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Some Trends and Tools for the Study of Time Delay Systems

Jean-Pierre RICHARD
Ecole Centrale de Lille, LAIL - URA CNRS D1440,
B.P. 48, 59651 Villeneuve d’Ascq Cedex-France
e-mail: jprichard@ec-lille.fr

ABSTRACT

This survey presents some of the recent developments in time-delay systems theory. The general situation of this kind of
model in the engineering sciences is recalled and some classes of models are presented. Then, stability and control properties
are discussed. Of course, due to the large number of references involved in this field, this overview cannot pretend to
exhaustiveness but, the author hopes, contributes to clarify some of the differences between ordinary and hereditary systems.

1. Introduction.

Time-delays are known to be natural components of the
dynamic processes in physics, mechanics, biology, ecol-
ogy, physiology, economics, epidemiology, population dy-
namics, chemistry, aeronautics, aerospace, to name a few.
Even if the process itself does not include delay phe-
nomena, the actuators or sensors that are involved in
its automatic control usually introduce such time lags.
This explains the great number of works devoted to such
class of systems. During the last decades, the field of
equations with delays, also called hereditary equations or
functional differential equations (FDEs) has been mak-
ing significant breakthroughs in its practice, which are
no longer only a specialist’s field: the reader can see for
instance the -English writing- monographs by Bellman
and Cooke [5] (frequency domain approach, integer func-
tions), Krasovskii [66] (extension of the direct Lyapunov’s
method), Halanay [48] (extension of the Popov’s theory),
Lakshmikantham and Leela [68] (differential inequalities,
comparison approach), El’sgol'ts and Norkin [31] (sta-
bility, metric spaces), Driver [28], Hale [49] (topological
stability methods), MacDonald [77] (biological applica-
tions), Burton [14] (direct Lyapunov’s method, periodic
solutions), Kolmanovskii and Nosov [62] (comprehensive
introduction to stability, with examples), Gorecki et al.
[44] (characteristic function, infinite-dimensional tools),
Stépan [109] (characteristic function, robotics), Hale and
Verduyn Lunel [50} (completed from [49]), Gopalsamy [39]
(stability and oscillations based on ecology examples),
Kolmanovskii and Myshkis [61] (deterministic and sto-
chastic FDEs with a lot of concrete examples), Diekmann
et al. [27] (operator theory approach), Kolmanovskii and
Shaikhet [65] (optimal control, self-adjusting systems),
Malek-Zavarei and Jamshidi {78], and some very recent
collective works: Dugard and Verriest [29], Richard and
Kolmanovskii [101], Loiseau and Rabah [76]. Other con-
tributions, in French, can be found in [87] and 7 Ph.D.
defended from 1994 to 1997 (see references). Last but
not least, many contributions were done by other eastern
scientists, which books are in Russian. Today, some in-
ternational workshops and a lot of specialized sessions are
regularly organized on this topic.

This interest is probably motivated by two points: on
the one hand, the fundamental aspects are quite exciting

27

for scientists, because specific properties of delay systems
are often surprising. On the other hand, the applications
are of real economic interest: together with the increas-
ing expectations of dynamic performances, engineers need
the models to behave more closely to the real processes,
and the number of FDE-models used in the sciences and
in applied areas has been growing up tremendously: ap-
plications range from physiology and enzyme kinetics to
whaling control and foodwebs, from neural networks to
laser optics, from studies of engines to the theory of busi-
ness cycles, from transportation and communication sys-
tems to chemical and metallurgical processing, from traffic
and power control to water resources systems, from flight
mechanics to robot-manipulators, from flexible structures
to mechanics of viscoelasticity, from idle speed to air-
fuel ratio control problems, from telerobotic systems and
earth-controlled satellite devices to bio-thermo-chemical
processes...

One could think that for “small” values of the delays, the
simplest approach would consist in neglecting or replacing
them by rational approximations: unfortunately, ignoring
effects which are adequately represented by FDEs is not
a general alternative, since it can lead to potentially dis-
astrous consequences in terms of stability and control de-
sign. The real nature of FDEs is to be infinite-dimension,
and finite-dimension approximations cannot be used as
soon as the model has to be accurate enough, the behav-
iors to be faster, or the control to be robust.

Moreover, several studies showed that voluntary introduc-
tion of delays in feedback laws can also benefit the con-
trol (for instance, stabilization [1]{41] and deadbeat con-
trol [120] of ODEs, or finite-spectrum assignment of FDEs
[46]{120][9]).

