)/2.

All these collections satisfy (10) with c2
ϕ = 1 for histograms and trigonometric basis,

c2
ϕ = r + 1 for piecewise polynomials with degree r. The trigonometric spaces are nested;

for histograms and piecewise polynomials, the models are nested if the subdivisions are
diadic (m = 2k for increasing values of k).

When the basis has compact support A, one can assume that f is lower bounded on A,
by say f0. This assumption is commonly used in papers on nonparametric regression.

It implies that, for ~u = (u0, . . . , um−1)′ a vector of Rm,

(14) ~u ′Ψm ~u =

∫
A

m−1∑
j=0

ujϕj(x)

2

f(x)dx ≥ f0

∫
A

m−1∑
j=0

ujϕj(x)

2

dx = f0‖~u‖22,m.
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Therefore ‖Ψ−1
m ‖op ≤ 1/f0 andMn = {m,m ≤ c′n/ log(n)}. The unknown matrix Ψm no

more appears in the definition of Mn. Therefore, there is no need to consider M̂n and
m̂ is chosen in Mn = {m,m ≤ c′n/ log(n)}. The results of Theorem 2.1 and Corollary
2.1 in this case correspond to case (K1) of Theorem 1.1 (see also inequality (15)) in Ba-
raud (2002, p.132), under similar moment condition on the noise. Note that our constraint
m ≤ c′n/ log(n) is better than the one imposed in Baraud (the constraint in Baraud (2002)

for a non localized basis such as the trigonometric basis is m ≤ c
√
n/ log3(n) and thus

stronger).

Remark 3.1. If bA ∈ L2(A, dx) and f is upper bounded by f1, ∀t ∈ Sm, ‖bA − t‖2f ≤
f1‖bA − t‖2A and thus

(15) inf
t∈Sm

‖bA − t‖2f ≤ f1‖bA − bm‖2A

where bm is the L2(dx)-orthogonal projection of bA on Sm. Now, if bA belongs to a Besov
ball Bα,2,∞(A,R) (see De Vore and Lorentz (1993), or Baraud (2002, section 2)), then we

get that inft∈Sm ‖bA − t‖2f . m−2α. So, choosing mopt = n1/2α+1, we recover the optimal

classical rate of convergence (namely a rate of order n−2α/(2α+1)) for the risk bound of the
adaptive estimator.

4. Case of non compact A and non compactly supported bases

In the case of non compact A, we can not assume that f is lower bounded on A, and
therefore we can not get rid of the matrix Ψm. Our contribution is to take into account

and enlight the role of Ψm and to introduce a new selection procedure involving M̂n.
We illustrate our general result through two concrete examples of non compactly sup-

ported bases: the Laguerre basis on A = R+ and the Hermite basis on A = R. See e.g.
Comte and Genon-Catalot (2017) for density estimation by projection using these bases.
We assume in this section that bA ∈ L2(A, f(x)dx) and that f is A-supported, with
f(x) > 0, ∀x ∈ A, and upper bounded. This means that E(b2A(X1)) < +∞, which is not a
strong assumption. We do not want to assume that bA ∈ L2(A, dx), which would exclude
for instance linear or polynomial functions.
• Laguerre basis, A = R+. Consider the Laguerre polynomials (Lj) and the Laguerre

functions (`j) given by

(16) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+), and is such
that (see Abramowitz and Stegun (1964)):

(17) ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2.

Clearly, the collection of models (Sm = span{`0, . . . , `m−1}) is nested, and (17) implies
that this basis satisfies the general assumption (10) with c2

ϕ = 2. For a function θ ∈
L2(R+, dx), we can develop θ on the Laguerre basis with: θ =

∑
j≥0 aj(θ)`j , aj(θ) =

〈θ, `j〉 =
∫
θ(x)`j(x)dx.
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• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are
given, for j ≥ 0, by:

(18) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). When a function θ be-
longs to L2(R, dx), it can be developed in the Hermite basis θ =

∑
j≥0 aj(θ)hj where

aj(θ) =
∫
R θ(x)hj(x)dx = 〈θ, hj〉. The infinite norm of hj satisfies (see Abramowitz and

Stegun (1964), Szegö (1959) p.242):

(19) ‖hj‖∞ ≤ Φ0, Φ0 ' 1, 086435/π1/4 ' 0.8160,

so that the Hermite basis satisfies the general assumption (10) with c2
ϕ = Φ2

0. The collec-
tion of models is also clearly nested.

Hereafter, we use the notation ϕj to denote `j in the Laguerre case and hj in the Hermite
case and denote by Sm = span(ϕ0, ϕ1, . . . , ϕm−1) the linear space generated by the m

functions ϕ0, . . . , ϕm−1 and by fm =
∑m−1

j=0 aj(f)ϕj the orthogonal projection of f on Sm.

Then aj(f) = 〈f, ϕj〉 will mean the integral of f ϕj either on R or on R+.
As the bases functions are bounded, the terms

∫
ϕ2
jf are finite. Moreover, the assumptions

of Lemma 2.2 hold, so that the bias term in Proposition 2.1 tends to zero as m grows to
infinity.

The matrices Ψm and Ψ̂m in these bases have specific properties.

Lemma 4.1. For all m ∈ N, Ψm is invertible, and for all m ≤ n, Ψ̂m is invertible.

Proof ol Lemma 4.1. Using (14), for all ~u = (u0, . . . , um−1)′ ∈ Rm \ {~0}, for t(x) =∑m−1
j=0 ujϕj(x), ~u ′Ψm ~u = ‖t‖2A > 0. Moreover ~u ′ Ψ̂m ~u = ‖t‖2n ≥ 0 . Thus ‖t‖n = 0 ⇒

t(Xi) = 0 for i = 1, . . . , n. As t(x)w(x) is a polynomial with degree m−1 where w(x) = ex

in the Laguerre case and w(x) = ex
2/2 in the Hermite case, for m ≤ n, we obtain that

t ≡ 0. This implies ~u = ~0. 2

Proposition 4.1. Assume that infa≤x≤b f(x) > 0 for some interval [a, b] in the Hermite
case and with 0 < a < b in the Laguerre case. Then there exists a constant c? such that,
for all m,

(20) ‖Ψ−1
m ‖2op ≥ c?m.

In the Laguerre and Hermite cases, Inequality (20) clearly implies that ‖Ψ−1
m ‖op cannot

be uniformly bounded in m contrary to the case of compactly supported bases. This
means that the constraint in the definition (13) of Mn leads to restrictions on the values
m that can be considered in the upper risk bound of Theorem 2.1. This is illustrated by
the next proposition.

Proposition 4.2. Consider the Laguerre or the Hermite basis. Assume that f(x) ≥
c/(1 + x)k for x ≥ 0 in the Laguerre case; or f(x) ≥ c/(1 + x2)k for x ∈ R in the Hermite
case. Then for m large enough, ‖Ψ−1

m ‖op ≤ Cmk.

Discussion. • The inequality given in Proposition 4.2 seems to give the precise order
of ‖Ψ−1

m ‖op. We illustrate it for the Laguerre basis. Indeed, for the density fk(x) =
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Figure 1. Laguerre basis. Left: log(m) 7→ log(‖Ψ−1
m ‖op) and density of

X given by fk(x) = (k− 1)/(1 + x)k1x≥0 . Right: m 7→ log(‖Ψ−1
m ‖op), and

density of X given by fk(x) = (k − 1)e−x/(k−1)1x≥0. In both cases: k = 2
(blue x marks), k = 3 (red solid), k = 4 (yellow dashdots) and k = 5
(purple dashed).

k 2 3 4 5

b̂1 2.09 3.16 4.21 5.58

b̂2 0.68 1.44 2.05 2.67

b̂2(k)/b̂2(2) 1.00 2.11 3.02 3.92

Table 1. Estimated slope regression coefficients, b̂1 for left curves and b̂2
for right curves, of Figure 1.

(k−1)/(1+x)k1x≥0, we have computed a Monte-Carlo approximation of ‖Ψ−1
m ‖op via 500

samples of size n = 1000 and plot in Figure 1 log(m) 7→ log(‖Ψ−1
m ‖op) for m = 1, . . . , 16.

