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Abstract
The presented work is a part of an ongoing research effort on the development of a general methodology for the determination of kinetic models

of solid thermal decomposition under pyrolysis conditions with thermogravimetric analysis (TGA) devices. The goal is to determine a simple and

robust kinetic model for a given solid with the minimum of TGA experiments. From the latter point of view, this work can be seen as the optimal

design of TGA experiments for pyrolysis kinetic modelling. In this paper, a general procedure is presented and more precise results are given about

the influence of the sensitivity matrix on the estimation of the kinetic parameters and about the important influence of the specific TGA runs used

for parameter estimation on the precision of the fitted parameters. The first results are shown for simulated applications; in the final part, the

presented results concern cellulose pyrolysis in a Setaram TGA device.
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1. Introduction

The development of design tools for industrial scale

pyrolysis processes adapted to various waste or mixed waste

involves correctly understanding and describing the chemical

and physical phenomena occurring inside the pyrolysis

vessel, i.e. the chemistry of the solid decomposition, the

thermal transfer between wall, solid and gas phases, and also

inside the solid phase. For instance, the modelling of thermal

degradation of a large solid body generally requires solving

heat and mass balance equations to compute the temperature

and the gas composition at each location inside the material.

The heat and mass source terms are calculated from the

progress of the chemical reactions, which is itself computed

from a reaction scheme involving the kinetic parameters.

Because the assumption of a uniform temperature (or a

constant heating rate) inside the process (for example fixed

bed reactor, slumping bed in a rotary kiln, etc.) is too
* Corresponding author.
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restrictive, the set of kinetic parameters should be unique and

independent of the operating conditions. Moreover, before

trying to evaluate the kinetic parameters, some other

important choices must be made: Which reaction scheme

and kinetic model is associated? How are the reaction rates

computed (chemical reaction first or nth order, nucleation,

phase boundary reaction, diffusion, etc.)? For example, in a

previous study concerning the thermal degradation of

cardboard, six reaction schemes have been checked without

a real conclusion on the right one [1]. Another example is the

wide range of literature about cellulose thermal degradation

[2,3]; many kinetic laws and kinetic parameters have been

proposed during the last decades.

The aim of our ongoing research effort is to bring answers to

questions like these: What are the best kinetic parameters for a

chosen model? What is the best (or rather the least worst)

kinetic model between several candidates? How many

experiments must be made to identify the kinetic model and

kinetic parameters? What would be the optimal experiment(s)

to identify the kinetic model and the kinetic parameters? What

is the confidence in the estimated parameters? etc. Initially, all

these questions are limited to the study of solid thermal

mailto:dirion@enstimac.fr
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degradation primary reactions with a thermogravimetric

analysis (TGA).

In a previous stage [4,5], a numerical estimation procedure

to simultaneously determine the kinetic parameters from TGA

experiments under different thermal conditions was developed.

This numerical procedure is used to recover the kinetic

parameters of the given model. The parameter estimation

problem is solved with a gradient type-method by minimizing

the least square norm. In this paper, we present additional

numerical techniques to help to determine the kinetic

parameters and to design a more robust parameter estimation

tool. We show how the examination of the sensitivity

coefficients and the matrix sensitivity determinant can improve

the analysis of kinetic estimation results. Finally, some first

results concerning the optimal design of TGA experiments are

presented. By optimal design, we mean ‘‘what are the best

experiments to do for the optimal determination of kinetic

parameters?’’.

2. Optimum experimental design problem

One of the aims of the optimum experimental design is to

plan experiments in order to maximize the statistical reliability

of some unknown parameters estimated from the experimental

data [6]. In our case, the goal is then to use the approach of

optimum experimental design to determine the optimal TGA

run to perform in order to find the ‘‘best’’ kinetic parameters.

By ‘‘best’’ parameters, we mean the parameters with a higher

statistical reliability, i.e. with the highest associated confidence.