The huge variety of applications gives new breath to some
older parts of FDEs theory! and generates many new ones.
Along with the traditional classes, new types of FDEs are
being introduced and widely used in mathematical mod-
elling, for example, stochastic FDEs, equations with im-

I The study of hereditary equations began during the 18th cen-
tury with Bernoulli, Euler, Lagrange,Condorcet, then sporadically
followed till the begining of 20th with Volterra,... to mention some
of the most famous names. But, in the 1930’s, the growing num-
ber of technical control problems showed the need of some global,
mathematic statement of the question (in particular, for the initial
value), which was provided by the paper of Myshkis in 1949 {85]
who defined the notion and classification of FDEs.



pulses, hybrid and large scale FDEs, distributed (partial)
FDEs, systems with fractional dimension, equations with
state dependent time lags, n-D systems, and so on... Tech-
niques to investigate modern problems of FDEs theory
include many parts of real and complex analysis, func-
tional analysis, operator theory, dynamic systems, theory
of stochastic processes, theory of semi-groups, theory of
systems over rings, topological methods,...

It would not be possible to present here -or even, to be
aware of - all researches results and trends in such a huge
field: we shall consider the reduced area of some interest-
ing control questions related to modelling, stabilization
and controllability. Lastly, some references concerning
control are recalled.

2. Models for delay systems

Functional differential equations, notion of state
A classical hypothesis in the modelling of physical
processes is to assume, in the autonomous case, that
the future behavior of the deterministic system can be
summed up in its only, present state. This leads to “Or-
dinary” Differential Equations (ODEs), described by a
n-vector z(t) moving in Euclidean space R™:

() = f(z@).tu®), 2t (1
a:(to) = X0 € Rn,
(as throughout this paper, we don’t consider the case of

implicit systems). Dots indicate the time-derivatives, u(t)
denotes the input (control or disturbances).

However, in numerous cases (see many examples in [61]),
some “aftereffect” cannot be neglected in the modelling,
which means one has to take into account an irreducible
influence of the past: it is clear that, for instance, the
simple delay equation

£(t) = —z(t — h), 2
has several solutions (for h = 7/2 : sint, cost,...) that get
the same value at an infinite number of instants. Then,
the state cannot anymore be a vector z(t) defined at a
discrete value of time ¢: in Functional Differential Equa-
tions (FDEs), it is a function z; corresponding to the past
time-interval [t — h, ], where h is a positive, irreducible-
to-zero constant (Shimanov’s notation, 1960).

This argument deviation, i.e. the “time-delay” h, may
be bounded or infinite: it represents the maximal value
of all the (possibly time-varying) delay phenomena in the
process, a “memory time horizon”. Note that the equa-
tions as (2) are also called differential-difference equa-
tions, since both kinds of operators are involved in. Two
classes of hereditary models are considered: the retarded
systems and the neutral ones (the mathematical class of
advanced systems, h < 0, is not in this study for obvious
reasons of causality).

Retarded systems with input u(t) can generally be de-
scribed by FDEs as

z(t) = f(ze, b ue), t > to, (3)
z:(0) = z(t+8), —-h<6<0,
w®) = u(t+6), -h<6<O,

z(0) = ¢(9), to—h <6<t

The nature of physics is known to be nonlinear, and such
equations arise very often in the literature (see e.g. [61]).
The vector z(t) will be called, here, the solution at time
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t (it is also called “instantaneous state” [62]). Note that
the functional notation . needs the initial condition ¢ for
equation (3) to be prescribed on the interval [~h,0]. In
fact, it is more natural to consider as state-space the set of
continuous functions mapping the interval [—h, 0] into R,
denoted C throughout this paper. Under some conditions
on f [49), for a given, continuous function u(t), t € R, and
any given function y of C, there exists a unique solution of
(3) such that z(t) = z(t) for t € [—h,0] (here, z may have
the meaning of an initial condition). This result can easily
be proved using a step-by-step method. For instance, let
us consider (2), the initial function ¢(8) = 1 for any 6 in
[—h,0]. Then, equation (2) on the first time interval [0, k]
gives #(t) = 1 or z(t) = 1 —t. Expression of z(t) can
then be obtained on [h,2h] by using the same scheme of
proof, and so on. The resulting solution is a succession of
polynomial functions of ¢ with increasing degree on each
[kh, (k + 1)h].