Then we observe that these curves are linear and with slope approximately equal to k
(see Table 1). For the density (k− 1)e−x/(k−1)1x≥0, from the proof of Proposition 4.2, we
conjecture that m 7→ log(‖Ψ−1

m ‖op) is linear with slope proportional to 1/k; this is con-
firmed by Figure 1 and the last two lines of Table 1.Figure 1 also shows that the numerical

values of ‖Ψ−1
m ‖op and thus of ‖Ψ̂m

−1
‖op are very quickly increasing and thus few elements

are considered in M̂n. Nevertheless, the selected m̂ among these values provides a very
satisfactory estimator of b. The procedure is quick and easy. All this is more detailed in
a supplementary material.

• If f is as in Proposition 4.2, the values m in the setMn are restricted by the constraint
m2k+1 . n/ log(n). This has consequences. Consider the case A = R+ and the Laguerre
basis. Assume that bA belongs to the Sobolev-Laguerre ball with regularity index s:

W s(R) = {h ∈ L2(R+, dx),
∑
j≥0

aj(h)js ≤ R},
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with aj(h) = 〈h, `j〉, and that f is upper bounded and as in Proposition 4.2. Then,
inft∈Sm ‖bA − t‖2f . m−s (see (15) and Remark 3.1 for the analogous computation on a

Besov ball). The best compromise between the bias term m−s and the variance term m/n

is obtained for mopt = n1/(s+1). However, the resulting optimal rate of order n−s/(s+1)

cannot be reached by the adaptive estimator unless m2k+1
opt ≤ n/ log(n). This imposes

s > 2k. In a Sobolev-Laguerre ball, the index s is linked with regularity properties of
functions (see Section 7 of Comte and Genon-Catalot (2015) and Section 7.2 of Belomestny
et al. (2016). Thus, the optimal rate cannot be attained by the adaptive estimator unless
the function bA has regularity s > 2k.
If bA is a combination of Γ functions, then the bias term inft∈Sm ‖bA− t‖2f is much smaller

and the rate log(n)/n can be reached by the adaptive estimator.
In density estimation using projection methods on Laguerre or Hermite bases, the variance
term in the risk bound of projection estimators has order

√
m/n so that the optimal rate

on a Sobolev-Laguerre or Sobolev-Hermite ball for the estimators risk is n−2s/(2+1). It
seems that, in the regression setting, we cannot have such a gain.
Analogous considerations hold with the Hermite basis.

5. Dependent models.

In this section, we extend the previous results to dependent models, such as autore-
gressive or diffusion models. The general method is the same as in the proof of Theorem
3.1 in Baraud et al. (2001b) for autoregressive models and in the proof of Theorem 1
in Comte et al. (2007), both relying in a martingale deviation inequality and a chaining
method. The main difficulty here concerns the extension of the deviation inequality stated
in Proposition 2.2.

5.1. Mixing deviation inequality. The deviation inequality of Proposition 2.2 can be
extended to the mixing case in the specific case of Laguerre and Hermite bases as follows.

Proposition 5.1. Assume that (Xi)i is a strictly stationary and geometrically β-mixing
process (i.e. the β-mixing coefficients (βk)k satisfy βk ≤ ce−θk for some constants c >
0, θ > 0), with marginal density f and that

• E(X
8/3
1 ) < +∞ in the Hermite basis,

• E(1/X2
1 ) < +∞ in the Laguerre basis.

For Ψ̂m defined by Equation (3), then for all u > 0

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 2m exp

(
− nu2/2

am(1 + log(n)u)

)
+

c

n4
,

where a is a constant depending on the mixing coefficients and the moments of the as-
sumptions.

5.2. Autoregressive model. Let us consider the autoregression model:

(21) Xi+1 = b(Xi) + εi+1, (εi)i≥0 i.i.d., centered with variance σ2
ε .

We assume that X0 is independent of the sequence (εi)i≥0.
Conditions on b(.) and the noise density ensuring that the model (21) admits a strictly

stationary and geometrically β-mixing solution are given in e.g. Doukhan (1994) (Th. 7
p.102), and recalled in Baraud et al. (2001b), section 5.2.
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The contrast and the collection of estimators are then defined by

b̂m = arg min
t∈Sm

γ̄n(t), with γ̄n(t) =
1

n

n∑
i=1

t2(Xi)− 2Xi+1t(Xi).

The elementary computation of Proposition 2.1 can not be generalized here, but the

general strategy for selecting m given by (11) can be extended. The sets M̂n, Mn are
now given by

(22) M̂n =

{
m ∈ {1, 2, . . . , n},m(‖Ψ̂−1

m ‖2op ∨ 1) ≤ c
n

log2(n)

}
,

(23) Mn =

{
m ∈ {1, 2, . . . , n},m (‖Ψ−1

m ‖2op ∨m) ≤ c′
n

log2(n)

}
,

with c, c′ constants depending on a (the constant appearing in the bound of Proposition
5.1). Then we can generalize to the result of Theorem 2.1, thanks to Proposition 5.1.

Theorem 5.1. Let (Xi)1≤i≤n+1 be n+ 1 observations extracted from a strictly stationary
and geometrically β-mixing process obtained from model (21), with marginal density f .

We consider the Hermite basis if the Xi are real-valued and E(X
8/3
1 ) < +∞, and the

Laguerre basis if the (Xi) are nonnegative and E(1/X2
1 ) < +∞. We also assume that the

(εi)i are i.i.d. centred random variables with E(ε6
1) < +∞). Then, there exists a numerical

constant κ0 such that for κ ≥ κ0, we have

E
[
‖b̂m̂ − bA‖2n

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + σ2
ε

m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.

5.3. Diffusion processes. Consider now the framework of observations with sampling
interval ∆, (Xi∆)1≤i≤n, from the diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt, X0 ∼ η.
Assumptions ensuring that the process (Xi∆)i≥0 is strictly stationary (with stationary
density f) and geometrically β-mixing are given in e.g. Comte et al. (2007), Section 2.1
p.516. Defining

Yi∆ =
X(i+1)∆ −Xi∆

∆
, Zi∆ =

1

∆

∫ (i+1)∆

i∆
σ(Xs)dWs and Ri∆ =

1

∆

∫ (i+1)∆

i∆
σ(Xs)dWs,

the approximate regression equation holds:

Yi∆ = b(Xi∆) + Zi∆ +Ri∆,

where Zi∆ plays the role of the noise and Ri∆ is an additional residual term to take into
account. We set

b̂m = arg min
t∈Sm

[
1

n

n∑
i=1

t2(Xi∆)− 2Yi∆t(Xi∆)

]
and obtain an estimator of b in the model.

Assuming that ∆ = ∆n tends to zero while n∆n tends to infinity, we can generalize the
result of Theorem 1 in Comte et al. (2007) into a formulation similar to Theorem 5.1 with
n∆ replacing n.
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6. Concluding remarks

In this paper, we study nonparametric regression function estimation by a projection
method which was first proposed by Birgé and Massart (1998) and Barron et al. (1999).
Compared with the popular Nadaraya-Watson approach, the projection method has sev-
eral advantages.
In the Nadaraya-Watson method, one estimates b by a quotient of estimators, namely

b̂ = b̂f/f̂ . Dividing by f̂ requires a cutoff or a threshold to avoid too small values in
the denominator; determining its level is difficult. It is not clear if bandwidth or model
selection must be performed separately or simultaneously for the numerator and the de-
nominator. The rate of the final estimator of b corresponds to the worst rate of the two
estimators; in particular, it depends on the regularity index of b, but also on the one of f .
Therefore, the rate can correspond to the one associated to the regularity index of b, if f
is more regular than b, but it is deteriorated if f is less regular than b.
On the other hand, there is no support constraint for this estimation method.
In the projection method used here, the drawbacks listed above do not perturb the es-
timation except that the unknown function b is estimated in a restricted domain A. Up
to now, this set was always assumed to be compact. In the present paper, we show how
to eliminate the support constraint by introducing a new selection procedure where the
dimension of the projection space is chosen in a random set. The procedure can be applied
to non compactly supported bases such as the Laguerre or Hermite bases.

