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1. Introduction

Consider observations (Xi, Yi)1≤i≤n drawn from the regression model

(1) Yi = b(Xi) + εi, E(εi) = 0, Var(εi) = σ2
ε , i = 1, . . . , n.

The random design variables (Xi)1≤i≤n are real-valued, independent and identically dis-
tributed (i.i.d.) with common density denoted by f , the noise variables (εi)1≤i≤n are
i.i.d. real-valued and the two sequences are independent. The problem is to estimate the
function b(.) : R→ R from observations (Xi, Yi)1≤i≤n.
Classical nonparametric estimation strategies are of two types. First, Nadaraya (1964)

and Watson (1964) methods rely on quotient estimators of type b̂ = b̂f/f̂ , where b̂f and

f̂ are projection or kernel estimators of bf and f . Those methods are popular, especially
in the kernel setting. However, they require the knowledge or the estimation of f (see
Efromovich (1999), Tsybakov (2009)) and in the latter case, two smoothing parameters.
The second method, proposed by Birgé and Massart (1998), Barron et al. (1999), improved
by Baraud (2002), is based on a least squares contrast, analogous to the one used for
parametric linear regression:

1

n

n∑
i=1

[Yi − t(Xi)]
2 ,

minimized over functions t that admit a finite development over some orthonormal A-
supported L2(A, dx) basis, A ⊂ R. In other words, this is a projection method where
the coefficients of the approximate function in the finite basis play the same role as the
regression parameters in the linear model. This strategy solves part of the drawbacks
of the first one. It provides directly an estimator of b restricted to the set A, a unique
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model selection procedure is required and has been proved to realize an adequate squared
bias-variance compromise under weak moment conditions on the noise (see Baraud, 2002).
Lastly, there is no quotient to make and the rate only depends on the regularity index of b,
while in the quotient method it also generally depends on the one of f . These arguments
are in favour of the second strategy. Noting that the least squares contrast can be rewritten

(2) γn(t) =
1

n

n∑
i=1

[t2(Xi)− 2Yit(Xi)],

it can be seen that, for a given function t in a finite dimensional linear space included in
L2(A, dx), three norms must be compared: the integral L2(A, dx)-norm, ‖t‖2A =

∫
A t

2(x)dx,
associated with the basis, the empirical norm involved in the definition of the contrast,
‖t‖2n = n−1

∑n
i=1 t

2(Xi), and its expectation, corresponding to a L2(A, f(x)dx)-norm,
‖t‖2f =

∫
A t

2(x)f(x)dx. Due to this difficulty, only compactly supported bases have been
considered i.e. the set A on which estimation is done is generally assumed to be compact.
This allows to assume that f is lower bounded on A, a condition which would not hold
on non compact A. Then, if f is upper and lower bounded on A, the L2(A, f(x)dx) and
the L2(A, dx) norms are equivalent and this makes the problem simpler. Moreover, the
equivalence of the norms ‖t‖n and ‖t‖f for t in a finite dimensional linear space must be
handled. This is done by Cohen et al. (2013) and we take advantage of their findings.
However, Cohen et al. (2013)’s work has drawbacks: their stability condition is settled
in terms of an unknown quantity; the regression function is assumed to be bounded by a
known quantity and the definition of the estimator depends on this known bound; they do
not study the model selection problem. Due to their statistically simplified setting, they
do not deal with the entire partially inverse problem hidden in the procedure.

Our aim in this work is to obtain theoretical results in regression function estimation
by the least squares projection method described above, and we want to handle the case
of possibly non compact support A of the basis. This explains why we must avoid bound-
edness assumption on b. A consequence is that the cutoff which has to be introduced in
the definition of the estimator depends on the behaviour of the eigenvalues of a random
matrix. This requires a specific study to obtain a bound on the integrated L2 risk, and
makes the model selection question near of an inverse problem with unknown operator.

What is the interest of non compactly supported bases? In general, the estimation
set and the bases support are considered as fixed in the theoretical part, while are in
practice adjusted on the data. With a non compact support, it is not necessary to fix
a preliminary definition. Moreover, we have at disposal non compactly supported bases
such as the Laguerre (A = R+) or the Hermite (A = R) basis which have been used
recently for nonparametric estimation by projection (see e.g. Comte et al. 2015, Comte
and Genon-Catalot, 2015, 2018, Belomestny et al. 2016), showing that theses bases are
both convenient and with specific properties. They are especially useful in certain inverse
problems (see Mabon, 2017).

Before giving our plan, let us highlight our main findings.

• First, we propose a new procedure of estimation relying on a random cutoff, and
generalize Cohen et al. (2013)’s results, with a more statistical flavour.
• We deduce from the bias-variance decomposition upper rates of the estimator on

specific Sobolev spaces, for which lower bounds are also established. We recover
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the standard rates of the ”compact case” but also exhibit non standard ones when
considering Laguerre or Hermite bases and spaces.
• We propose a model selection procedure for regression function estimation on a

set A whether compact or not, where the collection of models itself is random
and prove that it reaches automatically a bias-variance tradeoff. We highlight the
regression problem as a partially inverse problem: the eigenvalues of the matrix
which must be inverted play a role in the problem not directly as a weight on the
variance term but in the definition of the collection of models.

The framework and plan of the paper is the following. We fix a set A ⊂ R and con-
centrate on the estimation of the regression function b restricted to a set A, bA := b1A.
As A may be unbounded, we do not want to assume that bA ∈ L2(A, dx) which would
exclude linear or polynomial functions. Our main assumption is that bA ∈ L4(A, f(x)dx),
i.e. Eb4A(X1) < +∞ which is rather weak. In Section 2, we define the projection estimator
of the regression function bA and check that the most elementary risk bound holds without
any constraint on the support A or the projection basis. In Section 3, we prove a risk-bound
for the estimator on one model, borrowing some elements to Cohen et al. (1993)’s results to
extend them. Then, we study rates and optimality for the integrated L2(A, f(x)dx)-risk.
Introducing regularity spaces linked with f , we prove upper and matching lower bounds
for our projection estimator. Then we quickly show how to recover existing results for
compactly supported bases and more precisely illustrate the case of non compact support
with the Hermite and Laguerre bases for estimation on A = R and A = R+ respectively. In
Section 4, we propose a model selection strategy on a random collection of models taking
into account a possible inversion problem of the matrix allowing a unique definition of the
estimator. A risk bound for the adaptive estimator is provided both for the integrated
empirical risk and for the integrated L2(A, f(x)dx)-risk: it generalizes existing results to
non compactly supported bases. Section 5 gives some concluding remarks. Most proofs
are gathered in Section 6 while Section 7 gives theoretical tools used along the proofs. An
appendix is devoted to numerical illustrations.

2. Projection estimator and preliminary results

Recall that f denotes the density of X1. In the following, ‖.‖2,p denotes the euclidean
norm in Rp. For A ⊂ R, ‖.‖A denotes the integral norm in L2(A, dx), ‖.‖f the integral
norm in L2(A, f(x)dx) and ‖.‖∞ the supremum norm on A. For any function h, hA = h1A.

2.1. Definition of the projection estimator. Consider model (1). Let A ⊂ R and let
(ϕj , j = 0, . . . ,m − 1) be an orthonormal system of A-supported functions belonging to
L2(A, dx). Define Sm = span(ϕ0, . . . , ϕm−1), the linear space spanned by (ϕ0, . . . , ϕm−1).
Note that the ϕj ’s may depend on m but for simplicity, we omit this in the notation.
We assume that for all j,

∫
ϕ2
j (x)f(x)dx < +∞ so that Sm ⊂ L2(A, f(x)dx) and define a

projection estimator of the regression function b on A, by

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is defined in (2). For functions s, t, we set

‖t‖2n =
1

n

n∑
i=1

t2(Xi) and 〈s, t〉n :=
1

n

n∑
i=1

s(Xi)t(Xi),
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and write

〈~u, t〉n =
1

n

n∑
i=1

uit(Xi)

when ~u is the vector (u1, . . . , un)′, ~u ′ denotes the transpose of ~u and t is a function. We
introduce the classical matrices

Φ̂m = (ϕj(Xi))1≤i≤n,0≤j≤m−1,

and

(3) Ψ̂m = (〈ϕj , ϕk〉n)
0≤j,k≤m−1

=
1

n
Φ̂′mΦ̂m, Ψm =

(∫
ϕj(x)ϕk(x)f(x)dx

)
0≤j,k≤m−1

= E(Ψ̂m).

Set ~Y = (Y1, . . . , Yn)′ and define ~̂a(m) = (â
(m)
0 , . . . , â

(m)
m−1)′ as the m-dimensional vector

such that b̂m =
∑m−1

j=0 â
(m)
j ϕj . Assuming that Ψ̂m is invertible almost surely (a.s.) yields:

(4) b̂m =

m−1∑
j=0

â
(m)
j ϕj , with ~̂a(m) = (Φ̂′mΦ̂m)−1Φ̂′m

~Y =
1

n
Ψ̂−1
m Φ̂′m

~Y .

2.2. Bound on the mean empirical risk on a fixed space. We now evaluate the risk
of the estimator, without any constraint on the basis support. Though classical, the result
hereafter requires noteworthy comments.

Proposition 2.1. Let (Xi, Yi)1≤i≤n be observations drawn from model (1) and denote by

bA = b1A. Assume that bA ∈ L2(A, f(x)dx) and that Ψ̂m is a.s. invertible. Consider the

least squares estimator b̂m of b, given by (4). Then

E
[
‖b̂m − bA‖2n

]
= E

(
inf
t∈Sm

‖t− bA‖2n
)

+ σ2
ε

m

n
,(5)

≤ inf
t∈Sm

[∫
(bA − t)2(x)f(x)dx

]
+ σ2

ε

m

n
.(6)

Note that

inf
t∈Sm

[∫
(bA − t)2(x)f(x)dx

]
= ‖bA − bfm‖2f

where bfm is the L2(A, f(x)dx)-orthogonal projection of bA on Sm, i.e. if Ψm is invertible,

we get bfm =
∑m−1

j=0 afj (b)ϕj where

(af0(b), . . . , afm−1(b))′ = Ψ−1
m

−−→
(bϕ)m, with

−−→
(bϕ)m = (〈b, ϕ0〉f , . . . , 〈b, ϕm−1〉f )′.

This implies that the bias bound is equal to

‖bA − bfm‖2f = ‖bA‖2f − ‖bfm‖2f =

∫
A
b2(x)f(x)dx−

−−→
(bϕ)′mΨ−1

m

−−→
(bϕ)m.