Then we call the ‘‘optimal experiment’’, the one allowing us to

determine these ‘‘best’’ parameters.

2.1. Initial kinetic parameter estimation problem

First, let us define the kinetic parameters estimation

problem. The kinetic model used is given by the following

equations:

ẏ ¼ fðt; y; p; xÞ; yðt ¼ 0Þ ¼ y0; z ¼ gðt; yÞ (1)

where t is the time, y and ẏ are the set of dependent variables

characterizing the solid kinetic and their derivatives with

time, p the set of kinetic parameters to identify and x are

the other variables of the model such as temperature; z

corresponds to the model output to compare with the evolu-

tion of mass loss measured with the thermobalance. Gener-

ally, z is a linear combination of y. All variables depend on

time, except the kinetic parameters, which are assumed to be

constant. The set of equations (f and g) defines the kinetic

model.

In this work, all the kinetics are assumed to be modelled with

a first order Arrhénius kinetic model and the dependant

variables y are the solid normalized mass. Then the kinetic

parameters are, respectively, the pre-exponential factor and the

activation energy for each reaction of the chosen model.

The minimization criterion used for identifying the kinetic

parameters is given by the squared differences between the
model output and the measured data for one or several runs:

min
p

J1ðpÞ ¼
1

Nex � Nm

XNex

i¼1

XNm

j¼1

wi jðhi j � zi jðti j; y; pÞÞ2 (2)

Nex and Nm, respectively, represent the number of experi-

mental runs and the number of measurements for each run. hij

corresponds to the jth experimental measurement of the ith run.

wi j is a weighting factor used to give a relative importance to

each term of the sum(s). The choice of wi j is generally made so

that the more a measurement is noise corrupted the less it will

count in the sum(s). If the measurement errors are assumed to

be independent and normally distributed with an expected zero

value then the weighting factor is chosen as the inverse

measurement error variance.

In vector form, the above expression can be written as:

min
p

J1ðpÞ ¼
1

Nex � Nm
ðG� ZÞTWðG� ZÞ (3)

Here, Z and G are, respectively, the vectors of computed total

mass and measured mass. W is the inverse measurement error

covariance matrix.

A version of Levenberg–Marquardt method was applied for

the parameter estimation problem [7]. It is a quite stable,

powerful and straightforward method that has been applied to a

variety of optimization and inverse problems. The solution for

vector p is achieved using the following iterative procedure:

pkþ1 ¼ pk þ ½XkTXk þ mkVk��1
XkTðG� ZkÞ (4)

It is an iterative procedure where the superscript k defines the

iteration number. V and m are, respectively, a damping

matrix and a damping parameter. X represents the sensitivity

matrix evaluated at each iteration k. The sensitivity matrix is

given by:

X ¼ @ZTðpÞ
@p

� �T

¼

@z11

@ p1

� � � @z11

@ pm
@z12

@ p1

� � �

� � � @zi j

@ pn

� � � � � �
@zNex�Nm

@ p1

� � � @zNex�Nm

@ pm

2
66666666664

3
77777777775

(5)

The elements of the sensitivity matrix X are known as the

sensitivity coefficients. In the present work, a central finite-

difference approximation is used to calculate the sensitivity

coefficients. The sensitivity coefficient Xij is the measure of the

sensitivity of the estimated model output zi with respect to

changes in the parameter pj. A small value of the magnitude of

Xij indicates that large changes in pj yield small changes in zi. It

can easily be noticed that the estimation of the parameter pj is

extremely difficult in such a case, because basically the same

value for total mass would be obtained for a wide range of pj

values.

As said before, the Levenberg–Marquardt method is an

iterative procedure because of the non-linear nature of the



estimation problem and therefore the coefficients of the

sensitivity matrix depend on the values of the unknown kinetic

parameters. Moreover, it is necessary to give initial values for

the unknown parameters in order to start the numerical

computations. For each iteration, the successive steps are:
� m
odel output is computed by the resolution of the set of

differential equations (Eq. (1));
� m
inimization criterion is calculated by summing the squared

differences for each computed model output at the sampling

times of the measurements (Eq. (2));
� n
ew values of parameters are estimated by Eq. (4).