Classification as a neutral system implies that in the mod-
elling procedure, the same, highest derivation order con-
cerns some component of z(t) at both time ¢ and past
time(s) t’ < t, which implies an increased mathematical
complexity. The following system is a neutral type one:

#(t) = f (ze,t, T, ue) (4)
with the usual, particular case
Fitz f(zt7t7ut)7 (5)

where F : C — R™ is some regular (to avoid implicit
systems) operator with deviating argument on time, for
instance,
Fzy = z(t) — Dz(t — w),

with D a constant matrix. Such models arise from
the approximation of hyperbolic, distributed parameters
equations with mixed initial and derivative boundary
condition, as wave propagation in processes including
steam pipes or lossless transmission lines, for instance
[62][50][61][84], but can also be encountered in robotics
(manipulators in contact with rigid environment [92]). In
this case, due to the contained difference-equation in-
volving #(t), the trajectory may “replicate”, all along
the time, any time-discontinuity of the initial condition
@(t), even if f and D present many smoothness properties
(while retarded systems will “smooth” it: the differentia-
bility degree of the solution increases with time).

Nature is nonlinear, we said, but linear models are very
useful: they are a bit more easy to deal with and con-
stitute a good basis for investigating many properties of
delay systems. The time-invariant model is

z(t) Eq: D 2(t — wi) (6)
k=1

1l

+ (Ail'(t - hi) + Biu(t - hl))

..
4 uM»
o

O3 SRCURCRCCROE

where ho = 0, the matrix Ao (constant) represents instan-
taneous feedback gains; A;, ¢ > 0 (constant), represent
discrete-delay phenomena; the last integrals correspond
to distributed-delay effects, which influence is weighted
by the C; over the time intervals [t — 75, t}; D; are the
neutral part, and B;, G;(s) are input matrices. Here,



h = max; jr {hi,7j,wx}. Many physical systems can
also be approximated by such models (see for instance
[34] and references herein) with, mainly, only one neutral
delay (¢ =1).

Note that, in (6), C; = —Ck for some (j, k) permits to con-
sider “dlscrete-and-dlstnbuted” effects as f ok Ciz(0)dd,

and also that some additional approximation (here again,

without any guarantee) may allow to replace the distrib-

uted effects by a sum of discrete ones, by considering that
iT

t d .
/t RECEOEN )3 aC(Z)a(t— ),

with constant, tuning coefficients o; € R.

Due to this simplification, many results deal with the par-
ticular case of discrete—delay systems defined by

i(t) = Aoz(t) ZAzt— +3 Bau(t — hi). (7)

The special class of systems with commensurate delays
is particularly investigated, which delays h; = i6 are all
integer multiples of a same positive, constant, basic delay
& (then, h = k6). In the following, we shall see that
several important results are now available for the design
of linear, commensurate models.

Solution of linear, discrete-delay systems

There exist several numerical methods (see [18]) for the
construction of solutions for FDEs, that are mainly us-
ing step-by-step approaches, i.e. iterative resolution over
time intervals [jh, (j + 1)h] by means of classical ODEs
procedures (Euler, Runge-Kutta,...), with continuity at
instants jh. Concerning the general solution of (3), we
know [62][50] that some Lipschitz properties on f ensure
the existence of a unique solution for given ¢ and uicr.
Of course, as in the ODEs case, the explicit solution is not
known, but we can illustrate here the question of linear
systems with commensurate delays, described by:

#(t) = Y (Aix(t—i6) + Biu(t — i6)) (8)
k
y(t) = Y Ciz(t—1i6), =(6) =(0) (k6 <6<0),

=0

which solution [115)(78] from to =0 is

z(t;to,p,u) = F(t)e(0 +Z/

—18

+ /0 F(t—0) [2:; Biu(6 — i6) | do

Here, F(t) is the fundamental matriz, solution of F (t) =
Sk o (AiF(t —i6)), F(0) = I, F(t < 0) = 0. Of course,
the main difficulty is to calculate F'(¢). It can be done, by
means of infinite-series development, with the Kirillova-
Churakova operators,

F(t-6-i6) Ai p(6)d6

k
Poa(j) = ZAqu(j—’i), 9
i=0
Py(0) = I, Py(j)=0foriorj<0.

Then, for any integer A>0,

F(t) = ZZ =Py (3)(t — 36)° for t € [0,2].

JOqJ

Operators in infinite dimension
It is possible to imbed the delay systems in the larger class
of infinite-dimensional systems. This approach, based on
some abstract state-space formulation in terms of opera-
tors, may benefit of the appropriate definitions of control-
lability/stabilizability, observability/detectability,... that
were defined in this very general framework. Among the
rich literature concerning these models, just mention here
[25)(80][24][6][57]. For simplicity, following [105], we re-
duce this presentation to linear, single-delay systems, say
#(t) = Aoz(t) + Arz(t — h) + Bou(?), (10
y(t) = Coa(t).
We note Lo = L2([—h,0]; R") the set of functions
[—h,0] — R™ with integrable square (the solutions of de-
lay systems in infinite dimension can be reduced [80] to
initial functions ¢ belonging to £2). The behavior is repre-
sented by the variable Z, Z(t) = [z(t), z:] = [z°(¢), = ()],
belonging to the Hilbert space Mo = M, ([—h,0]; R") =
R™ x L2. Then, system (10) can be described by