Our method can be readily extended to the case where the Yi are not observed but sub-
ject to multiplicative noise. More precisely, suppose that the observations are (Zi, Xi)1≤i≤n
with

Zi = YiUi, E(Ui) = 1, and (Yi, Xi) following model (1).

Assume also that the Ui are i.i.d, and the sequences (εi)1≤i≤n, (Xi)1≤i≤n and (Ui)1≤i≤n
are independent. In this case, if the matrix Ψ̂m is invertible, we define

b̂m = arg min
t∈Sm

[
‖t‖2n −

2

n

n∑
i=1

Zit(Xi)

]
.

Note that the model can be written Zi = b(Xi) + ηi with ηi = b(Xi)(Ui − 1) + εiUi and is
thus of the same type as (8). Thus, we can prove

E
[
‖b̂m − b‖2n

]
≤

∫
(bm − b)2(x)f(x)dx+ 2[Var(U1)E( max

1≤i≤n
b2(Xi)) + σ2

εE(U2
1 )]

m

n
,

≤
∫

(bm − b)2(x)f(x)dx+
1

3
[
‖b‖2∞

2
+ σ2

ε ]
m

n

if b(.) is bounded.
Note that similar regression strategies have been used in other problems, for instance

survival function estimation for interval censored data (see Brunel and Comte (2009)), haz-
ard rate estimation in presence of censoring (see Plancade (2011)): our proposal for clas-
sical regression may extend to these contexts, for which it is natural to use R+-supported
bases. Indeed, the variables are lifetimes and thus nonnegative, and censoring implies that
the right-hand bound of the support is unknown and difficult to estimate; it is thus most
convenient that the Laguerre basis does not require to choose it.
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7. Proofs

7.1. Proofs of Section 2.

7.1.1. Proof of Lemma 2.1. Denote by b(X) = (b(X1), . . . , b(Xn))′ and bA(X) = (bA(X1), . . . , bA(Xn))′.
We can write

b̂m(X) = (b̂m(X1), . . . , b̂m(Xn))′ = Φ̂m
~̂a(m),

where ~̂a(m) is given by (4), and

Πmb = Φ̂m~a
(m), ~a(m) = (Φ̂′mΦ̂m)−1Φ̂′mb(X).

Now, denoting by P(X) := Φ̂m(Φ̂′mΦ̂m)−1Φ̂′m, we get

(24) ‖b̂m −Πmb‖2n = ‖P(X)~ε‖2n =
1

n
~ε′P(X)′P(X)~ε =

1

n
~ε′P(X)~ε

as P(X) is the n × n-matrix of the euclidean orthogonal projection on the subspace of
Rn generated by the vectors ϕ0(X), . . . , ϕm−1(X), where ϕj(X) = (ϕj(X1), . . . , ϕj(Xn))′.
Note that

E(‖P(X)~ε‖22,n) ≤ E(‖~ε‖22,n) < +∞.

Next, we have to compute, using that P(X) has coefficients depending on the Xi’s only,

E
[
~ε ′P(X))~ε

]
=
∑
i,j

E
[
εiεjPi,j(X)

]
= σ2

ε

n∑
i=1

E
[
Pi,i(X)

]
= σ2

εE
[
Tr(P(X))

]
,

where Tr(.) is the trace of the matrix. So, we find

Tr(P(X)) = Tr
(
(Φ̂′mΦ̂m)−1Φ̂′mΦ̂m

)
= Tr(Im) = m

where Im is the m×m identity matrix. Finally, we get

E
[
‖b̂m −Πmb‖2n

]
= σ2

ε

m

n
.

This is the result of Lemma 2.1. 2

7.1.2. Proof of Inequality (9). Let −→σε denotes the n× 1-vector with coordinates σ(Xi)εi,
i = 1, . . . , n. Equality (24) now writes

‖b̂m −Πmb‖2n = ‖P(X)−→σε‖2n =
1

n
‖P(X)−→σε‖22,n =

1

n
(−→σε)′P(X)(−→σε),

as P(X)′P(X) = P(X). Thus, we have to bound

E
[
(−→σε)′P(X)(−→σε)

]
=

∑
i,j

E
[
εiεjσ(Xi)σ(Xj)[P(X)]i,j

]
=

n∑
i=1

E
[
σ2(Xi)[P(X)]i,i

]
≤ E

[
max

1≤i≤n
σ2(Xi)Tr(P(X))

]
≤ mE

[
max

1≤i≤n
σ2(Xi)

]
,

where P(X) is defined in the proof of Lemma 2.1. Finally, we obtain (9). 2
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7.1.3. Proof of Proposition 2.2. To get the announced result, we apply a Bernstein matrix

inequality (see Theorem 8.2). Thus we write Ψ̂m as a sum of a sequence of independent
matrices

Ψ̂m =
1

n

n∑
i=1

Km(Xi), Km(Xi) = (ϕj(Xi)ϕk(Xi))0≤j,k≤m−1.

We put

(25) Sm =
1

n

n∑
i=1

Km(Xi)− E [Km(Xi)] .

• Bound on ‖Km(X1)− E [Km(X1)] ‖op/n.
We have that

‖Km(X1)− E [Km(X1)] ‖op = sup
‖~x‖2,m=1

∑
0≤j,k≤m−1

xjxk

(
[Km(X1)]j,k − E [Km(X1)]j,k

)
= sup
‖~x‖2,m=1

∑
0≤j,k≤m−1

xjxk (ϕj(X1)ϕk(X1)− E[ϕj(X1)ϕk(X1)])

= sup
‖~x‖2,m=1

m−1∑
j=0

xjϕj(X1)

2

−

m−1∑
j=0

xjE(ϕj(X1))

2 ≤ c2
ϕm.

So we get that

(26) ‖Km(X1)− E [Km(X1)] ‖op/n ≤
c2
ϕm

n
.

• Bound on ν(Sm) = ‖
∑n

i=1 E [(Km(Xi)− E [Km(Xi)])
′ (Km(Xi)− E [Km(Xi)])] ‖op/n

2.
By definition of the operator norm we have

ν(Sm) =
1

n2
sup

‖~x‖2,m=1
~x′

n∑
i=1

E
[
(Km(Xi)− E [Km(Xi)])

′ (Km(Xi)− E [Km(Xi)])
]
~x

=
1

n
sup

‖~x‖2,m=1
~x′ E

[
(Km(X1)− E [Km(X1)])′ (Km(X1)− E [Km(X1)])

]
~x

=
1

n
sup

‖~x‖2,m=1
E ‖(Km(X1)− E [Km(X1)]) ~x‖2

It yields that, for ~x′ = (x0, . . . , xm−1),

E1 := E ‖(Km(X1)− E [Km(X1)]) ~x‖2 =

m−1∑
j=0

Var

[
m−1∑
k=0

(ϕj(X1)ϕk(X1))xk

]

≤
m−1∑
j=0

E

(
m−1∑
k=0

(ϕj(X1)ϕk(X1))xk

)2

=

m−1∑
j=0

∫ (m−1∑
k=0

(ϕj(u)ϕk(u))xk

)2

f(u)du

Therefore as f is bounded,

E1 ≤ ‖f‖∞
m−1∑
j=0

∫ (m−1∑
k=0

(ϕj(u)ϕk(u))xk

)2

du ≤ ‖f‖∞c2
ϕm

m−1∑
k=0

x2
k = ‖f‖∞c2

ϕm.
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Then we get that ν(Sm) ≤
c2
ϕ‖f‖∞m

n
. Applying Theorem 8.2 gives the result of Proposi-

tion 2.2. 2

7.1.4. Proof of Theorem 2.1. Let

(27) m̂th = arg min
m∈Mn

{
−‖b̂m‖2n + κσ2

ε

m

n

}
the theoretical counterpart of m̂, whereMn is defined by (13). We first prove the following
result.

Theorem 7.1. Under the assumptions of Theorem 2.1, there exists κ0 such that for
κ ≥ κ0, we have

E
[
‖b̂m̂th − b‖2n

]
≤ C inf

m∈Mn

(∫
t∈Sm

‖t− bA‖2f + σ2
ε

m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.