Iterations continue until convergence of the estimated

parameters is reached, i.e. when there is a negligible change

in any component of p. However, because the Levenberg–

Marquardt method is a local method, we are not sure of

finding the global solution, i.e. the set of kinetic parameters

giving the smallest value of the minimization criterion.

Classically, the solution found by the numerical method will

strongly depend on the initial values chosen for the

parameters. We have to proceed to a reparametrisation of

parameters in order to improve the parameter estimation

procedure. This reparametrisation is presented in the next

section.

2.2. Kinetic parameter reparametrisation

Beck and Arnold [8] have clearly shown the significant

importance of the sensitivity coefficients for the parameter

estimation. The inverse problem (or optimization problem) is

less suitable if the sensitivity coefficient values are small. The

fitting process can be improved if the sensitivity coefficient

values are increased. As it will be shown later, the sensitivity

coefficients for the pre-exponential factors are generally small

compared to the coefficients for activation energy. It will then

be more difficult to estimate the former because their variation

will have little influence on the kinetic model output. In order

to have a better homogeneity in the sensitivity coefficient

magnitude, we proceed to the following reparametrisation of

the kinetic parameters, where the two new kinetic parameters,

Ar and Er, are defined from the original ones, A and E, by the

relations:

Ar ¼ lnðAÞ; Er ¼
E

R
(6)

The only interest for the reparametrisation of the activation

energies is to decrease the values of these parameters and then

the differences of magnitude between all the parameters to

estimate. The new expression of the kinetic constant (kr) must

be equal to the original one and is given by:

kr ¼ expðArÞexp

�
� Er

T

�
(7)

The influence of such reparametrisation on sensitivity coeffi-

cients will be shown in Section 3.
2.3. Joint confidence regions and parameter confidence

intervals

Finding the best values of the set of parameters is just a part

of the job of fitting. If possible, the precision of the parameter

estimates must be known. The precision of the estimated

parameters can be linked to the notion of the joint confidence

region; the word joint indicates that all the estimated

parameters are taken into account simultaneously. For example,

let us suppose that a model has been generated from a set of data

and a set of parameters has been found. With a new and

different set of data, different parameter values will be

estimated. This happens because of random variations in

the measurements. If we plot the different sets of parameters in

the parameter space then the plotting is not entirely random. If

there are only two parameters, p1 and p2, and the different sets

of parameters are plotted in a ( p1–p2) plan, the orientation and

the shape of the region covered by the plots are not random. A

small region indicates precise parameter estimates.

The basic element is the Fisher information matrix F that

combines some information on the output measurement error

thanks to the weighting matrix W, and some information on the

sensitivity of the model output (z) with respect to the

parameters thanks to the sensitivity matrix X (Eq. (5)):

F ¼ XTWX (8)

For a non-linear model in the parameters, the inverse of

the Fisher information matrix (F�1) is an approximation of

the parameter variance–covariance matrix; in fact it provides

the Cramer–Rao lower bound on the parameter variance–cov-

ariance matrix [9]. The Fisher information matrix gives infor-

mation on the parameter estimation quality in the neighborhood

of the true parameter vector [10].

It can be demonstrated that the size of the joint confidence

region is proportional to the Fisher information matrix. More

precisely, the area of the joint confidence region is proportional

to the determinant of the inverse Fisher information matrix:

yðkÞ/ det1=2ðF�1Þ (9)

So, the minimum sized joint confidence region corresponds to

the maximum of the F determinant. In the mathematical sense,

an experiment maximizing F will be said to be optimal.

However, because of the non-linearity of the model, the

matrixes X and F depend on the values of the parameters. If

they are distant, the estimated parameters will have a large

confidence region. An iterative approach to experimentation

can be envisaged with an improvement on the parameter

estimates after each iteration.