z(t) = Az(t)+ Bu(t),
y(t) = Cz(1), (11)

where the operator A is unbounded, closed, dense in space
M3, and is defined by

2(t) — A2 () = [Aox®(t) + Arz" (£)(—), _dzlég(e)],

while the operators E, R™ — Ma, and 5, Mz — RP are
bounded, defined by

u(t) — Bu(t) = [Bou(t), 0],

(1) — Cz(t) =y
This representation allows one to use the proper-
ties of semi-groups and, from the general theory of

infinite-dimensional, differential equations, the solution is
uniquely defined by

F(t; To, u) = S(t)To + /0 St-0Bu@de  (12)

where the family {S(t),t > 0} is the continuous semigroup
of operators spanned by A [49], verifying

S0) = I, S(t+ s) = S(t)S(s),

4 (stymo)

This approach is then a direct extension of the exponen-
tial solutions for unbounded operators (if h = 0, then A
is bounded and S(t) = e*!). We considered here a sim-
ple class of discrete delays: however, infinite dimension
allows to consider, with an unmodified notation, distrib-
uted delays as well. This may be the main advantage of
these general models, but also presents some drawbacks:
for instance, all control laws that are obtainable from such
a formalism are des1gned under an undiscernible, distrib-
uted form, u(t) = [°, F(8)z(t+6)df, that does not allow

any a priori preference of a (often more easy to imple-
ment) discrete feedback.

AS(t)To  t,s>0.

Geometric approach: systems over polynomial
rings

For nonlinear systems in particular, FDEs appear as a
very convenient tool, with a good compromise between
generality and simplicity. For linear ones (and only in
this case), the classical geometric approach (in the sense
of Wonham) for linear ODEs has been generalized, up to



a certain point, to systems with coefficients over a ring
[110]. Then, the basic idea is to translate these results
to the context of delay systems [116](54](83][71}[16][17]:
instead of defining vectors and matrices over the field of
real numbers R, leading to the vector space R", one uses
R =R[V]?, the commutative ring of polynomials in the
delay operator V with, for commensurate-delays system

(8), V(£)(t) = f(t — 6). Then, (8) becomes

z(t) = A(V)z(t) + B(V)u(t),
y(t) = C(V)z(t), (13)
A(V) € R""[v],B(V) € R”™[v],C(v) € RP*"[V]

where z belongs to the free state-module R" = R[V]", u
and y to he associated input and output free modules (a
module is the equivalent of vector-space over a ring). Ob-
viously, the absence of inverse on R[V] corresponds to the
impossibility to realize the advance operator v~ '. The
main advantage of such modelling is its apparent finite
dimension: in addition, since R[V] is a principal ideal
domain®, many results concerning the Smith form and in-
variant polynomials can be used in the realization theory.
The solutions are directly determined by inversion of the
Laplace transform:

y(s) = Cs(sI — As) ' Bsu(s) + Cs(sI — As) to(s),

M, 2 M(e %) for M = A, B,or C. (14)
Several results are obtained in modelling [15], stabiliza-
tion [46], controllability [105] and observability {99] in-
dexes, decoupling control [106] and disturbance rejection
[16][17]. It is to be noted that any polynomial feedback
u(t) = =F(V)z(t) + v(t), F € R[V]™*"™ ensures the re-
sulting system to stay in the class (13).

In what concerns the systems with non-commensurate
(but constant) delays, it is also possible to use the same
approach by considering the ring of polynomials in sev-
eral delay operators Vi, Va,..., i.e. , R[V1,V2,..]. For
distributed delays, some convolution operator {54] or a
ring of distributions [123] are to be introduced, with an
additional complexity (indeed, it seems preferable to ex-
tend these polynomial models to rational, realizable ones,
as described in the next section).

However, such a polynomial class of control laws appears
to be limited for several advanced controllers which con-
crete realizations need either rational fractions (precom-
pensators by state or output feedback [96][97], neutral
and 2-D systems [30][124][98]) or distributed delays (finite
spectrum assignment [120], as we shall see). These lacks
will be filled up by the generalized, rational and algebraic
types of models, to be presented in the two following sub-
sections.

Systems over rational rings

In [96][97][98] the above-mentioned realizability of con-
crete controllers was emphasized, by working with matri-
ces A, B, C defined over the larger subring R.(V) of the

2We shall use the classical notations R{V] for the ring of polyno-
mials in ¥ with coefficients in R, and R(V) for the ring of rational
fractions in V with coefficients in R.