It is not obvious from (6) or from the previous formula that the bias term is small when
m is large. Therefore, two questions arise: is Ψm invertible for any m, and does the bias
tend to zero when m grows to infinity? The Lemmas below provide sufficient conditions.
These conditions can be refined if the basis is specified.
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Lemma 2.1. Assume that λ(A ∩ supp(f)) > 0 where λ is the Lebesgue measure and
supp(f) the support of f , that the (ϕj)0≤j≤m−1 are continuous, and that there exist
x0, . . . , xm−1 ∈ A∩ supp(f) such that det[(ϕj(xk))0≤j,k≤m−1] 6= 0. Then, Ψm is invertible.

Lemma 2.2. Assume that bA ∈ L2(A, f(x)dx). Assume that (ϕj)j≥0 is an orthonormal
basis of L2(A, dx) such that, for all j ≥ 0,

∫
ϕ2
j (x)f(x)dx < +∞, that f is bounded on A

and that for all x ∈ A, f(x) > 0.
Then inft∈Sm

[∫
(bA − t)2(x)f(x)dx

]
tends to 0 when m tends to infinity.

Lemma 2.1 follows from the following equality. For all ~u = (u0, . . . , um−1)′ ∈ Rm \{~0}, for

t(x) =
∑m−1

j=0 ujϕj(x), ~u ′Ψm ~u = ‖t‖2f =
∫
A t

2(x)f(x)dx ≥ 0. Under the assumptions, the
result follows.
The proof of Lemma 2.2 is elementary. Note that

∫
(bA − t)2(x)f(x)dx = ‖bA − t‖2f =

‖bA
√
f − t

√
f‖2A. Under the assumptions of Lemma 2.2, the system φj = ϕj

√
f , j ≥ 0 is

a complete family of L2(A, dx). Indeed, if g ∈ L2(A, dx),
∫
gφj =

∫
ϕj(g
√
f) = 0 ∀j ≥ 0

implies g = 0 using our assumptions.
The result of Proposition 2.1 is general in the sense that it holds for any basis support,
whether compact or not. We stress that (5) is an equality, in particular the variance term
is exactly equal to σ2

εm/n. In addition, the result does not depend on the basis.

Remark 2.1. We underline that the latter fact is not obvious. Consider the density
estimation setting, where f̂m =

∑m−1
j=0 ĉjϕj with ĉj = (1/n)

∑n
i=1 ϕj(Xi) is a projection

estimator of f . Then the integrated L2−risk bound is

E(‖f̂m − fA‖2) = inf
t∈Sm

‖fA − t‖2 +

∑m−1
j=0 E[ϕ2

j (X1)]

n
− ‖fm‖

2

n
,

where fm =
∑m−1

j=0 〈f, ϕj〉ϕj is the L2(dx)-orthogonal projection of f on Sm. The variance

term has the order of
∑m−1

j=0 E[ϕ2
j (X1)]/n. For most compactly supported bases, this term

has order m/n (for instance, it is equal to m/n for histograms or trigonometric polyno-
mial basis, see section 3.3); but it is proved in Comte and Genon-Catalot (2018) that for
Laguerre or Hermite basis (see section 3.4 below), this term has exactly the order

√
m/n

(lower and upper bound are provided, under weak assumptions). This is why it is important
to see that, in regression context, the variance order does not depend on the basis.

2.3. Useful inequalities. For M a matrix, we denote by ‖M‖op the operator norm
defined as the square root of the largest eigenvalue of MM ′. If M is symmetric, it coincides
with sup{|λi|} where λi are the eigenvalues of M . Moreover, if M,N are two matrices
with compatible product MN , then, ‖MN‖op ≤ ‖M‖op‖N‖op.

The possible values of the dimension m to study the collection (b̂m) of estimators are
subject to restrictions, for which the following property is important:

Proposition 2.2. Assume that the spaces Sm are nested (i.e. m ≤ m′ ⇒ Sm ⊂ Sm′) and

Ψm (resp. Ψ̂m) is invertible, then m 7→ ‖Ψ−1
m ‖op (resp m 7→ ‖Ψ̂−1

m ‖op) is nondecreasing.

Let us define

(7) L(m) = sup
x∈A

m−1∑
j=0

ϕ2
j (x) and assume L(m) < +∞.
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This quantity is independent of the choice of the L2(dx)-orthonormal basis of Sm, and for
nested spaces Sm, the map m 7→ L(m) is increasing. We need to study the set

(8) Ωm(δ) =

{
sup

t∈Sm, t 6=0

∣∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣∣ ≤ δ
}

where the empirical and the L2(A, f(x)dx) norms are equivalent on Sm. Theorem 1 in
Cohen et al. (1993) provides the adequate inequality. In our context, it takes the following
form:

Proposition 2.3. Let Ψ̂m, Ψm be the m×m matrices defined in Equation (3) and assume
that Ψm is invertible. Then for all 0 ≤ δ ≤ 1,

P(Ωm(δ)c) = P
[
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > δ

]
≤ 2m exp

(
−c(δ) n

L(m)(‖Ψ−1
m ‖op ∨ 1)

)
.

where Idm denotes the m×m identity matrix and c(δ) = δ + (1− δ) log(1− δ).

As a consequence, we obtain that, choosing δ = 1/2, the set Ωm := Ωm(1/2) satisfies
P(Ωc

m) ≤ 2n−4 if m is such that

(9) L(m)(‖Ψ−1
m ‖op ∨ 1) ≤ c

2

n

log(n)
, c =

1− log(2)

5
.

Condition (9) can be understood as ensuring the stability of the least-squares estimator,
as underlined in Cohen et al. (2013). However, the stability condition therein relies on
a theoretical quantity (see K(m) defined in (34) and Lemma 6.2 below). We stress that

L(m) is explicitly computable and Ψ−1
m can be estimated by Ψ̂−1

m . Moreover, we can prove:

Proposition 2.4. (i) Assume that f is bounded. Let Ψ̂m be the m ×m matrix defined
in Equation (3). Then for all u > 0

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 2m exp

(
− nu2/2

L(m) (‖f‖∞ + 2u/3)

)
.

(ii) Assume that Ψ̂m,Ψm are (a.s.) invertible. Then for α > 0,{
‖Ψ̂−1

m −Ψ−1
m ‖op > α‖Ψ−1

m ‖op

}
⊂
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op >

α ∧ 1

2

}
.

3. Truncated estimator on a fixed space

We may consider from Proposition 2.1 that the problem is standard. However, it is
known that difficulties arise if we want to bound the integrated L2-risk instead of the
empirical risk, even for fixed m. Actually, the general regression problem is an inverse
problem since the link between the function of interest b and the density of the observations
(Yi, Xi)i is of convolution type fY (y) =

∫
fε(y − b(x))f(x)dx where fY and fε are the

densities of Y1 and ε1. This can also be seen from the fact that the estimator is computed

via the inversion of the matrix Ψ̂m. Thus we can expect that the procedure depends on
the eigenvalues of Ψm.
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3.1. Integrated risk bound. Let us assume as above that bA ∈ L2(A, f(x)dx). It is not

possible to deduce from Proposition 2.1 a bound on E[‖b̂m− bA‖2f ] for all m such that Ψ̂m

is invertible. On the other hand, we introduce a cutoff and define

(10) b̃m := b̂m1
L(m)(‖Ψ̂−1

m ‖op∨1)≤cn/ log(n)
,

where L(m) is defined by (7) and c in (9). On the set {L(m)(‖Ψ̂−1
m ‖op∨1) ≤ cn/ log(n)}, the

matrix Ψ̂m is invertible and its eigenvalues (λi)1≤i≤m satisfy inf1≤i≤m(λi) ≥ m log(n)/(cn).
Analogously, condition (9) is equivalent to the fact that Ψm is invertible and its eigenvalues
are lower bounded by 2m log(n)/(cn). We have:

Proposition 3.1. Assume that E(ε4
1) < +∞ and bA ∈ L4(A, f(x)dx). Then for any m

satisfying (9), we have

(11) E
[
‖b̃m − bA‖2f

]
≤
(

1 +
8c

log(n)

)
inf
t∈Sm

‖bA − t‖2f + 8σ2
ε

m

n
+
c

n
,

where c is a constant depending on E(ε4
1) and

∫
b4A(x)f(x)dx.

The proof of Proposition 3.1 exploits as a first step the proof of Theorem 3 in Cohen et
al. (2013). However, the estimator in Cohen et al. (2013) is mainly theoretical: indeed
they assume that b is bounded and the estimator depends on the bound, which has thus
to be known. As A may be unbounded, it is important to get rid of this restriction.

3.2. Rate and optimality. So far, the bias rate of the L2(A, f(x)dx)-risk in (6) and (11)
has not been assessed. To this end, we introduce regularity spaces related to f by setting:

(12) W s
f (A,R) =

{
h ∈ L2(A, f(x)dx),∀` ≥ 1, ‖h− hf` ‖

2
f ≤ R`−s

}
where we recall that hf` is the L2(A, f(x)dx)-orthogonal projection of h on S`.
From (11), we easily deduce an upper bound for the risk, which we state below. The risk
rate is optimal, as we also prove the following lower bound.

Theorem 3.1. Assume that bA ∈ W s
f (A,R), condition (25) holds and that mopt :=

n1/(s+1) satisfies (9).

• Upper bound. E(‖b̃mopt − bA‖2f ) ≤ Cn−s/(s+1).

• Lower bound. Assume in addition that ε1 ∼ N (0, σ2
ε),

lim inf
n→+∞

inf
Tn

sup
bA∈W s

f (A,R)
EbA [ns/(s+1)‖Tn − bA‖2f ] ≥ c

where infTn denotes the infimum over all estimators and where the constant c > 0 depends
on s and R.

The condition that mopt = n1/(s+1) satisfies (9) is actually mainly a constraint on f , see
the discussion at the end of Section 3.4.
The partly inverse problem appears here. The rate of ‖Ψ−1

m ‖op as a function of m is to
be interpreted as a measure of the degree of ill-posedness of the inverse problem, in the
context of regression function estimation.
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Proposition 3.2. Under the assumptions of Theorem 3.1, if moreover L(m) � m and
‖Ψ−1

m ‖op � mk, then

E[‖b̂m̂ − bA‖2f ] ≤ C(R)n
− s

(s∨k) +1 .

This result is due to the fact that the constraint L(m)‖Ψ−1
m ‖op � mk+1 . n/ log(n) has

to be fulfilled for mopt.

3.3. Case of compact A and compactly supported bases. In this section, we assume
that A is compact and give examples of bases where, for simplicity, A = [0, 1].

Classical compactly supported bases are: histograms ϕj(x) =
√
m1[j/m,(j+1)/m[(x), for

j = 0, . . . ,m−1; piecewise polynomials with degree r (rescaled Legendre basis up to degree
r on each subinterval [j/mr, (j + 1)/mr[, with m = (r + 1)mr); compactly supported
wavelets; trigonometric basis with odd dimension m, ϕ0(x) = 1[0,1](x) and ϕ2j−1(x) =√

2 cos(2πjx)1[0,1](x), and ϕ2j(x) =
√

2 sin(2πjx)1[0,1](x) for j = 1, . . . , (m− 1)/2.
For histograms and trigonometric basis, L(m) = m, for piecewise polynomials with

degree r, L(m) = (r + 1)m. Compactly supported wavelets also satisfy (7) with L(m) of
order m. The trigonometric spaces are nested; for histograms, piecewise polynomials and
wavelets, the models are nested if the subdivisions are diadic (m = 2k for increasing values
of k).