Proof of Theorem 7.1. To begin with, we note that γn(â1, . . . , âm) = −‖b̂m‖2n. Indeed,

using formula (4) and Φ̂′mΦ̂m = nΨ̂m, we have

γn
(
~̂a(m)

)
=
∥∥Φ̂m

~̂a(m)
∥∥2

n
− 2
(
~̂a(m)

)′
Φ̂′m

~Y = −
(
~̂a(m)

)′
Φ̂′m

~Y = −
∥∥Φ̂m

~̂a(m)
∥∥2

n
.

Consequently, we can write

m̂ = arg min
m∈Mn

{γn(b̂m) + pen(m)}, with pen(m) = κσ2
ε

m

n
.

Now, using the definition of the contrast, we have, for any m ∈Mn, and any bm ∈ Sm,

γn(b̂m̂th) + pen(m̂th) ≤ γn(bm) + pen(m)

and, with decomposition (6), it yields

‖b̂m̂th − b‖2n ≤ ‖bm − b‖2n + 2νn(b̂m̂th − bm) + pen(m)− pen(m̂th),

where νn(t) = 〈~ε, t〉n. We introduce, for ‖t‖2f =
∫
t2(u)f(u)du, the unit ball

Bf
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖f = 1}

and the set

(28) Ωn =

{∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ ≤ 1

2
, ∀t ∈

⋃
m,m′∈Mn

(Sm + Sm′) \ {0}
}
.

We start by studying the expectation on Ωn. On this set, the following inequality holds:
‖t‖2f ≤ 2‖t‖2n. We get

‖b̂m̂th − b‖2n1Ωn ≤‖bm − b‖2n +
1

8
‖b̂m̂th − bm‖2f1Ωn + 8 sup

t∈Bf
m̂th,m

(0,1)

ν2
n(t) + pen(m)− pen(m̂th)

≤
(

1 +
1

2

)
‖bm − b‖2n +

1

2
‖b̂m̂th − b‖2n1Ωn + 8

(
sup

t∈Bf
m̂th,m

(0,1)

ν2
n(t)− p(m, m̂th)

)
+

+ pen(m) + 8p(m, m̂th)− pen(m̂th).(29)

Here we state the following Lemma:
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Lemma 7.1. Let (Xi, Yi)1≤i≤n be observations from model (1), m̂th defined by (27) inMn

defined by (13). Assume that for each m, the basis of Sm satisfies ‖
∑m−1

j=0 ϕ2
j‖∞ ≤ c2

ϕm

for c2
ϕ > 0 a constant and that E(ε6

1) < +∞. Then νn(t) = 〈~ε, t〉n satisfies

E
(

sup
t∈Bf

m̂th,m
(0,1)

ν2
n(t)− p(m, m̂th)

)
+
≤ C

n

where p(m,m′) = 8σ2
ε max(m,m′)/n.

We see that, for κ ≥ κ0 = 32, we have 8p(m, m̂th) − pen(m̂th) ≤ pen(m). Thus, by
taking expectation in (29) and applying Lemma 7.1, it comes that, for all m in Mn and
bm in Sm,

(30) E
[
‖b̂m̂th − bA‖2n1Ωn

]
≤ 3E

[
‖bm − bA‖2n

]
+ 2pen(m) +

16C

n
.

The complement of Ωn satisfies the following Lemma:

Lemma 7.2. Assume that X1, . . . , Xn are i.i.d. with common density f such that ‖f‖∞ <

∞. Assume also that the (ϕj)0≤j≤m−1 are such that ‖
∑m−1

j=0 ϕ2
j‖∞ ≤ c2

ϕm. Then, for all

m ∈Mn (see (13)) and Ωn defined by (28), P(Ωc
n) ≤ c/n4 where c is a positive constant.

We prove now that E
[
‖b̂m̂th − b‖2n1Ωcn

]
≤ c

n . Recall that Πm denotes the orthogonal

projection (for the scalar product of Rn) on the sub-space
{(
t(X1), . . . ,t(Xn)

)′
, t∈Sm

}
of Rn.

We have
(
b̂m(X1), . . . , b̂m(Xn)

)′
= ΠmY . By using the same notation for the function t

and the vector
(
t(X1), . . . , t(Xn)

)′
, we can see that

(31) ‖b− b̂m̂th‖2n = ‖b−Πm̂thb‖2n + ‖Πm̂thε‖2n ≤ ‖b‖2n + n−1
n∑
k=1

ε2
k.

Thus

E
[
‖b− b̂m̂th‖2n1Ωcn

]
≤ E

[
‖b‖2n1Ωcn

]
+

1

n

n∑
k=1

E
[
ε2
k1Ωcn

]
≤
(√

E
[
b4(X1)

]
+
√

E
[
ε4

1

])√
P(Ωc

n).

Under the assumptions of theorem 7.1, we deduce that

E
[
‖b− b̂m̂th‖2n1Ωcn

]
≤ c

n
.

This result, together with (30) ends the proof of Theorem 7.1. 2

Proof of Lemma 7.1. We can not apply Talagrand’s Inequality to the process νn
itself, unless we add an assumption imposing that the noise is bounded. This is why we
decompose the variables εi as follows:

εi = ηi + ξi, ηi = εi1|εi|≤kn − E
[
εi1|εi|≤kn

]
.

Then we have

νn(t) = νn,1(t) + νn,2(t), νn,1(t) = 〈η, t〉n, νn,2(t) = 〈ξ, t〉n,
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and (
sup

t∈Bf
m̂th,m

(0,1)

ν2
n(t)− p(m, m̂th)

)
+
≤

(
sup

t∈Bf
m̂th,m

(0,1)

2ν2
n,1(t)− p(m, m̂th)

)
+

+2 sup
t∈Bf

m̂th,m
(0,1)

ν2
n,2(t).(32)

We successively bound the two terms.
Let (ϕ̄j)j∈{1,...,max(m,m′)} be an orthonormal basis of Sm + Sm′ for the weighted scalar

product 〈·, ·〉f .
It is easy to see that:

E
[

sup
t∈Bf

m′,m(0,1)

ν2
n,1(t)

]
≤

∑
j≤max(m,m′)

1

n
Var

(
η1ϕ̄j(X1)

)
≤

∑
j≤max(m,m′)

1

n
E

[(
η1ϕ̄j(X1)

)2
]

≤ 1

n
E
[
ε2

1

] ∑
j≤max(m,m′)

E
[
ϕ̄2
j (X1)

]
=
σ2
ε max(m,m′)

n
:= H2

since the definition of ϕ̄j implies that
∫
ϕ̄2
j (x)f(x)dx = 1. Next

sup
t∈Bf

m′,m(0,1)

Var(η1t(X1)) ≤ E
[
η2

1

]
sup

t∈Bf
m′,m(0,1)

E
[
t2(X1)

]
≤ σ2

ε := v

since E
[
t2(X1)

]
= ‖t‖2f . Lastly

sup
t∈Bf

m′,m(0,1)

sup
(u,x)

(
|u|1|u|≤kn |t(x)|

)
≤ kn sup

t∈Bf
m′,m(0,1)

sup
x
|t(x)|.

For t =
∑m−1

j=0 ajϕj , we have ‖t‖2f = ~a′Ψm~a = ‖
√

Ψm~a‖22,m. Thus, for any m,

sup
t∈Bfm(0,1)

sup
x
|t(x)| ≤ cϕ

√
m sup
‖
√

Ψm~a‖2,m=1

‖~a‖2,m

≤ cϕ
√
m sup
‖~u‖2,m=1

|‖
√

Ψ−1
m ~u‖2,m = cϕ

√
m

√
‖Ψ−1

m ‖op.

Under condition (13), we have

√
m

√
‖Ψ−1

m ‖op ≤
(
m‖Ψ−1

m ‖2op

)1/4
m1/4 ≤

(
c

n

log(n)

)1/4

m1/4.

We can take

(33) M1 := cϕkn

(
c

n

log(n)

)1/4

(m ∨m′)1/4.