3See [15][96]. An ideal T is an additive sub-group of a commu-
tative, integral ring R, which is invariant by product with elements
of R. It is principal if it is generated by a single element (Z = aR).
R is a principal ideal domain (PID) if any ideal of R is principal.
In this case, the submodule V of R™ is R-closed if there is a sub-
module W such that V& W = R™. The closure V of a submodule
V of R™ is defined by V = {x € R",3a € R,a # 0,az € V}. Note
that ¥V D V while dimV =dimV .
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irreducible, rational fractions in V, which denominator
has a non-zero constant term:

Ru(V) = {n(v) = p(v)/a(7) € R(V), ¢(z=0) # 0}

R.(V) coincides with the ring of proper fractions in
v~1[30][124], but also with non-anticipative operators®.
For example, 135 (i.e., y(t) = —y(t — 6) + u(t)) belongs
to Ru(V), while & (i.e., y(t) = u(t + §)) does not. This
is expressed in the following properties [97]:
Definition. The transfer matriz M(s, V) € R(s,V)P*™
is said to be causal if it has a realization over Ru(V),
i.e. if there ezist matrices A(V),B(V),C(V),D(V) de-
fined over Ru(V) such that

i(t) = A(V)z(t) + B(V)u(t),

y(t) = C(v)z(t) + D(V)u(t), (1)
M(s, V) C(v)(sI — A(V))"'B(V) + D(v).
Theorem. The transfer func-

tion n(s,V) = p(s,V)/q(s,V) € R(s, V), with p(s,V) =
po(V) + ...+ 5"pr(V) and q(s, V) = go(V) 4o st qu(V) ds
causal iff it belongs to the ring R. C R(s, V) defined by:

1) n(s,V) is s-proper (i.e., r < k)

2) (V) € R, (V).

The advantage of models over R.(V) is that any dy-
namic feedback law also defined over R.(V) makes the
resulting systems remain in the same class (whereas R[V]-
polynomial systems (13) change of class and become
Ru(V)-rational).

Algebraic formalism: Laplace transform models
for distributed delays

As in the previous case, the Laplace transform with al-
gebraic formalism has to be restricted to linear models
with commensurate delays. It is well known that the
discrete-delay effect, denoted V(f)(t) = f(t — 6) in the
previous section, leads to the operator e~*% in Laplace
transform. Then, algebraic formalism is near to the
previous one R.(V), but explicitely considers this re-
lation between the derivative s and delay e™*° opera-
tors. In 1985, Kamen, Khargonekar and Tannenbaum
[56] introduced the set G of the realizable, distributed-
delays transfers which Laplace transforms can be ex-
pressed as rational functions of s and e~ *%, in short,
G = {L(distributed delay) € R(s,e™**)}°. Brethé and
Loiseau [9][10][76][101] recently characterized this set G
in a complete way and defined an other set, the ring of
the so-called pseudo-polynomials (because they are ana-
lytic functions), £ = R[e™*°] U G, which is isomorphic to
the quasi-polynomials ring R[s,e™*’]. For instance, F(s)
is the Laplace transform® of the distributed transfer

" O)u(t — 0)do,

u =y, y(t)= A
% — F(s)= ':2 F(0)e*dp (16)

(or, the zero-holder operator

is obtained with h; =

8

4 Causality is equivalent properness defined in [30][(124], which
transfers were formulated with z = v 1.

5Initially, the introduced set © was defined by Laplace trans-
forms of the distributed-delays with Laplace transform in the set

R(s)[e™*"], but in this case there is an isomorphism with G [9].
8in fact, finite Laplace transform is used in this case [79].



0,hs = h and the kernel f(§) = 1 over [0,h], and f(6) =
0 elsewhere). The main result is that £ is a domain of
Bézout [10], which interest for finite-spectrum assignment
will be emphasized in the section “Control”. Note that
analogous conclusion was simultaneously obtained [38] on
the basis of systems over R[s,e™ %%, e*®].

2-D models and neutral systems

It was remarked [124][73][74] that 2-D models can be
used for the modelling and control of delay systems. The
Roesser models (1975) are describing a two-operators sys-
tem:

sX = AoX + A2Z + BoU, an
wZ = AsX+DZ+ BsU,
Y = CiX+CoZ.

Here, (s,w) respectively correspond to derivation and h-
advance operators. If one considers, for instance, Az = I,
As = A1 + DAyp, B3 = B1 + DBg, then (17) corresponds
to the neutral system:

& () =D & (t-h) = Aoxz(t)+ A1z (t-h) + Bou(t) + Bru(t-h),

which is a special case of (33). Such Roesser models, in
turn, allow to use previous realization results [30] for sta-
bilization [124], and some matrix factorizations for model
matching [73][74]. Equivalence with the question of real-
ization over R, (V) was shown in [96][98].