Let Pk(x) =
√

2Lk(2x − 1) 1[0,1](x), for k = 0, . . . ,m − 1 be the Legendre polyno-

mial basis rescaled from [−1, 1] to [0, 1]. It is an L2([0, 1], dx) orthonormal basis of
Sm = span(P0, . . . , Pm−1). As ‖Pk‖∞ =

√
2
√

2k − 1, we get L(m) = 2m2 (see Cohen
et al. (2013)).
If A is compact, one can assume that

(13) ∃f0 > 0, such that ∀x ∈ A, f(x) > f0.

This assumption is commonly and crucially used in papers on nonparametric regression.
In particular, it implies that Ψm is invertible, and more precisely:

Proposition 3.3. Assume that Assumption (13) is satisfied, then

∀m ≤ n, ‖Ψ−1
m ‖op ≤ 1/f0.

Indeed (13) implies that, for ~u = (u0, . . . , um−1)′ a vector of Rm,

(14) ~u ′Ψm ~u =

∫
A

m−1∑
j=0

ujϕj(x)

2

f(x)dx ≥ f0

∫
A

m−1∑
j=0

ujϕj(x)

2

dx = f0‖~u‖22,m.

Therefore ‖Ψ−1
m ‖op ≤ 1/f0 and Proposition 3.3 is proved. A consequence of (13) is that

the matrix Ψm needs not appear in condition (9), thus the matrix Ψ̂m needs not appear

in the definition of b̃m. So we can define, as in Baraud (2002), for c′ a constant,

(15) b̃m = b̂m1L(m)≤c′n/ log(n).

Now, let us discuss about the usual rates in this compact setting. Assume that

(16) bA ∈ L2(A, dx) and ‖f‖∞ < +∞.
Then ∀t ∈ Sm, ‖bA − t‖2f ≤ ‖f‖∞‖bA − t‖2A and thus

(17) inf
t∈Sm

‖bA − t‖2f ≤ ‖f‖∞‖bA − bm‖2A
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where bm is the L2(A, dx)-orthogonal projection of bA on Sm. Thus we recover a classi-

cal bias, and the bias-variance compromise leads to standard rates, typically n−2α/(2α+1)

for bA ∈ Bα,2,∞(A,R) a Besov ball with radius R and regularity α (see De Vore and
Lorentz (1993), or Baraud (2002, section 2)).

3.4. Examples of non compact A and non compactly supported bases. If A is
not compact, assumption (13) can not hold, therefore we can not get rid of the matrix
Ψm. Our contribution is to take into account and enlight the role of Ψm and to introduce
a new selection procedure involving a random collection of models (see Section 4).

Now we assume that

(18) bA ∈ L2(A, f(x)dx), λ(A ∩ supp(f)) > 0, and f is upper bounded.

We give two concrete examples of non compactly supported bases: the Laguerre basis
on A = R+ and the Hermite basis on A = R. See e.g. Comte and Genon-Catalot (2018)
for density estimation by projection using these bases.
• Laguerre basis, A = R+. Consider the Laguerre polynomials (Lj) and the Laguerre
functions (`j) given by

(19) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+), and is such
that (see Abramowitz and Stegun (1964)):

(20) ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2.

Clearly, the collection of models (Sm = span{`0, . . . , `m−1}) is nested, and (20) implies
that this basis satisfies (7) with L(m) = 2m (the supremum is attained at x = 0).
• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are
given, for j ≥ 0, by:

(21) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). The infinite norm of hj
satisfies (see Abramowitz and Stegun (1964), Szegö (1959) p.242):

(22) ‖hj‖∞ ≤ Φ0, Φ0 ' 1, 086435/π1/4 ' 0.8160,

so that the Hermite basis satisfies (7) with L(m) ≤ Φ2
0m. The collection of models is also

clearly nested.

Hereafter, we use the notation ϕj to denote `j in the Laguerre case and hj in the Hermite
case. We denote by Sm = span(ϕ0, ϕ1, . . . , ϕm−1) the linear space generated by the m

functions ϕ0, . . . , ϕm−1 and by fm =
∑m−1

j=0 aj(f)ϕj the orthogonal projection of f on Sm.

Then aj(f) = 〈f, ϕj〉 will mean the integral of f ϕj either on R or on R+.
As the bases functions are bounded, the terms

∫
ϕ2
jf are finite. Moreover, the assumptions

of Lemma 2.2 hold, so that the bias term in Proposition 2.1 tends to zero as m→ +∞.

The matrices Ψm, Ψ̂m in these bases have specific properties:

Lemma 3.1. For all m ∈ N, for all m ≤ n, Ψ̂m is a.s. invertible.
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The result below on Ψm is crucial for understanding our procedure.

Proposition 3.4. For all m, Ψm is invertible and there exists a constant c? such that,

(23) ‖Ψ−1
m ‖2op ≥ c?m.

In the Laguerre and Hermite cases, Inequality (23) clearly implies that ‖Ψ−1
m ‖op cannot

be uniformly bounded in m contrary to the case of compactly supported bases. This means
that the constraint in (9) leads to restrictions on the values m, as illustrated by the next
proposition.

Proposition 3.5. Consider the Laguerre or the Hermite basis. Assume that f(x) ≥
c/(1 + x)k for x ≥ 0 in the Laguerre case or f(x) ≥ c/(1 + x2)k for x ∈ R in the Hermite
case. Then for m large enough, ‖Ψ−1

m ‖op ≤ Cmk.

We performed numerical experiments which seem to indicate that the order mk is sharp.
If f is as in Proposition 3.5, Proposition 3.2 applies: the optimal rate of order n−s/(s+1)

can be reached by the adaptive estimator only if s > k. Note that in a Sobolev-Laguerre
ball:

(24) W s(R+, R) = {h ∈ L2(A, dx),
∑
j≥0

js〈h, `j〉2 ≤ R},

the index s (and not 2s) is linked with regularity properties of functions (see Section 7 of
Comte and Genon-Catalot (2015) and Section 7.2 of Belomestny et al. (2016)). The same
type of property holds for Sobolev-Hermite balls, see Belomestny et al. (2017). Therefore,

the rate n−s/(s+1) is non standard1.
In density estimation using projection methods on Laguerre or Hermite bases, the vari-

ance term in the risk bound of projection estimators has order
√
m/n so that the optimal

rate on a Sobolev-Laguerre or Sobolev-Hermite ball for the estimators risk is n−2s/(2s+1)

(see Remark 2.1). It seems that, in the regression setting, we cannot have such a gain.
Analogous considerations hold with the Hermite basis.

4. Adaptive procedure

Let us consider now the following assumptions.

(A1) The collection of spaces Sm is nested (that is Sm ⊂ Sm′ for m ≤ m′) and such
that, for each m, the basis (ϕ0, . . . , ϕm−1) of Sm satisfies

(25) ∀m ≥ 1, L(m) = ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm for c2
ϕ > 0 a constant.

(A2) ‖f‖∞ < +∞.

We present now a model selection procedure and associated risk bounds. To select the
most relevant space Sm, we proceed by choosing

(26) m̂ = arg min
m∈M̂n

{
−‖b̂m‖2n + κσ2

ε

m

n

}
1If bA is a combination of Γ-type functions, then the bias term inft∈Sm ‖bA − t‖2 is much smaller

(exponentially decreasing) and the rate log(n)/n can be reached by the adaptive estimator (see e.g.
Mabon (2017)).
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where κ is a numerical constant, and M̂n is a random collection of models defined by

(27) M̂n =

{
m ∈ N,m(‖Ψ̂−1

m ‖2op ∨ 1) ≤ d
n

log(n)

}
, d =

1

192 c2
ϕ(‖f‖∞ ∨ 1 + (1/3))

.

The value of the constant d is determined below by Lemma 6.6.

A theoretical counterpart of M̂n, with d is defined in (27), is useful:

(28) Mn =

{
m ∈ N,m (‖Ψ−1

m ‖2op ∨ 1) ≤ d

4

n

log(n)

}
.

Note that the cutoff for defining m̂ and b̂m̂ is different from the one used in (10). As

m(‖Ψ̂−1
m ‖op ∨ 1) ≤ m(‖Ψ̂−1

m ‖2op ∨ 1), this yields a smaller set of possible values for m̂.
The procedure (26) aims at performing an automatic bias-variance tradeoff. Each term is
related to the bias or the variance obtained in Proposition 2.1. The squared bias term is

equal to ‖bA−bfm‖2f = ‖bA‖2f −‖b
f
m‖2f where bfm is the L2(A, f(x)dx)-orthogonal projection

of bA on Sm. The first term ‖bA‖2f is unknown but does not depend on m; on the other

hand, ‖bfm‖2f = E[‖bfm‖2n]. Thus, the quantity −‖b̂m‖2n approximates the squared bias, up

to an additive constant, while σ2
εm/n has the variance order.

Theorem 4.1. Let (Xi, Yi)1≤i≤n be observations from model (1). Assume that (A1),
(A2) hold, that E(ε6

1) < +∞ and E
[
b4(X1)

]
< +∞. Then, there exists a numerical

constant κ0 such that for κ ≥ κ0, we have

(29) E
[
‖b̂m̂ − bA‖2n

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + κσ2
ε

m

n

)
+
C ′

n
,

and

(30) E
[
‖b̂m̂ − bA‖2f

]
≤ C1 inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + κσ2
ε

m

n

)
+
C ′1
n

where C,C1 are a numerical constants and C ′, C ′1 are constants depending on ‖f‖∞,
E[b4(X1)], E(ε6

1).

Theorem 4.1 shows that the risk of the estimator b̂m̂ automatically realizes the bias-
variance tradeoff, up to the multiplicative constants C,C1, both in term of empirical and
of integrated L2(A, f(x)dx)−risk. The conditions are general, rather weak, and do not
impose any support constraint. Theorem 4.1 contains existing results when the bases are
regular and compactly supported.