Consequently, Talagrand Inequality (see Theorem 8.3) implies, for p(m,m′) = 8σ
2
ε max(m,m′)

n ,
and denoting by m∗ := max(m,m′),

E
(

sup
t∈Bf

m,m′ (0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+
≤ C1

n

(
e−C2m∗ +

k2
n

√
n(m∗)1/2

n
e−C3

n1/4(m∗)1/4
kn

)
.
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So, we choose kn = n1/4 and we get,

E
(

sup
t∈Bf

m′,m(0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+
≤ C ′1

n

(
exp(−C2m

∗) + (m∗)1/2 exp(−C3(m∗)1/4)
)
.

By summing up all terms over m′ ∈Mn, we deduce

E
(

sup
t∈Bf

m̂th,m
(0,1)

[νn,1]2(t)− p(m, m̂th)
)
+
≤

∑
m′

E
(

sup
t∈Bf

m′,m(0,1)

[νn,1]2(t)− p(m,m′)
)
+

≤ C

n
.(34)

Let us now study the second term in (32). Denote by Nn ≤ n the dimension of the
largest space of the collection. Then we have

E
[(

sup
t∈Bf

m̂th,m
(0,1)

ν2
n,2(t)

)
+

]
≤

Nn∑
j=1

E
[
〈ξ, ϕ̄j〉2n

]
=

Nn∑
j=1

Var
( 1

n

n∑
i=1

ξiϕ̄j(Xi)
)

=
1

n

Nn∑
j=1

E
[
ξ2

1

]
E
[
ϕ̄2
j (X1)

]
≤ Nn

n
E
[
ε2

11|ε1|>kn
]

≤ Nn

n

E
[
|ε1|2+p

]
kpn

≤ C
E
[
ε6

1

]
n

,

where the last line follows from the Markov inequality and the choices kn = n1/4 and
p = 4. This bound together with (34) plugged in (32) gives the result of Lemma 7.1. 2

Proof of Lemma 7.2. As the collection of models is nested, we have

P(Ωc
n) ≤

∑
m∈Mn

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
.

Then

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
= P

(
sup

t∈Sm,‖t‖f=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Xi)− Et2(Xi)]

∣∣∣∣∣ > 1

2

)
.

Moreover we have

sup
t∈Sm,‖t‖f=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Xi)− Et2(Xi)]

∣∣∣∣∣ = sup
~x∈Rm,‖

√
Ψm~x‖2,m=1

∣∣∣~x′Ψ̂m~x− ~x′Ψm~x
∣∣∣

= sup
~x∈Rm,‖

√
Ψm~x‖2,m=1

∣∣∣~x′(Ψ̂m −Ψm)~x
∣∣∣

= sup
~u∈Rm,‖~u‖2,m=1

∣∣∣~u′√Ψm
−1

(Ψ̂m −Ψm)
√

Ψm
−1
~u
∣∣∣

= ‖
√

Ψm
−1

(Ψ̂m −Ψm)
√

Ψm
−1
‖op

≤ ‖
√

Ψm
−1
‖op‖Ψ̂m −Ψm‖op‖

√
Ψm
−1
‖op

= ‖Ψ−1
m ‖op‖Ψ̂m −Ψm‖op.
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As a consequence,

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
≤ P

(
‖Ψ−1

m ‖op‖Ψ̂m −Ψm‖op >
1

2

)
= P

(
‖Ψ̂m −Ψm‖op >

1

2‖Ψ−1
m ‖op

)
.(35)

We apply Proposition 2.2 and we get

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
≤ 2m exp

(
− 1

4c2
ϕ

n

m‖Ψ−1
m ‖op

1

‖f‖∞‖Ψ−1
m ‖op + 1

6

)
.

Now using a+ b ≤ 2 max(a, b) and the condition in the definition of Mn in (13) imply

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
≤ 2c/n5,

and summing up the terms over Mn, with the bound on the cardinality implied by (13),
gives the result of Lemma 7.2. 2.

Proof of Theorem 2.1. We first write that

b̂m̂ − b = (b̂m̂ − b)1m̂∈Mn + (b̂m̂ − b)1m̂/∈Mn

= (b̂m̂th − b)1m̂∈Mn + (b̂m̂ − b̂m̂th)1m̂/∈Mn
+ (b̂m̂th − b)1m̂/∈Mn

= (b̂m̂th − b) + (b̂m̂ − b̂m̂th)1m̂/∈Mn

= (b̂m̂th − b) + (b̂m̂ − b̂m̂th)1
m̂/∈Mn,m̂th /∈M̂n

.

Thus

(36) E(‖b̂m̂ − b‖2n) ≤ 2E(‖b̂m̂th − b‖2n) + 2E(‖(b̂m̂ − b̂m̂th)‖2n1m̂th /∈M̂n
).

Now m̂th ∈ Mn and m̂th /∈ M̂n means m̂th‖Ψ−1
m̂th‖2op < cn/ log(n) and m̂th‖Ψ̂−1

m̂th‖2op ≥
4cn/ log(n). This implies, as

4c
n

log(n)
≤ m̂th‖Ψ̂−1

m̂th‖2op ≤ 2m̂th‖Ψ−1
m̂th − Ψ̂−1

m̂th‖2op+ 2m̂th‖Ψ−1
m̂th‖2op

≤ 2m̂th‖Ψ−1
m̂th − Ψ̂−1

m̂th‖2op + 2c
n

log(n)
,

that m̂th‖Ψ̂−1
m̂th −Ψ−1

m̂th‖2op ≥ cn/ log(n). Let us denote by

∆m = {m‖Ψ̂−1
m −Ψ−1

m ‖2op > cn/ log(n)}.

Thus

E(‖b̂m̂ − b̂m̂th‖2n1m̂th /∈M̂n
) ≤ E(‖b̂m̂ − b̂m̂th‖2n1∆

m̂th
)

≤ 2

(√
E
[
b4(X1)

]
+
√

E
[
ε4

1

])√
P(∆m̂th),(37)
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by proceeding similarly to (31). Now we have

P(∆m̂th) ≤
∑

m∈Mn

P(∆m) ≤
n∑

m=1

P(‖Ψ̂−1
m −Ψ−1

m ‖2op > ‖Ψ−1
m ‖2op).

Now, we write the decomposition

P
[
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

]
= P

[{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

}
∩
{
‖Ψ−1

m (Ψ̂m −Ψm)‖op <
1

2

}]
+ P

[{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

}
∩
{
‖Ψ−1

m (Ψ̂m −Ψm)‖op ≥
1

2

}]
≤ P

[{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

}
∩
{
‖Ψ−1

m (Ψ̂m −Ψm)‖op <
1

2

}]
+ P

[
‖Ψ−1

m (Ψ̂m −Ψm)‖op ≥
1

2

]
.(38)

To control the second term of the right hand side of (38), we write

P
[
‖Ψ−1

m (Ψ̂m −Ψm)‖op ≥
1

2

]
≤ P

[
‖Ψ−1

m ‖op‖Ψ̂m −Ψm‖op ≥
1

2

]
(39)

and we recognize (35) for which we already proved a bound.
Next to control the first term on the right hand side of (38), we apply Theorem 8.1 (with

A = Ψm and B = Ψ̂m −Ψm), which yields

P
[{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

}
∩
{
‖Ψ−1

m (Ψ̂m −Ψm)‖op <
1

2

}]
≤ P

[{
‖Ψ̂m −Ψm‖op‖Ψ−1

m ‖2op

1− ‖Ψ−1
m (Ψ̂m −Ψm)‖op

> ‖Ψ−1
m ‖op

}
∩
{
‖Ψ−1

m (Ψ̂m −Ψm)‖op <
1

2

}]

≤ P
[
‖Ψ̂m −Ψm‖op >

1

2
‖Ψ−1

m ‖−1
op

]
,(40)

which corresponds to (35) again and is thus bounded by a term of order 1/n4. So starting
from (38) and gathering (39) and (40) gives

P(∆m̂) ≤
n∑

m=1

P(∆m) ≤ c

n2
,

by applying Proposition 2.2 as previously. Plugging this in (37) and the result in (36),
together with the result of Theorem 7.1, gives the result of Theorem 2.1. 2
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7.1.5. Proof of Corollary 2.1. We have the following sequence of inequalities, for any
m ∈Mn and t any element of Sm,

‖b̂m̂ − bA‖2f = ‖b̂m̂ − bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 2‖b̂m̂ − t‖2f1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 4‖b̂m̂ − t‖2n1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 8‖b̂m̂ − bA‖2n1Ωn + 8‖t− bA‖2n1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

where Ωn is defined by (28). Therefore, using the result of Theorem 2.1 and E(‖t−bA‖2n) =
‖t− bA‖2f , we get that for all m ∈Mn and for any t ∈ Sm,

(41) E(‖b̂m̂ − bA‖2f ) ≤ C1

(
‖t− bA‖2f + σ2

ε

m

n

)
+
C2

n
+ E

(
‖b̂m̂ − bA‖2f1Ωcn

)
,

so only the last term is to be studied. First, recall that Lemma 7.2 implies that P(Ωc
n) ≤

c/n4. Next, write that ‖b̂m̂ − bA‖2f ≤ 2(‖b̂m̂‖2f + ‖bA‖2f ) and

‖b̂m̂‖2f =

∫ m̂−1∑
j=0

âjϕj(x)

2

f(x)dx = (~̂a(m̂))′Ψm̂
~̂a(m̂) ≤ ‖Ψm̂‖op‖~̂a(m̂)‖22,m̂.