Rational and finite-horizon approximations

The most common approach for control of time delay
systems has been the approximation by some rational,
then finite-dimension, approximations, generally based on
the truncation of some infinite series. Such estimations
are generally inappropriate for time-varying delays. It
can be achieved by methods as the well known Padé ap-
proximations [12][69], Hankel operator methods for infi-
nite dimensional systems [55][37], Laguerre-Fourrier series
[94][70][32] or spline approximations [3]. A case study is
given in [37] on the basis of L error. However, two
specific, linked problems arise with that kind of simplifi-
cation: together with the problem of choosing the trunca-
tion order (hence, the dimension of the approximation),
it is very difficult to prove the stability of a closed loop
on the basis of such reduced model [104][45].

The subsystems description [93][115] is an other way to
achieve a finite-dimensional model: in the case of a sys-
tem with commensurate delays, for instance (8), the ap-
proximation is made by considering a finite time horizon.
For any variable z(t), one denotes z;(8) £ z(6 + i6) and
Z:(0) & [20(8),z1(8), ..., z:(8)]F. Xi(6) is the variable of
subsystem (.S;), available on the time-interval [0, 6], with
increasing size i + 1. The behavior of (8) on the time in-
terval [0, (i + 1)6] is described by:

Xi 0 = AiXi(0)+§iUi(0)+Eiq)i(9)7
Yi() = C,Xi(6), for6e 0,8,
Mo --- O YA
M, = N M,-=07if;§rkc
M, --- Mo
A o A ©(6-6)
Ro= | . |ede=| #0020
Aip1 Aziqr :

This technique is linked in its principle to the previously
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mentioned, step-by-step procedure. It was mainly used in
[93][115] for studying controllability properties. However,
it appears to be limited because of the size of involved
matrices, larger and larger as time increases, with conti-
nuity problems in the junction of trajectories from model

(S:L) to (Si+1).
3. Stability of delay systems

Delays are reputed to destabilize the control loops. In-
deed, system (2) showed that, for constant initial function
©(8#) = 1, the delay h is a source of oscillations in the time
response (replacing it by 0 makes oscillations disappear).
But, on the contrary, the following example

Y (t) + woy(t) — ky(t —h) =0, (18)
shows that delay can also have some stabilizing effect:
if, in (18), h is zero, system is oscillating or unstable.

However it was remarked [1] that some values of h > 0
and k > 0 make the system converge to zero.

Obviously, the ability to analyze the stability of a process
is a basic need for the validation of any closed-loop con-
troller. For instance, let us mention the following, related
aspects:

Asymptotic stability: do the solutions converge toward
the operating point, for sufficiently small initial perturba-
tions? This is the basic, local, asymptotic stability prop-
erty.

Robustness with regard to the parameters: what are the
admissible bound-values of the (constant or varying) pa-
rameters that assure the convergence? For delay systems
particularly, the question is to know the maximal val-
ues of the delays (and, sometimes the minimal one) that
keep the stability property. If this bound is infinite, the
process exhibits the strong property of independent-of-
delay stability (i.0.d. stability). But the assumptions for
i.o.d. stability, too, may be very strong in practice and it
may be preferable to look for delay-dependent conditions
(d.d. stability), as soon as the user has information about
the possible ranges of the delay variations.

Stability domains with regard to the variables: what set
of initial conditions will make the state surely converge
towards the equilibrium? This question may be meaning-
less in linear conditions of behavior, but becomes crucial
for wide-range, nonlinear models: in this last case, an-
swering is necessary for providing the admissible changes
of operating points, or for determining whether bounded
additive perturbations on the state may destabilize the
closed loop system.

Guaranteed, exponential decreasing rate: what is the ex-
ponential rate of convergence, this means, the velocity of
the final controlled process? This point aims to compare
the behaviour with a first order, ordinary system: it is
related to a—stability (see below the definition).

Positive invariance: how to be sure that a trajectory will
not go out of a predetermined domain of constraints?
Such constraints may be introduced on the state (for
physical security reasons), or on the control variables (for
energy-limiting considerations).