Remark 4.1. The constant d in the definition of M̂n depends on ‖f‖∞ which is unknown.
In practice, this quantity has to be replaced by a rough estimator. Otherwise, we can replace

the bound dn/ log(n) in M̂n by n/ log2(n) and assume that n is large enough.
The constant σ2

ε is also generally unknown, and must be replaced by an estimator. We
simply propose to use the residual least-squares estimator:

σ̂2
ε =

1

n

n∑
i=1

(Yi − b̂m∗(Xi))
2

where m∗ is an arbitrarily chosen dimension, which must be neither too large, nor too
small; for instance m∗ = b

√
nc. See e.g. Baraud (2000), section 6.
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5. Concluding remarks

In this paper, we study nonparametric regression function estimation by a projection
method which was first proposed by Birgé and Massart (1998) and Barron et al. (1999).
Compared with the popular Nadaraya-Watson approach, the projection method has sev-
eral advantages. In the Nadaraya-Watson method, one estimates b by a quotient of esti-

mators, namely b̂ = b̂f/f̂ . Dividing by f̂ requires a cutoff or a threshold to avoid too small
values in the denominator; determining its level is difficult. It is not clear if bandwidth
or model selection must be performed separately or simultaneously for the numerator and
the denominator. The rate of the final estimator of b corresponds to the worst rate of the
two estimators; in particular, it depends on the regularity index of b, but also on the one
of f . Therefore, the rate can correspond to the one associated to the regularity index of
b, if f is more regular than b, but it is deteriorated if f is less regular than b.
On the other hand, there is no support constraint for this estimation method.
In the projection method used here, the drawbacks listed above do not perturb the es-
timation except that the unknown function b is estimated in a restricted domain A. Up
to now, this set was mostly assumed to be compact. In the present paper, we show how
to eliminate the support constraint by introducing a new selection procedure where the
dimension of the projection space is chosen in a random set. The procedure can be applied
to non compactly supported bases such as the Laguerre or Hermite bases.
Several extensions of our method can be obtained.
First, note that the result of Proposition 2.1 holds for any sequence (Xi)1≤i≤n provided
that it is independent of (εi)1≤i≤n with i.i.d. centered εi.
We also may have considered the heteroskedastic regression the model

Yi = b(Xi) + σ(Xi)εi, Var(ε1) = E(ε2
1) = 1

and the same contrast. The estimator on Sm is still given by (4). Assuming that σ2(x) is
uniformly bounded, we can obtain results similar to those obtained here.
Note that regression strategies have been used in other problems, for instance survival
function estimation for interval censored data (see Brunel and Comte (2009)), hazard
rate estimation in presence of censoring (see Plancade (2011)): our proposal for classical
regression may extend to these contexts, for which it is natural to use R+-supported bases,
see Bouaziz et al. (2018). Indeed, the variables are lifetimes and thus nonnegative, and
censoring implies that the right-hand bound of the support is unknown and difficult to
estimate; it is thus most convenient that the Laguerre basis does not require to choose it.

6. Proofs

6.1. Proofs of the results of Section 2.

6.1.1. Proof of Proposition 2.1. Let us denote by Πm the orthogonal projection (for the

scalar product of Rn) on the sub-space
{(
t(X1), . . . ,t(Xn)

)′
, t∈ Sm

}
of Rn and by Πmb the

projection of the vector (b(X1), . . . , b(Xn))′. The following equality holds,

(31) ‖b̂m − bA‖2n = ‖Πmb− bA‖2n + ‖b̂m −Πmb‖2n = inf
t∈Sm

‖t− bA‖2n + ‖b̂m −Πmb‖2n
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By taking expectation, we obtain

(32) E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm

∫
(t− bA)2(x)f(x)dx+ E

[
‖b̂m −Πmb‖2n

]
.

Now we have:

Lemma 6.1. Under the assumptions of Proposition 2.1,

E
[
‖b̂m −Πmb‖2n

]
= σ2

ε

m

n
.

The result of the previous Lemma can be plugged in (32), thus we obtain Proposition 2.1.
2

6.1.2. Proof of Lemma 6.1. Denote by b(X) = (b(X1), . . . , b(Xn))′ and bA(X) = (bA(X1), . . . , bA(Xn))′.
We can write

b̂m(X) = (b̂m(X1), . . . , b̂m(Xn))′ = Φ̂m
~̂a(m),

where ~̂a(m) is given by (4), and

Πmb = Φ̂m~a
(m), ~a(m) = (Φ̂′mΦ̂m)−1Φ̂′mb(X).

Now, denoting by P(X) := Φ̂m(Φ̂′mΦ̂m)−1Φ̂′m, we get

(33) ‖b̂m −Πmb‖2n = ‖P(X)~ε‖2n =
1

n
~ε′P(X)′P(X)~ε =

1

n
~ε′P(X)~ε

as P(X) is the n × n-matrix of the euclidean orthogonal projection on the subspace of
Rn generated by the vectors ϕ0(X), . . . , ϕm−1(X), where ϕj(X) = (ϕj(X1), . . . , ϕj(Xn))′.
Note that E(‖P(X)~ε‖22,n) ≤ E(‖~ε‖22,n) < +∞. Next, we have to compute, using that P(X)
has coefficients depending on the Xi’s only,

E
[
~ε ′P(X))~ε

]
=
∑
i,j

E
[
εiεjPi,j(X)

]
= σ2

ε

n∑
i=1

E
[
Pi,i(X)

]
= σ2

εE
[
Tr(P(X))

]
,

where Tr(.) is the trace of the matrix. So, we find

Tr(P(X)) = Tr
(
(Φ̂′mΦ̂m)−1Φ̂′mΦ̂m

)
= Tr(Im) = m

where Im is the m×m identity matrix. Finally, we get E
[
‖b̂m −Πmb‖2n

]
= σ2

ε(m/n). This

is the result of Lemma 6.1. 2

6.1.3. Proof of Proposition 2.2. Let t =
∑m−1

j=0 ajϕj , and ~a = (a0, . . . , am−1)′, then ‖t‖2 =

‖~a‖2,m = ~a′~a and ‖t‖2f = ~a′Ψm~a = ‖Ψ1/2
m ~a‖22,m, where Ψ

1/2
m is a symmetric square root of

Ψm. Thus
sup

t∈Sm,‖t‖f=1
‖t‖2 = sup

~a∈Rm,‖Ψ1/2
m ~a‖2,m=1

~a′~a.

Set ~b = Ψ
1/2
m ~a, that is ~a = Ψ

−1/2
m

~b. Then

sup
t∈Sm,‖t‖f=1

‖t‖2 = sup
~b∈Rm,‖~b‖2,m=1

~b′Ψ−1
m
~b = ‖Ψ−1

m ‖op.

As, for m ≤ m′, we assume Sm ⊂ Sm′ , we also have

‖Ψ−1
m ‖op = sup

t∈Sm,‖t‖f=1
‖t‖2 ≤ sup

t∈Sm′ ,‖t‖f=1
‖t‖2 = ‖Ψ−1

m′ ‖op.



14 F. COMTE(1) AND V. GENON-CATALOT(2)

Thus m 7→ ‖Ψ−1
m ‖op is non decreasing. The same holds for supt∈Sm,‖t‖n=1 ‖t‖2 = ‖Ψ̂−1

m ‖op.
2

6.1.4. Proof of Proposition 2.3. The first equality holds by writing

sup
t∈Sm,‖t‖f=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Xi)− Et2(Xi)]

∣∣∣∣∣ = sup
~x∈Rm,‖

√
Ψm~x‖2,m=1

∣∣∣~x′Ψ̂m~x− ~x′Ψm~x
∣∣∣

= sup
~x∈Rm,‖

√
Ψm~x‖2,m=1

∣∣∣~x′(Ψ̂m −Ψm)~x
∣∣∣ = sup

~u∈Rm,‖~u‖2,m=1

∣∣∣~u′√Ψm
−1

(Ψ̂m −Ψm)
√

Ψm
−1
~u
∣∣∣

= ‖
√

Ψm
−1

(Ψ̂m −Ψm)
√

Ψm
−1
‖op

Now, Theorem 1 in Cohen et al. (2013) yields that for 0 < δ < 1, P(Ωm(δ)c) ≤ 2me−c(δ)n/K(m)

where, for (θj)0≤j≤m−1 an L2(A, f(x)dx)-orthonormal basis of Sm,

(34) K(m) = sup
x∈A

m−1∑
j=0

θ2
j (x),

provided that K(m) < +∞.2Note that the quantity K(m) is independent of the choice of
the basis (θj)0≤j≤m−1. Then, Proposition 2.3 follows from the lemma:

Lemma 6.2. Assume that Ψm is invertible and L(m) < +∞ (see (7)). Then K(m) <
+∞, and

K(m) = sup
x∈A

−−→ϕ(m)(x)′Ψ−1
m
−−→ϕ(m)(x) ≤ L(m)‖Ψ−1

m ‖op,
−−→ϕ(m)(x) = (ϕ0(x), . . . , ϕm−1(x))′.

Proof of Lemma 6.2. Let
−−→
θ(m)(x) = (θ0(x), . . . , θm−1(x))′. There exists an m × m

matrix Am such that
−−→
θ(m)(x) = Am

−−→ϕ(m)(x). By definition of the basis (θj)0≤j≤m,∫
A

−−→
θ(m)(x)

−−→
θ(m)(x)′f(x)dx = Idm

and ∫
A

−−→
θ(m)(x)

−−→
θ(m)(x)′f(x)dx = AmΨmA

′
m.

This implies A−1
m (A′m)−1 = (A′mAm)−1 = Ψm and A′mAm = Ψ−1

m . Thus
−−→
θ(m)(x)

−−→
θ(m)(x)′ = −−→ϕ(m)(x)A′mAm

−−→ϕ(m)(x) = −−→ϕ(m)(x)′Ψ−1
m
−−→ϕ(m)(x).

This gives the first equality. The bound by ‖Ψ−1
m ‖op‖−−→ϕ(m)(x)‖22,m = ‖Ψ−1

m ‖op
∑m−1

j=0 ϕ2
j (x)

ends the proof of Lemma 6.2. 2

Note that we can see also here that G in Cohen et al. (2013), that we denote here Ĝm

is such that Ĝm = AmΨ̂mA
′
m where A′m is a square root of Ψ−1

m .

2In Cohen et al. (2013), the condition K(m) < +∞ is not clearly stated; it is implicit as the result does
not hold otherwise. Actually all examples of the paper are for A compact, in which case K(m) < +∞. If
A is not compact, then K(m) may be +∞. Therefore our condition (7) and Lemma 6.2 clarify Cohen et
al.’s result.
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6.1.5. Proof of Proposition 2.4.
Proof of (i). To get the announced result, we apply again a Bernstein matrix inequality

given in Tropp (2012)(see Theorem 7.2). We write Ψ̂m as a sum of a sequence of inde-

pendent matrices Ψ̂m =
1

n

∑n
i=1 Km(Xi), with Km(Xi) = (ϕj(Xi)ϕk(Xi))0≤j,k≤m−1. We

define

(35) Sm =
1

n

n∑
i=1

Km(Xi)− E [Km(Xi)] .

• Bound on ‖Km(X1)− E [Km(X1)] ‖op/n. First we can write that

‖Km(X1)− E [Km(X1)] ‖op ≤ ‖Km(X1)‖op + ‖E [Km(X1)] ‖op,

and we bound the first term, the other one being similar. As Km(X1) is symmetric and
nonnegative a.s., we have a.s.