First, under ‖
∑m

j=0 ϕ
2
j‖∞ ≤ c2

ϕm, we get

‖Ψm̂‖op = sup
‖~x‖2,m=1

~x′Ψm̂~x = sup
‖~x‖2,m=1

∫ m̂−1∑
j=0

xjϕj(u)

2

f(u)du

≤ sup
‖~x‖2,m=1

∫ m̂−1∑
j=0

x2
j

m̂−1∑
j=0

ϕ2
j (u)

 f(u)du ≤ c2
ϕm̂

Next, ‖~̂a(m̂)‖22,m̂ = (1/n2)‖Ψ̂−1
m̂ Φ̂′m̂

~Y ‖22,m ≤ (1/n2)‖Ψ̂−1
m̂ Φ̂′m̂‖2op‖~Y ‖22,n and

‖Ψ̂−1
m̂ Φ̂′m̂‖2op = λmax

(
Ψ̂−1
m̂ Φ̂′m̂Φ̂m̂Ψ̂−1

m̂

)
= nλmax(Ψ̂−1

m̂ ) = n‖Ψ̂−1
m̂ ‖op

Therefore, for m̂ ∈ M̂n, we get

‖b̂m̂‖2f ≤ c2
ϕ

m̂‖Ψ̂−1
m̂ ‖op

n

(
n∑
i=1

Y 2
i

)
≤ C

(
n∑
i=1

Y 2
i

)
.

Then as E[(
∑n

i=1 Y
2
i )2] ≤ n2E(Y 4

1 ), we get

E(‖b̂m̂‖2f1Ωcn) ≤
√

E(‖b̂m̂‖4f )P(Ωc
n) ≤ CE1/2(Y 4

1 )nP1/2(Ωc
n) ≤ c′/n.

On the other hand E(‖bA‖2f1Ωcn) ≤ ‖bA‖2fP(Ωc
n) ≤ c”/n4. Thus E

(
‖b̂m̂ − bA‖2f1Ωcn

)
≤

c1/n and plugging this in (41) ends the proof of Corollary 2.1. 2
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7.2. Proofs of Section 4. We need results on Laguerre functions with index δ > −1.
The Laguerre polynomial with index δ, δ > −1, and degree k is given by

L
(δ)
k (x) =

1

k!
exx−δ

dk

dxk

(
xδ+ke−x

)
.

We consider the Laguerre functions with index δ, given by

(42) `
(δ)
k (x) = 2(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

L
(δ)
k (2x)e−xxδ/2,

and `
(0)
k = `k. The family (`

(δ)
k )k≥0 is an orthonormal basis of L2(R+).

In the following, we use the result of Askey and Wainger (1965) which gives bounds on
`k, depending on k: for ν = 4k + 2δ + 2, and k large enough, it holds

|`(δ)k (x/2)| ≤ C



a) (xν)δ/2 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3

d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν
−1/2(x−ν)3/2 if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2

where γ1 and γ2 are positive and fixed constants.
We need similar results for Hermite functions. These can be deduced from the following

link between Hermite and Laguerre functions, proved in Comte and Genon-Catalot (2017):

Lemma 7.3. For x ≥ 0,

h2n(x) = (−1)n
√
x/2 `(−1/2)

n (x2/2), h2n+1(x) = (−1)n
√
x/2 `(1/2)

n (x2/2).

This is completed by the fact that Hermite functions are even for even n and odd for odd
n.

7.2.1. Proof of Proposition 4.1. Under the assumption of the Proposition, for j large
enough,

(43)

∫
ϕ2
j (x)f(x)dx ≥ c1√

j
,

where c1 is a constant. The proof of Inequality (43) in the Hermite case is given in
Belomestny et al. (2017), Proposition 2.2. and in Comte and Genon-Catalot (2017) in the
Laguerre case.

Now we prove (20). As Ψm is a symmetric positive definite matrix, ‖Ψ−1
m ‖op = 1/λmin(Ψm),

where λmin(Ψm) denotes the smallest eigenvalue of Ψm. By (14), we get that for all
j ∈ {1, . . . ,m}, denoting by ~ej the jth canonical vector (all coordinates are 0 except the
jth which is equal to 1), ~ej

′Ψm ~ej =
∫
ϕ2
jf, and

min
‖~u‖2,m=1

~u ′Ψm~u ≤ min
j=1,...,m

~ej
′Ψm ~ej = min

j=1,...,m

∫
ϕ2
jf ≤

c√
m
.

As a consequence, λmin(Ψm) ≤ c/
√
m which implies the result. 2
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7.2.2. Proof of Proposition 4.2. We treat the Laguerre basis first. The result of Askey
and Wainger (1965) recalled above states that, for k large enough, `k(x) ≤ ce−γ2x for
2x ≥ 3(2k + 1), where γ2 is a constant. Thus for ~x ∈ Rm, ‖~x‖2,m = 1, we have

~x′Ψm~x =

∫ +∞

0

(
m−1∑
k=0

xk`k(u)

)2

f(u)du

≥
∫ 3(2m+1)

0

(
m−1∑
k=0

xk`k(v/2)

)2

f(v/2)dv/2

≥ inf
v∈[0,3(2m+1)]

f(v/2)

∫ 3(2m+1)/2

0

(
m−1∑
k=0

xk`k(u)

)2

du

≥ inf
u∈[0,3(m+1/2)]

f(u)

∫ +∞

0

(
m−1∑
k=0

xk`k(u)

)2

du−
∫ +∞

3(m+1/2)

(
m−1∑
k=0

xk`k(u)

)2

du


Then infu∈[0,3(m+1/2)] f(u) ≥ Cm−k and

∫ +∞
0

(∑m−1
k=0 xk`k(u)

)2
du = ‖~x‖22,m = 1 and, for

m large enough, ∫ +∞

3(m+1/2)

(
m−1∑
k=0

xk`k(u)

)2

du ≤ C ′me−γ3m ≤ 1

2
.

It follows that, for m large enough, ~x′Ψm~x ≥ Cm−k/2.

For the Hermite basis, we proceed analogously using that |hk(x)| ≤ c|x|e−γ2x2 for x2 ≥
(3/2)(4k + 3). 2

7.3. Proofs of Section 5.

7.3.1. Proof of Proposition 5.1. Consider the coupling method and the associated vari-
ables (X∗i ) with Berbee’s Lemma, see Berbee (1979), with the method described in Vien-
net (1997, Prop.5.1 and its proof p.484) .

Assume for simplicity that n = 2pnqn for integers pn, qn. Then there exist random
variables X∗i , i = 1, ..., n satisfying the following properties:

• For ` = 0, ..., pn − 1, the random vectors

~X`,1 =
(
X2`qn+1, ..., X(2`+1)qn

)′
and ~X∗`,1 =

(
X∗2`qn+1, ..., X

∗
(2`+1)qn

)′
have the same distribution, and so have the random vectors

~X`,2 =
(
X(2`+1)qn+1, ..., X(2`+2)qn

)′
and ~X∗`,2 =

(
X∗(2`+1)qn+1, ..., X

∗
(2`+2)qn

)′
.