In this section, some stability analysis methods are
given with illustrative examples. Starting with some
mathematical background on the stability of FDEs, we
then propose a classification of the corresponding meth-



ods: the first part applies to linear models (founda-
tions, frequency-domain and root-locus methods, matrix-
based methods, complex plane methods, time-varying as-
pects); a second part deals with time-domain approaches,
that are applicable to both linear and nonlinear models
(first Lyapunov method, Lyapunov-Krasovkii functionals,
Lyapunov-Razumikhin functions, comparison methods).
The reader can find some more complete presentation in
the previously mentioned books as [62][29] or also in {19].
As for ODEs, the stability property is classically defined
for system (3) in free motion (u = 0), that is supposed to
have an unique solution, with an equilibrium solution at
Zero:

&(t) = f(ze,t), t>to, (19)
z(0) = »(6), to — h <8< to,
£0.8) = 0, Vi,

The solution is denoted z(¢; to, ¢) or, briefly, z(t). Mainly,
the concepts are the same than for ODEs, but replacing
the norm of initial values by some uniform norm of func-
tion [jo]| £ max _r<e<o |@(6)|,|z| denoting a norm of
vector z.

Definition. The zero solution of system (19) is:

1) Stable if for any € > 0 and any to there exists § =
8(e, to) > 0 such that |z(t;to, p)| < € for all ¢ € C verify-
ing |||l < 6 and for allt > to.

2) Asymptotically stable if it is stable and if, for
any solution z(t) of the stability problem 1), we have
lim;—.o |z(t)| = 0.

3) Uniformly, asymptotically stable if 1) hold with § = 6(¢)
and 2) holds with uniform limit (t — o0).

4) a—stable if 3) holds with the more constraining condi-
tion limy— oo |e°‘ta:(t)| =0, with a > 0. The constant « is
called a guaranteed (exponential) decay rate of (19).

5) Uniformly, asymptotically stable independently of the
delays (shortly, i.0.d. stable) if it is uniformly, asymp-
totically stable for all positive values of the upper bound
h.

In engineering practice, the parameters of a model are
known with a finite precision only; then, the model can
be considered as the sum of two terms:

z(t) = f(ze,t) + Af (z¢, 1)

where the first part f represents the nominal model, and
the second part Af represents the uncertainties on the
model. All we know about this second term is that it be-
longs to a certain functional family D C C. Generally, the
nominal model is linear and uncertainties are described
by their bounds: for instance, in case of unstructured un-
certainties, D is the set of continuous functions such that
|Af (z¢,t)|| < 6l|z¢] (norms), and for structured uncer-
tainties, |Fzi| < |Af (z1,t)] < |[Fz:| (absolute values)
with linear, delayed mappings F and F. This yields the
following definition.

Definition. The zero solution of system (19) is robustly
(asymptotically) stable with regard to set D if it is (as-
ymptotically) stable for any Af € D.

Basic stability property in the linear case

In what concerns the stability of the linear equations (6),
the necessary and sufficient condition (N.S.C.) is also a
straightforward generalization of ODE’s theory, based on
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the research of some particular, nontrivial, exponential
solution z(t) = e*".

Theorem. The zero equilibrium of retarded system (6),
with Cj(s) = C; constant and Di = 0, is asymptotically
stable iff all the characteristic roots (s) of the character-
istic function (20), p(s) = 0, have negative real parts,

8) = det (sI,—Ao— Aze Mt C‘—l_—e—]— . (20)
pls) = det > 3O
Note that in this case there can only be a finite number
of unstable roots, which is no more true in the neutral
case: if Dx # 0, the term —s 3., Dre™*“* is to be added
inside of the determinant. In the complex plane, there may
be infinite branches of roots tending to the imaginary axis:
conditions based on the sign of the real parts must then
be considered with a great care [61]. But, assuming the
stability of the difference equation z(t) + S Dix(t —
w) = 0 (cf. (33)) makes them hold [31].

Then, checking such conditions is much harder than in
the ODE’s case: p(s) = q(s,e” ") is not a polynomial in
s and there is no equivalent to the Routh-Hurwitz test.
Hand-calculating the characteristic roots of the very sim-
ple, scalar example
i(t) = —azx(t) —bz(t —h), xE€R, (21)

(s + a + be™™* = Q) illustrates how difficult it can be to
carry a direct analysis of the transcendental equation (20)
for systems with certain dimension, or for designing some
tuning parameters. We shall see in the following that
there are many stability criteria, but none of them gives
necessary and sufficient conditions which are simple and
practical at the same time”. These methods are presented
in a synthetic way in [19][23][87][29].
As a general observation concerning delay-dependent and
i.o.d. criteria, it is worth noticing that, when applied to
the prototypical system

i(t) = Aoz(t) + Arz(t — h), =z € R", (22)
the first class needs the matrix Ag + A: to be Hurwitz,
while the second, of course more constraining, demands
this condition for Ag. Lastly remark that the considera-
tion of multiple delays is accompanied by a huge increase

of computational complexity (see an evaluation in terms
of NP-hardness in [113]).