‖Km(X1)‖op = sup
‖~x‖2,m=1

∑
0≤j,k≤m−1

xjxk[Km(X1)]j,k = sup
‖~x‖2,m=1

∑
0≤j,k≤m−1

xjxkϕj(X1)ϕk(X1)

= sup
‖~x‖2,m=1

m−1∑
j=0

xjϕj(X1)

2 ≤ L(m).

So we get that, a.s.

(36) ‖Km(X1)− E [Km(X1)] ‖op/n ≤
2L(m)

n
:= L.

• Bound on ν(Sm) = ‖
∑n

i=1 E [(Km(Xi)− E [Km(Xi)])
′ (Km(Xi)− E [Km(Xi)])] ‖op/n

2.
We have

ν(Sm) =
1

n
sup

‖~x‖2,m=1
E ‖(Km(X1)− E [Km(X1)]) ~x‖22,m

It yields that, for ~x′ = (x0, . . . , xm−1),

E1 := E ‖(Km(X1)− E [Km(X1)]) ~x‖22,m =

m−1∑
j=0

Var

[
m−1∑
k=0

(ϕj(X1)ϕk(X1))xk

]

≤
m−1∑
j=0

E

(
m−1∑
k=0

(ϕj(X1)ϕk(X1))xk

)2

=

m−1∑
j=0

∫ (m−1∑
k=0

(ϕj(u)ϕk(u))xk

)2

f(u)du

Therefore as, by (A2), f is bounded,

E1 ≤ ‖f‖∞
m−1∑
j=0

∫ (m−1∑
k=0

(ϕj(u)ϕk(u))xk

)2

du ≤ ‖f‖∞L(m)

m−1∑
k=0

x2
k = ‖f‖∞L(m).

Then we get that ν(Sm) ≤ ‖f‖∞L(m)

n
. Applying Theorem 7.2 gives the result (i) of

Proposition 2.4.
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Proof of (ii). First note that

‖Ψ̂−1
m −Ψ−1

m ‖op = ‖Ψ−1/2
m

(
Ψ1/2
m Ψ̂−1

m Ψ1/2
m − Idm

)
Ψ−1/2
m ‖op)

≤ ‖Ψ−1
m ‖op‖Ψ1/2

m Ψ̂−1
m Ψ1/2

m − Idm‖op,

so that

(37)
{
‖Ψ̂−1

m −Ψ−1
m ‖op > α‖Ψ−1

m ‖op

}
⊂
{
‖Ψ1/2

m Ψ̂−1
m Ψ1/2

m − Idm‖op > α
}
.

Now, we write the decomposition
{
‖Ψ1/2

m Ψ̂−1
m Ψ

1/2
m − Idm‖op > α

}
:= B1 ∪B2 with

B1 =
{
‖Ψ1/2

m Ψ̂−1
m Ψ1/2

m − Idm‖op > α
}⋂{

‖Ψ−1/2
m Ψ̂mΨ−1/2

m − Idm‖op <
1

2

}
B2 =

{
‖Ψ1/2

m Ψ̂−1
m Ψ1/2

m − Idm‖op > α
}⋂{

‖Ψ−1/2
m Ψ̂mΨ−1/2

m − Idm‖op ≥
1

2

}
Clearly B2 ⊂

{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Idm‖op ≥

1

2

}
.

Applying Theorem 7.1 with A = Idm and B = Ψ
−1/2
m Ψ̂mΨ

−1/2
m − Idm, yields

B1 ⊂

{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Idm‖op

1− ‖Ψ−1/2
m Ψ̂mΨ

−1/2
m − Idm‖op

> α

}
∩
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op <

1

2

}
⊂
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > α/2

}
∩
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op <

1

2

}
⊂
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > α/2

}
Thus B1 ∪B2 ⊂

{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Idm‖op ≥

α ∧ 1

2

}
, which ends the proof of (ii) and

of Proposition 2.4. 2

6.2. Proofs of the results of Section 3.

6.2.1. Proof of Proposition 3.1. We define the sets (see (10)),

Λm =

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) ≤ c
n

log(n)

}
, and Ωm =

{∣∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣∣ ≤ 1

2
, ∀t ∈ Sm

}
.

Below, we prove the following lemma

Lemma 6.3. Under the assumptions of Proposition 3.1, for m satisfying condition (9),
we have

P(Λcm) ≤ c/n4, P(Ωc
m) ≤ c/n4

where c is a positive constant.

Now, we write

‖b̃m − bA‖2f = ‖b̂m − bA‖2f1Λm + ‖bA‖2f1Λcm

= ‖b̂m − bA‖2f1Λm∩Ωm + ‖b̂m − bA‖2f1Λm∩Ωcm + ‖bA‖2f1Λcm .(38)
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From the proof of Theorem 3 in Cohen et al. (2013), we get

(39) E
(
‖b̂m − bA‖2f1Λm∩Ωm

)
≤
(

1 +
8c

log(n)

)
inf
t∈Sm

(‖t− bA‖2f ) + 8σ2
ε

m

n
.

Remark. For sake of self-containedness, we give a quick and simple proof of a similar
bound, with different constants. For any t ∈ Sm, we have using (x+ y)2 ≤ (1 + 1/θ)x2 +
(1 + θ)y2 with θ = 4,

‖b̂m − bA‖2f1Λm∩Ωm ≤ 5

4
‖b̂m − t‖2f1Λm∩Ωm + 5‖t− bA‖2f1Λm∩Ωm

≤ 5

2
‖b̂m − t‖2n1Λm∩Ωm + 5‖t− bA‖2f1Λm∩Ωm ,

by using the definition of Ωm. We insert bA again and get:

‖b̂m − bA‖2f1Λm∩Ωm ≤ 5‖b̂m − bA‖2n1Λm∩Ωm + 5‖bA − t‖2n1Λm∩Ωm + 5‖t− bA‖2f1Λm∩Ωm .

Therefore taking expectation and applying Proposition 2.1 yield

E
(
‖b̂m − bA‖2f1Λm∩Ωm

)
≤ 15 inf

t∈Sm
(‖t− bA‖2f ) + 5σ2

ε

m

n
.

This just helps to see that Inequality (39) relies on computations w.r.t the empirical norm.

Now we bound the two remaining terms. Clearly, with Lemma 6.3,

(40) E(‖bA‖2f1Λcm) ≤ ‖bA‖2fP(Λcm) ≤ c/n4.

Next we deal with E(‖b̂m − bA‖2f1Λm∩Ωcm). We have ‖b̂m − bA‖2f ≤ 2(‖b̂m‖2f + ‖bA‖2f ) and

‖b̂m‖2f =

∫ m−1∑
j=0

âjϕj(x)

2

f(x)dx = (~̂a(m))′Ψm
~̂a(m) ≤ ‖Ψm‖op‖~̂a(m)‖22,m.

First,

‖Ψm‖op = sup
‖~x‖2,m=1

~x′Ψm̂~x = sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

f(u)du

≤ sup
‖~x‖2,m=1

∫ m−1∑
j=0

x2
j

m−1∑
j=0

ϕ2
j (u)

 f(u)du ≤ L(m)

Next, ‖~̂a(m)‖22,m = (1/n2)‖Ψ̂−1
m Φ̂′m~Y ‖22,m ≤ (1/n2)‖Ψ̂−1

m Φ̂′m‖2op‖~Y ‖22,n and

‖Ψ̂−1
m Φ̂′m‖2op = λmax

(
Ψ̂−1
m Φ̂′mΦ̂mΨ̂−1

m

)
= nλmax(Ψ̂−1

m ) = n‖Ψ̂−1
m ‖op

Therefore, for all m satisfying (9),

(41) ‖b̂m‖2f ≤
L(m)‖Ψ̂−1

m ‖op

n

(
n∑
i=1

Y 2
i

)
≤ c

log(n)

(
n∑
i=1

Y 2
i

)
,
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and thus on Λm, for n ≥ 3, ‖b̂m‖2f ≤ C
(∑n

i=1 Y
2
i

)
. Then as E[(

∑n
i=1 Y

2
i )2] ≤ n2E(Y 4

1 ),
we get

E(‖b̂m‖2f1Λm∩Ωcm) ≤
√
E(‖b̂m‖4f )P(Ωc

m) ≤ CE1/2(Y 4
1 )nP1/2(Ωc

m) ≤ c′/n.

On the other hand E(‖bA‖2f1Λm∩Ωcm) ≤ ‖bA‖2fP(Ωc
m) ≤ c”/n4. Thus

(42) E
(
‖b̂m − bA‖2f1Λm∩Ωcm

)
≤ c1/n.

Taking expectation of (38) and plugging (39)-(40)-(42) therein gives the result. 2

6.2.2. Proof of Lemma 6.3. The bound on P(Ωc
m) follows from Proposition 2.3 under

condition (9).
We study now P(Λcm) for m satisfying condition (9). On Λcm, for m satisfying condition

(9), we have L(m)‖Ψ−1
m ‖op ≤ cn/2 log(n) and L(m)‖Ψ̂−1

m ‖op > cn/ log(n). This implies,
as

c
n

log(n)
< L(m)‖Ψ̂−1

m ‖op ≤ L(m)‖Ψ−1
m − Ψ̂−1

m ‖op + L(m)‖Ψ−1
m ‖op

≤ L(m)‖Ψ−1
m − Ψ̂−1

m ‖op +
c

2

n

log(n)
,

that L(m)‖Ψ̂−1
m −Ψ−1

m ‖op ≥ cn/(2 log(n)). Therefore, we have

Λcm ⊂ {L(m)‖Ψ̂−1
m −Ψ−1

m ‖op >
c

2

n

log(n)
} ⊂ {‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op}.

Applying Proposition 2.4 (ii) and Proposition 2.3, we get

P(Λcm) ≤ P
(
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op ≥

1

2

)
≤ c

n4
. 2

6.2.3. Proof of Theorem 3.1. We use the strategy of proof of Theorem 2.11 in Tsy-

bakov (2009). We define proposals b0(x) = 0 and for ~θ = (θ0, . . . , θm−1)′ with θj ∈ {0, 1},

bθ(x) = δvnσε

m−1∑
j=0

[
Ψ−1/2
m

~θ
]
j
ϕj(x)

where Ψ
−1/2
m is a symmetric square-root of the positive definite matrix Ψ−1

m .
We choose v2

n = 1/n and m = n1/(s+1).
• We prove that b0, bθ ∈W s

f (A,R).

As bθ ∈ Sm, (bθ)
f
m = bθ and (bθ)

f
` = bθ for all ` ≥ m. Indeed, Sm ⊂ S`. Thus, for ` ≥ m,

‖bθ − (bθ)
f
` ‖

2
f = 0.