• For ` = 0, ..., pn − 1,

(44) P
[
~X`,1 6= ~X∗`,1

]
≤ βqn andP

[
~X`,2 6= ~X∗`,2

]
≤ βqn .

• For each δ ∈ {1, 2}, the random vectors ~X∗0,δ, ...,
~X∗pn−1,δ are independent.
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Then let Ω∗ = {Xi = X∗i , i = 1, . . . , n} and write that

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ P

[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
+ P[(Ω∗)c].

Then using the definition of the variables X∗i , we get

P[(Ω∗)c] ≤ 2pnβqn ≤ cne−θqn .

Then choosing qn = 5 log(n)/θ yields P[(Ω∗)c] ≤ c/n4.
Now, we have to apply Tropp’s result. To that aim, we write Sm = (1/2)(Sm,1 + Sm,2)

where Sm is given by (25), Sm,1 is built with the ~X`,1:

Sm,1 =
1

pn

pn−1∑
`=0

1

qn

qn∑
r=1

Km(X2`qn+r)− E(Km(X2`qn+r))

and Sm,2 is analogously defined with with the ~X`,2. We have

P
[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
= P [{‖Sm,1 + Sm,2‖op ≥ 2u} ∩ Ω∗]

≤ P [{‖Sm,1‖op ≥ u} ∩ Ω∗] + P [{‖Sm,2‖op ≥ u} ∩ Ω∗]

≤ P
[
‖S∗m,1‖op ≥ u

]
+ P

[
‖S∗m,2‖op ≥ u

]
,

where S∗m,δ, for δ = 1, 2 are built on the ~X∗`,δ. The two terms are similar, and we treat
only the first one.

We can apply Tropp’s result as S∗m,1 is a sum of pn independent matrices. It follows

from (26) that

1

pnqn
‖
qn∑
r=1

Km(X∗2`qn+r)− E(Km(X∗2`qn+r))‖op ≤ c2
ϕ

m

pn
=

10

θ
c2
ϕ

m log(n)

n
.

Next, we must bound the variance of S∗m,1. We have

ν(S∗m,1) =
1

pn
sup

‖~x‖2,m=1
E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(Km(X∗r )− E(Km(X∗r )))

]
~x

∥∥∥∥∥
2

2,m


Next,

E1 = E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(Km(X∗r )− E(Km(X∗r )))

]
~x

∥∥∥∥∥
2

2,m

 =
1

q2
n

m−1∑
j=0

Var

[
qn∑
r=1

m−1∑
k=0

ϕj(Xr)ϕk(Xr)xk

]

Using the β-mixing variance inequality (see Viennet (1997), Theorem 2.1 p.472 and Lemma
4.2 p.481), there exists a nonnegative measurable function bqn such that for p ≥ 1,

(45) E(bpqn(X1)) ≤
∑
k≥0

(k + 1)p−1βk,
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and

E1 ≤ 4

qn

m−1∑
j=0

∫ [m−1∑
k=0

ϕj(u)ϕk(u)xk

]2

bqn(u)f(u)du

≤ 4

qn

m−1∑
j=0

m−1∑
k=0

∫
ϕ2
j (u)ϕ2

k(u) bqn(u)f(u)du

Lemma 7.4. If E(X8/3) < +∞ for the Hermite basis and if E(1/X2) < +∞ for the
Laguerre basis, and

∑
k(k + 1)βk < +∞, then

m−1∑
j=0

m−1∑
k=0

∫
ϕ2
j (u)ϕ2

k(u) bqn(u)f(u)du ≤ Cm

where C depends on E(X8/3) or E(1/X2) and
∑

k kβk.

Then Lemma 7.4 implies that ν(Sm) ≤ Cm/n and applying Theorem 8.2 gives the
announced result. 2

7.3.2. Proof of Lemma 7.4. We use the result of Askey and Wainger (1965) as recalled
above. We set νj = 4j + 2, νk = 4k + 2.

We assume j ≤ k, and for instance

0 ≤ 1/νk ≤ 1/νj ≤ νj/2 ≤ νk/2 ≤ νj−ν
1/3
j ≤ νk−ν

1/3
k ≤ νj+ν1/3

j ≤ νk+ν
1/3
k ≤ 3νj/2 ≤ 3νk/2,

and we integrate `2j`
2
k on each subintervals.

•
∫ 1/νk

0
`2j (u)`2k(u) bqn(u)f(u)du .

∫ 1/νk

0
bqn(u)f(u)du .

1

νk

∫
1

u
bqn(u)f(u)du ≤ C

k + 1

where C = (E(1/X2)
∑

k(k + 1)βk)
1/2, see (45). Now

∑m−1
k=0

∑k
j=0(1/(k + 1)) = m.

•
∫ 1/νj

1/νk

`2j (u)`2k(u) bqn(u)f(u)du .
∫ 1/νj

1/νk

1√
ku
bqn(u)f(u)du .

1
√
νkνj

∫
1

u
bqn(u)f(u)du ≤

C√
(j + 1)(k + 1)

. Therefore
∑m−1

k=0

∑k
j=0(1/

√
(k + 1)(j + 1)) . m.

•
∫ νj/2

1/νj

`2j (u)`2k(u) bqn(u)f(u)du .
1

√
νjνk

∫ νj/2

1/νj

1

u
bqn(u)f(u)du .

C√
(j + 1)(k + 1)

.

•
∫ νk/2

νj/2
`2j (u)`2k(u) bqn(u)f(u)du .

1
√
νjνk

∫ νk/2

νj/2

1

(νj − u)1/4
√
u
bqn(u)f(u)du

.
1√

(k + 1)(j + 1)1/2+1/6

∫ νk/2

νj/2

1√
u
bqn(u)f(u)du.

Here

m−1∑
k=0

k∑
j=0

1√
(k + 1)(j + 1)1/2+1/6

. m5/6.

•
∫ νj−ν

1/3
j

νk/2
`2j (u)`2k(u) bqn(u)f(u)du .

1
√
νjνkν

1/6
k

∫ νj−ν
1/3
j

νk/2

1√
u
bqn(u)f(u)du and the sum

over j, k is also of order m5/6.
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The other terms are of lower order.
In the Hermite case, we proceed analogously using Lemma 7.3. 2

7.3.3. Proof of Theorem 5.1. We follow the line of the proof of Theorem 2.1, and we have
to extend Lemma 7.1 and Lemma 7.2 to the dependent case.

For Lemma 7.2, the extension is the following. Note that we consider specifically La-
guerre or Hermite bases but no longer require that ‖f‖∞ < +∞.

Lemma 7.5. Assume that (Xi)i≥1 is strictly stationary geometrically β-mixing, with com-
mon density f and consider the Laguerre or Hermite basis. Then, for all m ∈ Mn (see
(23) and Ωn defined by (28), P(Ωc

n) ≤ c/n4 where c is a positive constant.

Proof of Lemma 7.5. We start from (35) and apply Proposition 5.1. We get

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
≤ 2m exp

(
− 1

4a

n

m‖Ψ−1
m ‖op

1

2‖Ψ−1
m ‖op + 2 log(n)

)
+

c

n4
.

Using the definition of M?
n, we obtain the result. 2

Now we can extend Lemma 7.1 as follows.

Lemma 7.6. Let (Xi, i = 1, . . . , n) be observations from model (21) with E(ε6
1) < +∞,

let m̂th be defined by (27) using Mn and consider the Laguerre or Hermite bases. Then
ν̄n(t) = n−1

∑n
i=1 εi+1t(Xi) satisfies

E
(

sup
t∈Bf

m̂th,m
(0,1)

ν̄2
n(t)− p(m, m̂th)

)
+
≤ C

n

where p(m,m′) = cσ2
ε max(m,m′)/n for c a numerical constant.

Proof of Lemma 7.6. We start with the same decomposition as in the proof of Lemma
7.1 and split ν̄n(t) into the sum νn,1 +νn,2 as previously. The treatment of νn,2 is identical
as it relies on a non-correlation property which is still true. We obtain the same bound
with kn = (n/ log2(n))1/4 and the maximal dimension Nn ≤ n/ log2(n).