Practically, a scalar function of F is used as a criterion to find

the optimal experiment. Several criteria exist (determinant,

trace, condition number). Here, we use a criterion, called D-

criterion, corresponding to the maximization of the determinant

of the Fisher information matrix, equivalent to minimizing the

geometric mean of the identification error:

max
u

J2ðpÞ ¼ detðFÞ (10)



u represents the set of variables whose values are sought to

minimize the criterion. We discuss the choice of u in the next

section.

Moreover, an approximate confidence interval can be

defined for each identified parameter:

pi 2
�

p�i �
�

2k

Hii

�1=2

; p�i þ
�

2k

Hii

�1=2�
(11)

where k is the allowed maximum value for the absolute value of

the difference between J1( p) and J1( p*). p* is the fitted solution

for p. Hii is the diagonal element of the Hessian matrix

computed for J1( p*). Practically, they are computed by second

order central finite difference.

2.4. Optimum design with a thermogravimetric analyzer

(TGA)

In this work, we assume that a classical thermobalance is

used; only the variations of the total mass of solid and of the cell

temperature can be recorded during the experimental time.

What are the constant and time-varying controls or inputs to the

process and what are the experimental conditions that

characterize a particular experiment? We can distinguish:
� th
e initial mass of the sample;
� th
e nature and the flow rate of the vector gas;
� th
e programmed temperature profile applied to the cell.

Because a pure kinetic model is used in this work, no mass or

thermal transfer is taken into account. The solid sample is

assumed homogeneous in temperature and composition and it is

assumed that the solid sample temperature is the same as the

cell temperature. So, with such a model, the initial mass of

the sample and the flow rate and properties of the vector gas

have no influence. In conclusion, the only input available to

improve the experimental conditions is the programmed

temperature profile of the cell.

In other words, we are looking for the temperature profile to

apply to the thermobalance in order to improve the precision

and the reliability of kinetic parameters for a chosen kinetic

model, i.e. in minimizing the criterion defined in Eq. (10). To

find the optimal temperature profile, we first divide the chosen

time of reaction (tf) into P intervals of equal length (Dt), so that

the length of each interval is:

Dt ¼ tf

P
(12)

We seek the successive profiles, assumed linear, for

each interval so that the temperature is given by (for the kth

interval):

TðtÞ ¼ TðkÞ þ
�

Tðk þ 1Þ � TðkÞ
Dt

�
ðt � tðkÞÞ (13)

where T(k) and T(k + 1) are the initial and final temperatures for

the kth interval, respectively, at time t(k) and t(k + l). If we

define bk as the slope of the temperature for the kth interval,
Eq. (13) can be expressed as:

TðtÞ ¼ TðkÞ þ bkðt � tðkÞÞ (14)

The optimum design problem can then be written as:

max
b

detðFÞ (15)

b is the vector of the successive values of bk.

Lower and upper bounds are defined for the values of bk;

these bounds must be chosen according to the thermogravi-

metric device used.

2.5. The proposed procedure for the optimum experimental

design with a TGA device

The procedure proposed in this paper is sketched in Fig. 1.

The first stage corresponds to the choice of the model and the

identifiability study of the model. The choice for the class of

models used depends on the required objectives. In model

classes, we broadly distinguish between ‘‘detailed models

versus simple models’’ and ‘‘kinetic models versus multi-

physics models’’. For a given class of models, i.e. simple

kinetic models, it is possible to have several candidate

models. For example, considering the huge literature about

the kinetics of thermal degradation of cellulose [2,3,11–13],

many reaction schemes and associated kinetic models have

been proposed. The question is to know how to choose the

best candidate knowing all the candidates are simplified

models and they are more or less wrong. Assuming we are

able to determine the best kinetic model, we need to check

the identifiability of the chosen model. A definition of

identifiability has been expressed as ‘‘if for the chosen model,

there are several sets of searched parameters exactly

corresponding to the same input–output behavior of the

model then this latter is not uniquely identifiable’’ [9].