Next, ‖bθ − (bθ)
f
` ‖

2
f ≤ ‖bθ‖2f and as

∫
ϕjϕkf = [Ψm]j,k, we get

‖bθ‖2f = δ2v2
nσ

2
ε

∑
0≤j,k≤m−1

[
Ψ−1/2
m

~θ
]
j

[
Ψ−1/2
m

~θ
]
k

[Ψm]j,k = δ2v2
nσ

2
ε

m−1∑
j=0

θ2
j ≤ δ2v2

nσ
2
εm.

Thus for ` ≤ m,

`s‖bθ − (bθ)
f
` ‖

2
f ≤ `s‖bθ‖2f ≤ δ2v2

nσ
2
εm`

s ≤ δ2v2
nσ

2
εm

s+1 = δ2σ2
ε .

Choosing δ small enough, we get the result.
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• We prove that we can find {θ(0), . . . , θ(M)}, M elements of {0, 1}m such that

‖bθ(j) − bθ(k)‖
2
f ≥ cn−s/(s+1) for 0 ≤ j < k ≤M.

As above, we find

‖bθ − bθ′‖2f = δ2v2
nσ

2
ε

m−1∑
j=0

(θj − θ′j)2 = δ2v2
nσ

2
ερ(θ, θ′),

where ρ(θ, θ′) =
∑m−1

j=0 (θj − θ′j)2 =
∑m−1

j=0 1θj 6=θ′j is the Hamming distance between the

two binary sequences θ and θ′. By the Varshamov-Gilbert Lemma (see Lemma 2.9 p.104

in Tsybakov (2009)), for m ≥ 8, there exists a subset {θ(0), . . . , θ(M)} such that θ(0) =

(0, . . . , 0), ρ(θ(j), θ(k)) ≥ m/8, 0 ≤ j < k ≤M , and M ≥ 2m/8.

Therefore ‖bθ(j) − bθ(k)‖2f ≥ δ2v2
nσ

2
εm/8 = δ2σ2

εn
−s/(s+1)/8.

• Conditional Kullback. Consider first the design X1, . . . , Xn as fixed. Let Pi
θ(j)

the

density of Yi = bθ(j)(Xi) + εi, i.e. the Gaussian distribution N (bθ(j)(Xi), σ
2
ε), and Pθ(j) the

distribution of (Y1, . . . , Yn). Then,

1

M + 1

M∑
j=1

K(Pθ(j) ,Pθ(0)) =
1

M + 1

M∑
j=1

n∑
i=1

b2
θ(j)

(Xi)

2σ2
ε

=
n

2(M + 1)σ2
ε

M∑
j=1

‖bθ(j)‖
2
n.

Then on Ωn = ∪m≤cn/ log(n)Ωm, we have ‖bθ(j)‖2n ≤ 2‖bθ(j)‖2f , thus

1

M + 1

M∑
j=1

K(Pθ(j) ,Pθ(0)) ≤
nδ2v2

n

M + 1

M∑
j=1

m−1∑
k=0

(θ
(j)
k )2 ≤ nδ2v2

nm ≤
8δ2

log(2)
log(M).

For δ2 small enough so that 8δ2/ log(2) := α < 1/8,

1

M + 1

M∑
j=1

K(Pθ(j) ,Pθ(0))1Ωn ≤ α log(M)1Ωn .

Now, following Tsybakov (2009), p.116,

sup
bA∈W s

f (A,R)
EbA

[
ns/(s+1)‖Tn − bA‖2f

]
≥ A2 max

bA∈{bθ(j) ,j=0,...,M}
PbA

(
‖Tn − bA‖f > An−s/[2(s+1)]

)
≥ A2

(
log(M + 1)− log(2)

log(M)
− α

)
P(Ωn).

For n large enough and m satisfying (9), it follows from Lemma 6.3 that P(Ωn) ≥ 1 −
(c/n3) ≥ 1/2. Therefore the lower bound is proved. 2

6.2.4. Proof ol Lemma 3.1. For all ~u = (u0, . . . , um−1)′ ∈ Rm\{~0}, for t(x) =
∑m−1

j=0 ujϕj(x),

~u ′ Ψ̂m ~u = ‖t‖2n ≥ 0 . Thus ‖t‖n = 0 ⇒ t(Xi) = 0 for i = 1, . . . , n. As the Xi are almost
surely distinct and t(x)w(x) is a polynomial with degree m − 1 where w(x) = ex in the

Laguerre case and w(x) = ex
2/2 in the Hermite case, for m ≤ n, we obtain that t ≡ 0.

This implies ~u = ~0. 2
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6.2.5. Proof of Proposition 3.4. The invertibility of Ψm follows from Lemma 2.1 under
(18). Now we prove (23). First note that, for j large enough,

(43)

∫
ϕ2
j (x)f(x)dx ≤ c1√

j
,

where c1 is a constant. The proof of Inequality (43) in the Hermite case is given in
Belomestny et al. (2017), Proposition 2.1. and in Comte and Genon-Catalot (2018) in the
Laguerre case. As Ψm is a symmetric positive definite matrix, ‖Ψ−1

m ‖op = 1/λmin(Ψm),
where λmin(Ψm) denotes the smallest eigenvalue of Ψm. By (14), we get that for all
j ∈ {1, . . . ,m}, denoting by ~ej the jth canonical vector (all coordinates are 0 except the
jth which is equal to 1), ~ej

′Ψm ~ej =
∫
ϕ2
jf, and

min
‖~u‖2,m=1

~u ′Ψm~u ≤ min
j=1,...,m

~ej
′Ψm ~ej = min

j=1,...,m

∫
ϕ2
jf ≤

c√
m
.

As a consequence, λmin(Ψm) ≤ c/
√
m which implies the result. 2

6.2.6. Proof of Proposition 3.5. We need results on Laguerre functions with index δ > −1.
The Laguerre polynomial with index δ, δ > −1, and degree k is given by

L
(δ)
k (x) =

1

k!
exx−δ

dk

dxk

(
xδ+ke−x

)
.

We consider the Laguerre functions with index δ, given by

(44) `
(δ)
k (x) = 2(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

L
(δ)
k (2x)e−xxδ/2,

and `
(0)
k = `k. The family (`

(δ)
k )k≥0 is an orthonormal basis of L2(R+).

In the following, we use the result of Askey and Wainger (1965) which gives bounds on

`
(δ)
k , depending on k: for ν = 4k+2δ+2, and k large enough, it holds |`(δ)k (x/2)| ≤ Ce−c0x

for x ≥ 3ν/2, where c0 is a positive fixed constant.
We need similar results for Hermite functions. These can be deduced from the following

link between Hermite and Laguerre functions, proved in Comte and Genon-Catalot (2018):

Lemma 6.4. For x ≥ 0,

h2n(x) = (−1)n
√
x/2 `(−1/2)

n (x2/2), h2n+1(x) = (−1)n
√
x/2 `(1/2)

n (x2/2).

This is completed by the fact that Hermite functions are even for even n, odd for odd n.

We treat the Laguerre basis first. The result of Askey and Wainger (1965) recalled
above states that, for j large enough, `j(x) ≤ ce−c0x for 2x ≥ 3(2j + 1), where c02 is a
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constant. Thus for ~x ∈ Rm, ‖~x‖2,m = 1, we have

~x′Ψm~x =

∫ +∞

0

m−1∑
j=0

xj`j(u)

2

f(u)du ≥
∫ 3(2m+1)

0

m−1∑
j=0

xj`j(v/2)

2

f(v/2)dv/2

≥ inf
v∈[0,3(2m+1)]

f(v/2)

∫ 3(2m+1)/2

0

m−1∑
j=0

xj`j(u)

2

du

≥ inf
u∈[0,3(m+1/2)]

f(u)

∫ +∞

0

m−1∑
j=0

xj`j(u)

2

du−
∫ +∞

3(m+1/2)

m−1∑
j=0

xj`j(u)

2

du


Then infu∈[0,3(m+1/2)] f(u) ≥ Cm−k and

∫ +∞
0

(∑m−1
j=0 xj`j(u)

)2
du = ‖~x‖22,m = 1 and, for

m large enough, ∫ +∞

3(m+1/2)

m−1∑
j=0

xj`j(u)

2

du ≤ C ′me−c′0m ≤ 1

2
.

It follows that, for m large enough, ~x′Ψm~x ≥ Cm−k/2.

For the Hermite basis, we proceed analogously using that |hj(x)| ≤ c|x|e−c0x2 for x2 ≥
(3/2)(4j + 3). 2

6.3. Proof of the results in Section 4.

6.3.1. Proof of Inequality (29) of Theorem 4.1. We denote by M̂n the maximal element of

M̂n (see (27)) and by Mn the maximal element of Mn (see (28)). We need also:

(45) M+
n =

{
m ∈ N, m (‖Ψ−1

m ‖2op ∨ 1) ≤ 4d
n

log(n)

}
,

with d give in (27). Let M+
n denote the maximal element of M+

n . Heuristically, with
large probability, considering the constants associated with the sets, we should have Mn ≤
M̂n ≤ M+

n or equivalently Mn ⊂ M̂n ⊂ M+
n , and on this set, we really bound the risk;

otherwise, we bound the probability of the complement. More precisely, we denote by

(46) Ξn :=
{
Mn ⊂ M̂n ⊂M+

n

}
,

and we write the decomposition:

(47) b̂m̂ − bA = (̂bm̂ − bA)1Ξn︸ ︷︷ ︸
:=T1

+ (̂bm̂ − bA)1Ξcn︸ ︷︷ ︸
:=T2

.

The proof relies on two steps and the two following Lemmas.

Lemma 6.5. Under the assumptions of Theorem 4.1, there exists κ0 such that for κ ≥ κ0,
we have

E
[
‖b̂m̂ − bA‖2n1Ξn

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖t− bA‖2f + κσ2
ε

m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.
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Lemma 6.6. We have, for c a positive constant,

P(Ξcn) = P
({
Mn * M̂n or M̂n *M+

n

})
≤ c

n2
.

Lemma 6.5 gives the bound on T1.
For T2, we use Lemma 6.6 as follows. Recall that Πm denotes the orthogonal projection

(for the scalar product of Rn) on the sub-space
{(
t(X1), . . . ,t(Xn)

)′
, t∈Sm

}
of Rn. We have(

b̂m(X1), . . . , b̂m(Xn)
)′

= ΠmY . By using the same notation for the function t and the

vector
(
t(X1), . . . , t(Xn)

)′
, we can see that

(48) ‖b− b̂m̂‖2n = ‖b−Πm̂b‖2n + ‖Πm̂ε‖2n ≤ ‖b‖2n + n−1
n∑
k=1

ε2
k.

Thus

E
[
‖b− b̂m̂‖2n1Ξcn

]
≤ E

[
‖b‖2n1Ξcn ] +

1

n

n∑
k=1

E
[
ε2
k1Ξcn

]
≤
(√

E
[
b4(X1)

]
+
√
E
[
ε4

1

])√
P (Ξcn).