For νn,1 we proceed by the coupling strategy used in the proof of Proposition 5.1,
applied to ui = (εi+1, Xi) which is also a β-mixing sequence with mixing coefficient such
that βk ≤ ce−θk, as in Baraud et al. (2001a). We denote by Ω? = {ui = u?i , i = 1, . . . , n}.
We still have P((Ω?)c) ≤ pnβqn ≤ c/n4 for qn = 5 log(n)/θ.

On Ω?, we replace the ui by the u?i and split the term between odd and even blocks.
We have to bound, say

E
(

sup
t∈Bf

m̂th,m
(0,1)

(ν̄?,1n,1)2(t)− p(m, m̂th)
)
+

by using Talagrand inequality applied to mean of pn independent random variables

ν̄?,1n,1(t) =
1

pn

pn−1∑
`=0

(
1

qn

qn∑
r=1

η?2`qn+rt(X
?
2`qn+r)

)
.
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Clearly,

E
(

sup
t∈Bf

m,m′ (0,1)

(ν̄?,1n,1)2(t)
)
≤ σ2

ε

max(m,m′)

n
:= H2

?

still holds. We have

sup
t∈Bf

m,m′ (0,1)

Var

(
1

qn

qn∑
r=1

η∗r t(X
∗
r )

)
= sup

t∈Bf
m,m′ (0,1)

Var

(
1

qn

qn∑
r=1

ηrt(Xr)

)

=
1

qn
sup

t∈Bf
m,m′ (0,1)

E(η2
1)E(t2(X1)) ≤ E(ε2

1)

qn
:= v?.

Lastly

sup
t∈Bf

m′,m(0,1)

sup
~u,~x∈Rqn

(
1

qn

qn∑
r=1

|ur|1|ur|≤kn |t(xr)|

)
≤ ckn

(
n

log2(n)

)1/4

(m ∨m′)1/4 := M?
1 ,

where M?
1 is computed analogously to M1 given by (33), except that m ∈ Mn increases

the power of the log. Therefore, by applying Theorem 8.3, we obtain

E
(

sup
t∈Bf

m,m′ (0,1)

(ν̄?,1n,1)2(t)−2H2
?

)
+
≤ C1

(
1

n
e−C2(m∨m′) +

1

n
(m ∨m′)1/2 exp(−C3(m ∨m′)1/4)

)
,

and

E
(

sup
t∈Bf

m̂th,m
(0,1)

(ν̄?,1n,1)2(t)− p(m, m̂th)
)
+
≤ c/n.

It remains to bound

E

( sup
t∈Bf

m̂th,m
(0,1)

(ν̄n,1)2(t)− p(m, m̂th)
)
1(Ω?)c


+

.

We use the infinite norm computed to evaluate M?
1 together with the bound on P[(Ω?)c]

to obtain the result. 2

8. Theoretical tools

A proof of the following theorem can be found in [Stewart and Sun, 1990].

Theorem 8.1. Let A, B be (m × m) matrices. If A is invertible and ‖A−1B‖op < 1,

then Ã := A + B is invertible and it holds

‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op

Theorem 8.2 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of indepen-
dent, random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each index k.
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Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the the variance statistic of the sum:
ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then

E‖Z‖op ≤
√

2ν(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Furthermore, for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in [Tropp, 2012] or [Tropp, 2015].

We recall the Talagrand concentration inequality given in Klein and Rio (2005).

Theorem 8.3. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H
and v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v.

Then for all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−
√
2bC(α)

√
α

7
nH
M

)
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of
a linear normed space, after checking that f → νn(f) is continuous and F contains a
countable dense family.
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Appendix A. Numerical illustrations

In this section, numerical illustrations of how our method works are presented. The
estimation procedure is implemented for the Laguerre (Figures 2 to 5) and the Hermite
basis (Figure 6). The (εi)1≤i≤n are generated as an i.i.d. sample of Gaussian N (0, σ2)
with σ = 0.5. Then, we choose different functions b(.) (bounded or not) and different
types of distribution of the design (Xi)1≤i≤n. Typically, a linear function x 7→ 2x + 1
is experimented without the information of its linearity, which allows to test moment
conditions; on the contrary, x 7→ 4x/(1+x2) is bounded and should be easier to reconstruct.
For the design density, we consider standard uniform or Gaussian cases, and also different
heavy tailed distributions.
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X ∼ U([0, 1]) X ∼ N (4, 1) X ∼ f3

Figure 2. First line: beam of the proposals f̂m for m = 1 to mmax in the
Laguerre basis. Second line: the estimator as selected by the procedure,
f̂m̂. Function b(x) = 2x+1, n = 1000, density fk(x) = (k−1)/(1+x)k1x≥0.

In Figure 2, we plot in the first line the collection of estimators in the Laguerre basis,
among which the algorithm makes the selection. The number of computed estimators

is different from one example to another, as the collection of models M̂n is random and

depends on ‖Ψ̂−1
m ‖op. In the practical implementation, we consider the (random) maximum

value mmax such that ‖Ψ̂−1
m ‖op ≤ n, since inversion of the matrix Ψ̂m remains possible

in such cases. Surprisingly, we can see that very few estimators are sometimes computed
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(see the example of uniform distribution on the right). They are also very different from
one dimension to another. The second line presents the final estimator, selected by the
procedure. In the example of Figure 1, the curve is linear, and is perfectly estimated,
although its particular form is unknown and was not a priori easy to obtain with the
Laguerre basis.
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¯̂m = 7.7(0.5), m̄max= 8.8(0.4) ¯̂m = 9.9(1.9), m̄max= 10.4(1.7) ¯̂m = 6.7(1.1), m̄max= 7.6(1.0)

Figure 3. 25 estimated curves in Laguerre basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 2x+1 and different laws for the design,
fk(x) = (k − 1)/(1 + x)k1x≥0.
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Figure 4. 25 estimated curves in the Laguerre basis (dotted -green/grey),
the true in bold (red), n = 1000, density fk(x) = (k − 1)/(1 + x)k1x≥0 for
k = 3, 4 and 5, b(x) = 4x/(1 + x2)1x≥0.

In Figures 3, 4 and 5, we present beams of 25 estimators computed in the Laguerre basis,
they give information about the variability of the procedure. Figure 3 is complementary
of Figure 2 and considers the same linear regression function with similar distributions for
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Figure 5. 25 estimated curves in Laguerre basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 4x/(1 + x2)1x≥0 and different laws for
the design.

X, and Figure 4 presents the results for the function b(x) = 4x/(1 +x2)1x≥0 and different
heavy tailed distributions for X. The beams illustrate the stability of the algorithm,
with some design distributions leading to better results, probably due to higher signal-
to-noise ratio. The interest of the linear case is also to illustrate the sharpness of the
moment conditions: indeed the condition E[b2(X1)] < +∞ for X with density fk(x) =
(k − 1)/(1 + x)k1x≥0 is satisfied for k > 3 and the condition E[b4(X1)] < +∞ holds for
k > 5. We checked that the method does not work for k = 2, 3, but the last two plots of
Figure 3 show that it works rather well for k = 4, 5. The minimal theoretical condition
may thus be weakened from E[b4(X1)] < +∞ to E[b2(X1)] < +∞. The Hermite basis has
similar behaviour and an example is provided in Figure 6.
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Figure 6. 25 estimated curves in Hermite basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 2x2 and different laws for the design.
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Below each plot, we give the density of the design and the value of ¯̂m which is the mean
of the selected dimensions for the 25 estimators represented on the figure, with standard
deviation in parenthesis. It is associated with the value of m̄max which is the mean of
the maximal dimension for which the estimator is computed, with standard deviation in
parenthesis. We can see that the maximal dimension is rather small (less than ten models
are compared for selection, in general) but an adequate choice seems always to exist in this
small collection. This means that the squared-bias variance compromise in the restricted
setMn has good performance and that the non compact Laguerre and Hermite bases are
very interesting and simple estimation tools. Indeed, the method is very fast and this
low complexity, already argued in Belomestny et al. (2017), has an important practical
interest.