Several mathematical approaches exist for checking the

identifiability of a model before conducting any experiments.

However, for a non-linear model, the computations are

generally long and tedious. In this paper, we do not discuss

the first stage.

The second stage involves making an initial experiment.

This first experiment is very important and must benefit from all

the knowledge and expertise of the experimenter. From this first

experiment, unknown parameters must be identified using a

criterion liked that given in Eqs. (2) or (3). Classically, the main

problem here is the choice of the initial parameters for running

the numerical procedure. Success will often depend on the

quality of the initialization.

The third stage is the computation of the confidence

interval of the parameters found and the determination of the

optimal experiment by the maximization of a criterion linked

to the Fisher Matrix as defined in Eq. (15). This newly

determined experiment will depend on the chosen model and

the parameters fitted in the previous stage. Next, the second

stage is repeated: the new experiment is carried out and new

parameters are fitted. Finally, the precision of the new

parameters is computed and compared to the previous



Fig. 1. General procedure for the estimation of kinetic parameters and for the determination of the optimum experimental run.
ones. If the results are satisfying then the procedure is

stopped. If not, a new loop is generated. As said before,

because of the non-linearity of the model, the determination

of the optimal experiment depends on the parameters initially

used. It is possible to find a new and different optimal

experiment and then some new parameters after the

conclusion of each loop.

3. Results

Some results using the procedure described in the previous

sections and concerning the thermal degradation of cellulose

are now presented. First of all, simulation results are given, i.e.

the experimental data points are generated by a numerical

model without or with artificial noise on the data; next, real

experimental data from TGA apparatus is used. In both parts

the kinetic parameters are first estimated with the computation

of their confidence intervals; secondly, the optimal experiment

is determined for final evaluation and comparison of the new

confidence intervals. For all the presented results (experi-

mental and simulations), 2951 values are used for each

estimation runs.
Fig. 2. Reaction scheme used for the thermal degradation of cellulose [11].
The reaction scheme used for describing the thermal

degradation of cellulose is the scheme proposed by Bradbury

et al. [11], given in Fig. 2.

3.1. Influence of the reparametrisation

As previously said in Section 2.2, the mathematical

expressions of the kinetic constants, defined in Eqs. (6) and

(7), have been used. The influence of such modifications is

shown in Fig. 3, where the transient behaviors of the relative

sensitivity coefficients are plotted for the four kinetic

parameters of the model associated with the reaction scheme

defined by Bradbury; the kinetic constants (k1 and k2) are exp-

ressed with a first order Arrhénius law. Because the unknown

parameters can have different orders of magnitude, it is

preferable for a more easy comparison and analysis to plot the

relative sensitivity coefficients defined as:

Xþi j ¼ p jXi j ¼ p j

@zi

@ p j

(16)

Without reparametrisation (Fig. 3, left hand), the smallest

relative sensitivity coefficients are observed with A1 and A2,

which can involve difficulties in their estimation and a rela-

tively high estimation error. When the reparametrisation pro-

cess is applied (Fig. 3, right hand) then all the relative

sensitivity coefficients have the same order of magnitude. Many

trials without and with reparametrisation have been carried out

and have proved that the computations during the estimation

procedure are faster (the number of iteration is reduced) for



Fig. 3. The relative sensitivity coefficient evolutions without reparametrisation (left hand) and with reparametrisation (right hand).

Table 1

True and fitted parameters for cellulose degradation (simulation studies)

True parameters Fitted parameters (no noise) Fitted parameters (0.5% noise) Fitted parameters (2% noise)

A1 (min�1) 3.75 � 1019 3.75 � 1019 2.87 � 1019 2.17 � 1019

E1 (J mol�1) 234,904 234,904 233,632 232,248

A2 (min�1) 3.88 � 1012 3.88 � 1012 1.33 � 1014 1.48 � 1014

E2 (J mol�1) 160,967 160,967 178,859 179,437

Fig. 4. Mass loss curves: simulated curve with noise on data and computed

curve with fitted parameters.
finding the solution and/or the solution is more often found with

reparametrisation.