We deduce that

E
[
‖b− b̂m̂‖2n1Ξcn

]
≤ c′

n
.

This, together with Lemma 6.5 plugged in decomposition (47), ends the proof of Inequality
(29) of Theorem 4.1. 2

6.3.2. Proof of Lemma 6.5. To begin with, we note that γn(b̂m) = −‖b̂m‖2n. Indeed, using

formula (4) and Φ̂′mΦ̂m = nΨ̂m, we have

γn
(
b̂m
)

=
∥∥Φ̂m

~̂a(m)
∥∥2

n
− 2
(
~̂a(m)

)′
Φ̂′m ~Y = −

(
~̂a(m)

)′
Φ̂′m ~Y = −

∥∥Φ̂m
~̂a(m)

∥∥2

n
.

Consequently, we can write

m̂ = arg min
m∈M̂n

{γn(b̂m) + pen(m)}, with pen(m) = κσ2
ε

m

n
.

Thus, using the definition of the contrast, we have, for any m ∈ M̂n, and any bm ∈ Sm,

(49) γn(b̂m̂) + pen(m̂) ≤ γn(bm) + pen(m).

Now, on the set Ξn =
{
Mn ⊂ M̂n ⊂M+

n

}
, we have in all cases that m̂ ≤ M̂n ≤ M+

n

and either Mn ≤ m̂ ≤ M̂n ≤ M+
n or m̂ < Mn ≤ M̂n ≤ M+

n . In the first case, m̂ is upper
and lower bounded by deterministic bounds, and in the second,

m̂ = arg min
m∈Mn

{γn(b̂m) + pen(m)}.

Thus, on Ξn, Inequality (49) holds for any m ∈ Mn and any bm ∈ Sm. The decompo-
sition γn(t) − γn(s) = ‖t − b‖2n − ‖s − b‖2n + 2νn(t − s), where νn(t) = 〈~ε, t〉n, yields, for
any m ∈Mn and any bm ∈ Sm,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n + 2νn(b̂m̂ − bm) + pen(m)− pen(m̂).
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We introduce, for ‖t‖2f =
∫
t2(u)f(u)du, the unit ball

Bf
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖f = 1}

and the set

(50) Ωn =

{∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ ≤ 1

2
, ∀t ∈

⋃
m,m′∈M+

n

(Sm + Sm′) \ {0}
}
.

We start by studying the expectation on Ωn. On this set, the following inequality holds:
‖t‖2f ≤ 2‖t‖2n. We get, on Ξn ∩ Ωn,

‖b̂m̂ − b‖2n ≤‖bm − b‖2n +
1

8
‖b̂m̂ − bm‖2f + (8 sup

t∈Bfm̂,m(0,1)

ν2
n(t) + pen(m)− pen(m̂))

≤
(

1 +
1

2

)
‖bm − b‖2n +

1

2
‖b̂m̂ − b‖2n + 8

(
sup

t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+

+ pen(m) + 8p(m, m̂)− pen(m̂).(51)

Here we state the following Lemma:

Lemma 6.7. Assume that (A1) holds, and that E(ε6
1) < +∞. Then νn(t) = 〈~ε, t〉n

satisfies

E

( sup
t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+

1Ξn∩Ωn

 ≤ C

n

where p(m,m′) = 8σ2
ε max(m,m′)/n.

We see that, for κ ≥ κ0 = 32, we have 8p(m, m̂)− pen(m̂) ≤ pen(m). Thus, by taking
expectation in (51) and applying Lemma 6.7, it comes that, for all m in Mn and bm in
Sm,

(52) E
[
‖b̂m̂ − bA‖2n1Ξn∩Ωn

]
≤ 3E

[
‖bm − bA‖2n

]
+ 2pen(m) +

16C

n
.

The complement of Ωn satisfies the following Lemma:

Lemma 6.8. Assume that (A1)-(A2) hold. Then, Ωn defined by (50) is such that
P(Ωc

n) ≤ c/n3 where c is a positive constant.

We conclude as above (see equation (48)) by writing

E
[
‖b− b̂m̂‖2n1Ξn∩Ωcn

]
≤ (
√
E
[
b4(X1)

]
+
√
E
[
ε4

1

]
)
√
P(Ωc

n).

This result, together with (52) ends the proof of Lemma 6.5. 2

Proof of Lemma 6.7. We can not apply Talagrand’s Inequality to the process νn itself
as the noise is not bounded. This is why we decompose the variables εi as follows:

εi = ηi + ξi, ηi = εi1|εi|≤kn − E
[
εi1|εi|≤kn

]
.

Then we have

νn(t) = νn,1(t) + νn,2(t), νn,1(t) = 〈η, t〉n, νn,2(t) = 〈ξ, t〉n,
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and (
sup

t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+
≤

(
sup

t∈Bfm̂,m(0,1)

2ν2
n,1(t)− p(m, m̂)

)
+

+2 sup
t∈Bfm̂,m(0,1)

ν2
n,2(t).(53)

We successively bound the two terms.
Let (ϕ̄j)j∈{1,...,max(m,m′)} be an orthonormal basis of Sm + Sm′ for the weighted scalar

product 〈·, ·〉f . It is easy to see that:

E
[

sup
t∈Bf

m′,m(0,1)

ν2
n,1(t)

]
≤

∑
j≤max(m,m′)

1

n
Var

(
η1ϕ̄j(X1)

)
≤

∑
j≤max(m,m′)

1

n
E

[(
η1ϕ̄j(X1)

)2
]

≤ 1

n
E
[
ε2

1

] ∑
j≤max(m,m′)

E
[
ϕ̄2
j (X1)

]
=
σ2
ε max(m,m′)

n
:= H2

since the definition of ϕ̄j implies that
∫
ϕ̄2
j (x)f(x)dx = 1. Next

sup
t∈Bf

m′,m(0,1)

Var(η1t(X1)) ≤ E
[
η2

1

]
sup

t∈Bf
m′,m(0,1)

E
[
t2(X1)

]
≤ σ2

ε := v

since E
[
t2(X1)

]
= ‖t‖2f . Lastly

sup
t∈Bf

m′,m(0,1)

sup
(u,x)

(
|u|1|u|≤kn |t(x)|

)
≤ kn sup

t∈Bf
m′,m(0,1)

sup
x
|t(x)|.

For t =
∑m−1

j=0 ajϕj , we have ‖t‖2f = ~a′Ψm~a = ‖
√

Ψm~a‖22,m. Thus, for any m,

sup
t∈Bfm(0,1)

sup
x
|t(x)| ≤ cϕ

√
m sup
‖
√

Ψm~a‖2,m=1

‖~a‖2,m

≤ cϕ
√
m sup
‖~u‖2,m=1

|‖
√

Ψ−1
m ~u‖2,m = cϕ

√
m

√
‖Ψ−1

m ‖op.

Under condition (45) on M+
n , we have

√
m

√
‖Ψ−1

m ‖op =
(
m‖Ψ−1

m ‖2op

)1/4
m1/4 ≤

(
4d

n

log(n)

)1/4

m1/4.

We can take

(54) M1 := cϕkn

(
4d

n

log(n)

)1/4

(m ∨m′)1/4.

Consequently, the Talagrand Inequality (see Theorem 7.3) implies, for p(m,m′) =

8σ
2
ε max(m,m′)

n , and denoting by m∗ := max(m,m′),

E

( sup
t∈Bf

m,m′ (0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+

 ≤ C1

n

(
e−C2m∗ +

k2
n

√
n(m∗)1/2

n
e−C3

n1/4(m∗)1/4
kn

)
.
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So, we choose kn = n1/4 and we get,

E
(

sup
t∈Bf

m′,m(0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+
≤ C ′1

n

(
exp(−C2m

∗) + (m∗)1/2 exp(−C3(m∗)1/4)
)
.

By summing up all terms over m′ ∈Mn, we deduce

E

( sup
t∈Bfm̂,m(0,1)

[νn,1]2(t)− p(m, m̂)
)
+

1Ξn

 ≤
∑

m′∈M+
n

E
(

sup
t∈Bf

m′,m(0,1)

[νn,1]2(t)− p(m,m′)
)
+

≤ C

n
.(55)

Let us now study the second term in (53). Recall that M+
n ≤ 4dn/ log(n) the dimension

of the largest space of the collection. Then we have

E
[(

sup
t∈Bfm̂,m(0,1)

ν2
n,2(t)1Ξn

)
+

]
≤

M+
n∑

j=1

E
[
〈ξ, ϕ̄j〉2n

]
=

M+
n∑

j=1

Var
( 1

n

n∑
i=1

ξiϕ̄j(Xi)
)

=
1

n

M+
n∑

j=1

E
[
ξ2

1

]
E
[
ϕ̄2
j (X1)

]
≤ M+

n

n
E
[
ε2

11|ε1|>kn
]

≤ M+
n

n

E
[
|ε1|2+p

]
kpn

≤ C
E
[
ε6

1

]
n

,

where the last line follows from the Markov inequality and the choices kn = n1/4 and
p = 4. This bound together with (55) plugged in (53) gives the result of Lemma 6.7. 2

Proof of Lemma 6.8. As the collection of models is nested, we have

P(Ωc
n) ≤

∑
m∈M+

n

P

(
∃t ∈ Sm,

∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ > 1

2

)
=

∑
m∈M+

n

P(Ωc
m).

Now we proved in Lemma 6.3, that P(Ωc
m) ≤ c/n4 if m‖Ψ−1

m ‖op ≤ (c/2)(n/ log(n)). Here

m(‖Ψ−1
m ‖2op ∨ 1) ≤ 4d

n

log(n)
⇒ m‖Ψ−1

m ‖op ≤ 4d
n

log(n)
.

Therefore, the result holds if 4d ≤ c/2, which is true. With the sum other a set of
cardinality less than n, we get that P(Ωc

n) ≤ c/n3. 2

6.3.3. Proof of Lemma 6.6. We study first P(Mn * M̂n) = P(Mn > M̂n). On this set,

there exists k ∈Mn such that k /∈ M̂n.
For this index k, we have k‖Ψ−1

k ‖
2
op ≤ dn/4 log(n) and k‖Ψ̂−1

k ‖
2
op > dn/ log(n). This

implies, as

d
n

log(n)
< k‖Ψ̂−1

k ‖
2
op ≤ 2k‖Ψ−1

k − Ψ̂−1
k ‖

2
op + 2k‖Ψ−1

k ‖
2
op ≤ 2k‖Ψ−1

k − Ψ̂−1
k ‖

2
op +

d

2

n

log(n)
,
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that k‖Ψ̂−1
k −Ψ−1

k ‖
2
op ≥ dn/(4 log(n)). Let us denote by

∆m = {m‖Ψ̂−1
m −Ψ−1

m ‖2op >
d

4

n

log(n)
},

we have,

P(Mn * M̂n) ≤
∑

m∈Mn

P(∆m) ≤
∑

m∈Mn

P(‖Ψ̂−1
m −Ψ−1

m ‖op > ‖Ψ−1
m ‖op).