3.2. Simulation studies

3.2.1. Kinetic parameters estimation

In order to check the real ability of the developed parameter

estimation procedure, a TGA run has been simulated.

Simulation results are primarily used to avoid one of the main

drawbacks of the approach: we are sure that the kinetic model

used is perfect and if it is a pure kinetic model (the case

presented here), no thermal transfer can influence the kinetic of

thermal degradation; moreover, the measurements are also

assumed to be perfect.

The simulation consisted in computing the transient mass

evolution for a given heating rate (10 8C min�1) by the

resolution of the two differential equations associated with the

two parallel reactions in the scheme proposed by Bradbury

(Fig. 2). We need to set values for kinetic parameters, these

values are assumed to be ‘‘true’’ and are called true parameters

in Table 1. The true parameters have been chosen as the values

identified from an experimental TGA run in a preliminary step.

Three cases have been simulated: first, no artificial noise has

been added to the simulated data; in the second and third cases,

a random value (white noise) between 0 and �0.5% of the

maximum value of the total normalized mass (i.e. 1.0), or

between 0 and �2%, is added to the computed mass. The

values of the fitted parameters for all the cases are presented in

Table 1. The fitted values are exactly the same ones as the true

parameters when there is no noise on the data; the correct
performances of the parameter estimation procedure are thus

confirmed. With noise on the data, it is not possible to find the

true parameters, differences exist between solution values and

fitted values, mainly for the second reaction parameters. The

differences between true parameters and fitted parameters

increase with the noise level. However, if the mass loss curve

is computed with the fitted parameters, we can see that this

computed curve is very close to the solution curve used for the

fitting process; for example, the curve used for the parameter

estimation (2% noise level) and the mass loss curve computed

with the parameters estimated are presented in Fig. 4. We can



Table 2

Fitted parameters from the first run (constant heating rate) and from the optimal run (optimal temperature profile)

Fitted parameters (0.5% noise)

after the first run

Fitted parameters (0.5% noise)

after the optimal run

Fitted parameters (2% noise)

after the first run

Fitted parameters (2% noise)

after the optimal run

A1 (min�1) 2.87 � 1019 [1.98–4.16 � 1019] 2.87 � 1019 [2.07–3.98 � 1019] 2.17 � 1019 [0.22–21.7 � 1019] 2.17 � 1019 [1.72–2.73 � 1019]

E1 (J mol�1) 233,632 � 1872 233,632 � 1240 232,248 � 1861 232,248 � 995

A2 (min�1) 1.33 � 1014 [0.92–1.92 � 1014] 1.33 � 1014 [1.11–1.60 � 1014] 1.48 � 1014 [1.17–1.88 � 1014] 1.48 � 1014 [1.32–1.66 � 1014]

E2 (J mol�1) 178,859 � 1850 178,859 � 3668 179,437 � 3203 179,437 � 2021

Values in square parenthesis give the confidence intervals.
conclude that the fitted parameters are able to represent the

thermal degradation of cellulose (at least for a run with a

constant heating rate of 10 8C min�1).

3.2.2. Determination of the optimal experiment

Now, we are trying to evaluate the optimal experiment for

the cellulose from the kinetic parameters fitted with the noise

data. We recall that we call ‘‘optimal experiment’’, the set of

experimental data allowing the computation of the kinetic

parameters with the best precision. It is no use trying to find

precise estimates with the data without noise because we have

shown the solution has been exactly determined in this case. As

we explained before, the goal here is to find the temperature

profile maximizing the criterion defined in Eq. (15), kinetic

parameters being kept constant. In the case of the thermal

degradation of cellulose, we have chosen a maximum reaction

time of 1 h. The time of reaction has been divided in 12

intervals of 5 min. The 12 heating rates must be included

between 0 8C min�1 (isothermal step) and 10 8C min�1

(maximum heating rate).

In the case of data with 2% level noise, the optimal

temperature profile found is plotted in Fig. 5. The successive

values of heating rates for each 5 min interval are: 7.08, 2.18,

2.25, 5.31, 3.81, 5.21, 8.17, 3.29, 3.00, 5.14, 7.32, and 7.94. The

total mass, mass of cellulose and mass of char computed with

the optimal temperature profile are also plotted in Fig. 5. These

curves enable us to show that the thermal degradation is

finished. The optimal temperature profile with 0.5% level noise
Fig. 5. The optimal temperature profile and the corresponding mass loss curves

(total mass, cellulose and char).
is slightly different (not shown here) from the optimal

temperature profile presented in Fig. 5; this is logical because

the kinetic parameters used were not the same.

Now in order to check if the found temperature profile is

really optimal, a new kinetic parameters estimation is carried

out (noise is again added on the simulated data) and simulated

with this new optimal temperature profile. The initial values

used for the parameters are the ones found during the previous

step. A computation of the confidence intervals for each

parameters is achieved and compared with the confidence

intervals found during the previous step. All the results

are listed in Table 2. We can observe the fitted values are the

same ones in both cases, i.e. classical run (conventional

temperature program with a constant heating rate run with a

constant heating rate) and optimal run. However, the

examination of the confidence intervals shows:
(i) in
 almost all cases, the confidence intervals are reduced

with the optimal runs; there is one exception for E2 with the

0.5% noise run;
(ii) f
or A1 with the 2% noise run, a very large decrease (nearly

95%) can be observed;
(iii) w
ith the 2% noise run, the decrease in the confidence

intervals for E1 and E2 are, respectively, 46% and 37%.
This simulation study proved that it was possible to improve the

precision of the estimated kinetic parameters. In the following

section, we apply the methodology to an experimental example.

3.3. Experimental study

Experiments were performed using a SetaramTM 92-16.18

apparatus. The heating rate was first taken as 10 8C min�1 with

a stable gas flow of nitrogen (33 ml min�1). A small sample

size of cellulose (11 mg) was used to ensure the kinetic regime

of the decomposition.

Fig. 6 shows the experimental and model predicted mass

evolutions versus time obtained with the developed algorithm.

Some differences can be observed around the curve of the

measured total weight loss. Other results, not shown here, have

proved the curve fits better if a nth order Arrhénius model is

used to model the kinetic constants. The values of the estimated

parameters with their respective confidence intervals are given

in the first column of Table 3.

From these estimated parameters, we have determined the

optimal temperature profile. Here again, a time of reaction of

1 h has been divided in 12 intervals of 5 min with lower and



Table 3

Fitted parameters from the first experimental run (constant heating rate) and from the optimal experimental run (optimal temperature profile)

Fitted parameters from the first run (10 8C min�1) Fitted parameters from the optimal run

A1 (min�1) 5.14 � 1019 [3.35–7.89 � 1019] 8.17 � 1019 [7.11–9.38 � 1019]

E1 (J mol�1) 236,417 � 2162 235,743 � 859

A2 (min�1) 3.95 � 1010 [2.78–5.61 � 1010] 4.26 � 1010 [3.66–4.96 � 1010]

E2 (J mol�1) 137,871 � 1760 137,630 � 470

Values in square parenthesis give the confidence intervals.
upper bounds, respectively, of 0 and 10 8C min�1. The

successive optimal values of heating rates for each 5 min

interval are (all given in 8C min�1): 8.44, 5.40, 8.32, 9.57, 4.07,

2.08, 1.00, 6.25, 6.51, 2.17, 7.98, and 6.85. The final

corresponding maximization criterion, i.e. the determinant of

F, is equal to 5.2 � 1015; its value has increased from an initial

value of 12.5 (the initial temperature profile was a constant

heating rate of 10 8C min�1).