We have from (ii) of Proposition 2.4 and Ptoposition 2.3, that P(‖Ψ̂−1
m − Ψ−1

m ‖op >
‖Ψ−1

m ‖op) ≤ c/n4 for m satisfying (9) with c given by (10). Indeed, we can conclude as in

the proof of Lemma 6.8 above, because d/4 ≤ c/2. Thus we proved that P(Mn * M̂n) ≤
c/n3.

Now we study P(M̂n *M+
n ). On the set (M̂n *M+

n ), we can find a k satisfying

k‖Ψ̂−1
k ‖

2
op ≤ d

n

log(n)
and k‖Ψ−1

k ‖
2
op > 4d

n

log(n)
,

therefore such that

k‖Ψ̂−1
k ‖

2
op ≤ d

n

log(n)
and k‖Ψ̂−1

k −Ψ−1
k ‖

2
op ≥ d

n

log(n)
.

Thus we have

P(M̂n *M+
n ) ≤

∑
k≤dn/ log(n)

P
(
k‖Ψ̂−1

m ‖2op ≤ d
n

log(n)
and k‖Ψ̂−1

k −Ψ−1
k ‖

2
op ≥ d

n

log(n)

)

≤
∑

k≤dn/ log(n)

P
(
k‖Ψ̂−1

k ‖
2
op ≤ d

n

log(n)
and ‖Ψ̂−1

k −Ψ−1
k ‖op ≥ ‖Ψ̂−1

k ‖op

)

Now, proceeding with Proposition 2.4 (ii) and interchanging Ψ̂m and Ψm, we get{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ̂−1

m ‖op

}
⊂
{
‖Ψ̂−1/2

m ΨmΨ̂−1/2
m − Idm‖op >

1

2

}
.

Using ‖Ψ̂−1/2
m ΨmΨ̂

−1/2
m − Idm‖op ≤ ‖Ψ̂−1

m ‖op‖Ψm − Ψ̂m‖op, we get{
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ̂−1

m ‖op

}
⊂
{
‖Ψ̂m −Ψm‖op >

1

2
‖Ψ̂−1

m ‖−1
op

}
.

Therefore

P(M̂n *M+
n ) ≤

∑
k≤dn/ log(n)

P

(
k‖Ψ̂−1

k ‖
2
op ≤ d

n

log(n)
and ‖Ψ̂k −Ψk‖op ≥

1

2‖Ψ̂−1
k ‖op

)

≤
∑

k≤dn/ log(n)

P

(
‖Ψ̂k −Ψk‖op ≥

1

2

√
k log(n)

dn

)
≤ c

n2
,

by applying Proposition 2.4 and using the value of d (this is where d is chosen). 2
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6.3.4. Proof of Inequality (30) of Theorem 4.1. We have the following sequence of inequal-
ities, for any m ∈Mn and t any element of Sm,

‖b̂m̂ − bA‖2f = ‖b̂m̂ − bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 2‖b̂m̂ − t‖2f1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 4‖b̂m̂ − t‖2n1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

≤ 8‖b̂m̂ − bA‖2n1Ωn + 8‖t− bA‖2n1Ωn + 2‖t− bA‖2f1Ωn + ‖b̂m̂ − bA‖2f1Ωcn

where Ωn is defined by (50). Therefore, using the result of Theorem 4.1 and E(‖t−bA‖2n) =
‖t− bA‖2f , we get that for all m ∈Mn and for any t ∈ Sm,

(56) E(‖b̂m̂ − bA‖2f ) ≤ C1

(
‖t− bA‖2f + σ2

ε

m

n

)
+
C2

n
+ E

(
‖b̂m̂ − bA‖2f1Ωcn

)
,

so only the last term is to be studied. First, recall that Lemma 6.8 implies that P(Ωc
n) ≤

d/n3. Next, write that ‖b̂m̂−bA‖2f ≤ 2(‖b̂m̂‖2f +‖bA‖2f ). As f is bounded, we use a slightly

improved version of (41). Indeed, for all m,

‖Ψm‖op = sup
‖~x‖2,m=1

~x′Ψm~x = sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

f(u)du

≤ ‖f‖∞ sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

du = ‖f‖∞,

yields, as for m̂ ∈ M̂n, ‖Ψ̂−1
m̂ ‖op ∨ 1 ≤ c

√
n,

‖b̂m̂‖2f ≤ ‖f‖∞
‖Ψ̂−1

m̂ ‖op

n

(
n∑
i=1

Y 2
i

)
≤ C√

n

(
n∑
i=1

Y 2
i

)
.

Then as E[(
∑n

i=1 Y
2
i )2] ≤ n2E(Y 4

1 ), we get

E(‖b̂m̂‖2f1Ωcn) ≤
√

E(‖b̂m̂‖4f )P(Ωc
n) ≤ CE1/2(Y 4

1 )
√
nP1/2(Ωc

n) ≤ c′/n.

On the other hand E(‖bA‖2f1Ωcn) ≤ ‖bA‖2fP(Ωc
n) ≤ c”/n3. Thus E

(
‖b̂m̂ − bA‖2f1Ωcn

)
≤

c1/n and plugging this in (56) ends the proof of Inequality (30) in Theorem 4.1. 2

7. Theoretical tools

A proof of the following theorem can be found in Stewart and Sun (1990).

Theorem 7.1. Let A, B be (m × m) matrices. If A is invertible and ‖A−1B‖op < 1,

then Ã := A + B is invertible and it holds

‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op

Theorem 7.2 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of indepen-
dent, random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each index k.
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Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the the variance statistic of the sum:
ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then

E‖Z‖op ≤
√

2ν(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Furthermore, for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in Tropp (2012) or Tropp (2015).
We recall the Talagrand concentration inequality given in Klein and Rio (2005).

Theorem 7.3. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H
and v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v.

Then for all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−
√
2bC(α)

√
α

7
nH
M

)
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of
a linear normed space, after checking that f → νn(f) is continuous and F contains a
countable dense family.
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Appendix A. Numerical illustrations

In this section, numerical illustrations of how our method works are presented. The
estimation procedure is implemented for the Laguerre (Figures 1 to 4) and the Hermite
basis (Figure 5). The (εi)1≤i≤n are generated as an i.i.d. sample of Gaussian N (0, σ2)
with σ = 0.5. Then, we choose different functions b(.) (bounded or not) and different
types of distribution of the design (Xi)1≤i≤n. Typically, a linear function x 7→ 2x + 1
is experimented without the information of its linearity, which allows to test moment
conditions; on the contrary, x 7→ 4x/(1+x2) is bounded and should be easier to reconstruct.
For the design density, we consider standard uniform or Gaussian cases, and also different
heavy tailed distributions.
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Figure 1. First line: beam of the proposals f̂m for m = 1 to mmax in the
Laguerre basis. Second line: the estimator as selected by the procedure,
f̂m̂. Function b(x) = 2x+1, n = 1000, density fk(x) = (k−1)/(1+x)k1x≥0.

In Figure 1, we plot in the first line the collection of estimators in the Laguerre basis,
among which the algorithm makes the selection. The number of computed estimators

is different from one example to another, as the collection of models M̂n is random and

depends on ‖Ψ̂−1
m ‖op. In the practical implementation, we consider the (random) maximum

value mmax such that ‖Ψ̂−1
m ‖op ≤ n, since inversion of the matrix Ψ̂m remains possible

in such cases. Surprisingly, we can see that very few estimators are sometimes computed
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(see the example of uniform distribution on the right). They are also very different from
one dimension to another. The second line presents the final estimator, selected by the
procedure. In the example of Figure ??, the curve is linear, and is perfectly estimated,
although its particular form is unknown and was not a priori easy to obtain with the
Laguerre basis.
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Figure 2. 25 estimated curves in Laguerre basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 2x+1 and different laws for the design,
fk(x) = (k − 1)/(1 + x)k1x≥0.
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Figure 3. 25 estimated curves in the Laguerre basis (dotted -green/grey),
the true in bold (red), n = 1000, density fk(x) = (k − 1)/(1 + x)k1x≥0 for
k = 3, 4 and 5, b(x) = 4x/(1 + x2)1x≥0.

In Figures 2, 3 and 4, we present beams of 25 estimators computed in the Laguerre basis,
they give information about the variability of the procedure. Figure 2 is complementary
of Figure 1 and considers the same linear regression function with similar distributions for



32 F. COMTE(1) AND V. GENON-CATALOT(2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

X ∼ U([0, 2]) X ∼ E(1) X ∼ N (3, 1)
¯̂m = 2.5(0.8), m̄max= 5.0(0) ¯̂m = 5.1(0.8), m̄max= 9.4(0.6) ¯̂m = 5.1(0.7), m̄max= 8.9(0.3)

Figure 4. 25 estimated curves in Laguerre basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 4x/(1 + x2)1x≥0 and different laws for
the design.

X, and Figure 3 presents the results for the function b(x) = 4x/(1 +x2)1x≥0 and different
heavy tailed distributions for X. The beams illustrate the stability of the algorithm,
with some design distributions leading to better results, probably due to higher signal-
to-noise ratio. The interest of the linear case is also to illustrate the sharpness of the
moment conditions: indeed the condition E[b2(X1)] < +∞ for X with density fk(x) =
(k − 1)/(1 + x)k1x≥0 is satisfied for k > 3 and the condition E[b4(X1)] < +∞ holds for
k > 5. We checked, in the case of linear b(.), that the method does not work for k = 2, 3,
but the last two plots of Figure 2 show that it works rather well for k = 4, 5. The minimal
theoretical condition may thus be weakened from E[b4(X1)] < +∞ to E[b2(X1)] < +∞.
The Hermite basis has similar behaviour and an example is provided in Figure 5.
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Figure 5. 25 estimated curves in Hermite basis (dotted -green/grey), the
true in bold (red), n = 1000, b(x) = 2x2 and different laws for the design.



REGRESSION FUNCTION ESTIMATION AS A PARTLY INVERSE PROBLEM 33

Below each plot, we give the density of the design and the value of ¯̂m which is the mean
of the selected dimensions for the 25 estimators represented on the figure, with standard
deviation in parenthesis. It is associated with the value of m̄max which is the mean of
the maximal dimension for which the estimator is computed, with standard deviation in
parenthesis. We can see that the maximal dimension is rather small (less than ten models
are compared for selection, in general) but an adequate choice seems always to exist in this
small collection. This means that the squared-bias variance compromise in the restricted
setMn has good performance and that the non compact Laguerre and Hermite bases are
very interesting and simple estimation tools. Indeed, the method is very fast and this
low complexity, already argued in Belomestny et al. (2017), has an important practical
interest.