The optimal experiment was performed by setting this

optimal temperature profile on the TGA device used. The real

experimental temperature profile and the experimental mass
Fig. 6. The experimental mass loss curve and model predicted curve for

cellulose (10 8C min�1).

Fig. 7. The optimal temperature profile, experimental mass curve and com-

puted mass curve with fitted parameters (total mass).
loss curve (solid curve) are shown in Fig. 7. From these

experimental curves, a new kinetic parameters estimation

process was run. The kinetic parameters obtained with their

respective confidence intervals are presented in the second

column of Table 3. The computed mass loss curve from these

parameters is also plotted in Fig. 7.

From Table 3 and Fig. 7, we can conclude:
(i) th
Fig.

temp
e new fitted parameters are different from the previous

ones fitted from the classical TGA run. The fitting errors

are reduced; the minimization criterion values (Eq. (3)),

respectively, give 4.6 � 10�4 (first fitting with a constant

heating rate) and 2.6 � 10�4 (fitting with the optimal

profile);
(ii) th
e confidence intervals of all parameters are reduced on

average by 50–60% by using the optimal experiment;
(iii) d
uring the optimal experiment, the heating rate of the

time interval where the main mass loss occurs is

significantly reduced (2.17 8C min�1) from its initial value

(10 8C min�1).
This last point can be interpreted as if the numerical procedure

had increased the duration of the main degradation phase by

reducing the heating rate. Consequently, it is a method of

improving the precision of the parameter estimates by

increasing the period where the sensitive coefficients have

the highest values. The relative sensitivity coefficient evolu-

tions in the case of the optimal temperature profile are plotted in

Fig. 8. Not surprisingly, the duration where the main thermal
8. The relative sensitivity coefficient evolutions (case of the optimal

erature profile).



degradation takes place corresponds to the times where the

parameters are the most sensitive to the measured data; the

information content of the experiment is then ‘‘richer’’. An

optimal experiment can be viewed as a run where the amount of

‘‘rich’’ data has been maximized.

4. Conclusion

In this paper, we presented our first results concerning the

evaluation of an optimal run with a thermobalance to increase

the precision of kinetic parameter estimates. The simulation

results are not as interesting as we hoped because, although

the precision is improved, the kinetic parameter estimates are

the same as those with the optimal experiment, even in the

case where an artificial noise has been added on the simulated

data. However, the experimental results with cellulose have

shown that the proposed approach is promising with real data.

It is rather challenging to observe that complex numerical

computations give some solutions very close to the ones that

an experimenter would propose for better resolution, i.e. to

lengthen the time where the thermal degradation occurs, and

very similar to the thermal profiles computed by a high-

resolution thermogravimetry. With high resolution TGA

devices, the heating rate of the sample material is dynamically

and continuously modified in response to changes in the rate of

decomposition of the sample: when no weight change is

detected, the heating rate remains constant; whereas when a

loss of weight is detected, the heating rate decreases in

response to the increasing rate of mass loss and the system

tries to keep it at the lowest value until the end of the loss of

weight.

Now, we need to confirm these first results and prove the real

benefits of the proposed approach; for example, by the

evaluation of the number of TGA runs (isothermal or non-
isothermal with a constant heating rate) necessary to obtain the

same confidence intervals as those obtained with one optimal

experiment, or by the comparison between the confidence

intervals obtained with the proposed method with the

confidence intervals of high resolution TGA device. Moreover,

the optimal design with the TGA device will be used for the

model discrimination, i.e. when several rival models are

proposed and the ‘‘best’’ model is sought. Experimental

optimal design can be useful for evaluating the best kinetic

model among several models associated with different

proposed reaction schemes or for discriminating the ‘‘best’’

expression to use for the computation of the kinetic constants.
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