Linear systems: frequency-domain, root-locus

Then, the stability analysis of a linear, time-invariant sys-
tem with delays is grounded on its characteristic equation
(20). Of course, as the characteristic function p(s) de-
pends on the delay, a system may be stable for some set
{wk, hi, 7;} and unstable for an other set. The exten-
sions of Routh-Hurwitz criterion proposed by Pontryagin
(1942) or Chebotarev (1949) [62] are seldom applicable in
practice. Besides, the rational approximations (as Padé’s
ones) are not very relevant, since the study has to be car-
ried up to an undetermined order. Fortunately, there are
some interesting methods that allow the analysis of the
characteristic equation in a necessary and sufficient way:
in addition to the Tsypkin i.0.d. stability criterion®, let us
mention here the Pontryagin method (for commensurate

"However, for (21), explicit N.S.C. are known: (21) is asymp-
totically stable for any value h iff a + b > 0 and a 2 |b]; it is
asymptotically stable for any value of h less than h* iff b > |a| and
h* = (b* — a?)" /2 arccos(—a/b).

8 Restricted to single-delay, open-loop-stable transfert functions



delays), the D-partition approach (dividing the space of
the parameters into several regions, which boundaries cor-
respond to critical stability), the methods by 7-partition
(for commensurate delays, dividing the study on inter-
vals of delays) as, in particular, the interesting method of
Walton and Marshall (1987, commensurate delays, poly-
nomial analysis) or the similar, pseudo-delay approaches
(Rekasius 1980, Hertz, Jury and Zeheb 1984, 1987) and
methods by Kamen (1980-1983, commensurate delays,
i.o.d. conditions, methods based on 2-variable polyno-
mials in (s, 2), z = e7%%).

The general drawback of these necessary and sufficient
conditions, restricted to constant delays, is to be uneasy
when several parameters are to be tuned. Lastly mention
the Chebotarev method, which theory needs to check an
infinite number of determinants but, conversely, can be
used as a necessary condition of stability. Description
and examples are given in [62][19][23][87][29].

Linear systems: methods in the complex plane
Classical stability conditions such as Nyquist or
Mykhailov-Leonhard criteria are easily generalizable to
systems with delays. Indeed, the argument principle, cen-
tral core of these criteria, is still applicable since the num-
ber of the unstable roots in the complex plane is finite.
The induced methods [62][19](87][29] generally apply, in
a necessary and sufficient way, to constant but non nec-
essarily commensurate delays. They yield computational
difficulties when many combinations are to be checked,
with complex parameters.

Linear systems: matrix-based methods

Several results are expressed in terms of sufficient (but non
necessary) conditions, involving the matrix measures and
norms®. Compared with previous frequency approaches,
this lack of necessity is compensated by the relative easi-
ness of the implementation. We shall see in a next section,
devoted to the comparison approach, that some of these
approaches may also hold for nonlinear models. Among
the various methods, we just recall here the very repre-
sentative Mori, Fukuma and Kuwahara criterion (1981),
for single-delay systems, which further gave rise to gener-
alized formulations (for instance, Tokumaru et al. 1975,
Brierley et al. 1982, Hmamed 1986, Mori and Kokame
1989, Dambrine and Richard 1993, Kolmanovskii 1995,
Goubet et al. 1997). These other statements can be
found, with examples, in [19][87][29].

Theorem. The system (22) is i.0.d. stable if u(Ao) +
[lAL|l < 0. Moreover, its solution verifies |z(¢;0,¢)| <
lelle™ " (¢t > 0), where o is the real solution of equation

o A oh __
1+ ©(Ao) + /-t(Alo)e =0.

Other results for commensurate-delays systems, by Chen
(1994) and Su (1995), involve generalized eigenvalues'®
and matrix pencils techniques [90]. They need to check

—hs p(s . .
Q(;Thfw):@), the Tsypkin N.S.C. demands polynomials P (de-

gree n — 1) and Q (stable, degree n) to satisfy |P(jw)| > |Q(jw)|
for all w € R.

9The measure (or logarithmic norm) p(A) of a matrix A, as-
sociated to a norm, is u(A) =1in}) HLTE—EA—U_—I; matrix norm is

A .

|All = sup ﬂﬁﬂ Measure may be negative, norm must be
rzERT
nonnegative.

10A generalized eigenvalue of matrices A and B is a complex
number X such that det(A — AB) = 0 (the number of finite gener-
alized eigenvalue is at most equal to the rank of B).

33

matrices of increased order, obtained by sums and prod-
ucts of Kronecker. Delay-dependent or i.o.d. criteria can
be obtained (see [29]). The main difficulty is here the
high-dimensional computations of large-scale pencils (the
dimension is multiplying with the number of delays).
Linear, time varying systems

Except some matrix-based methods, the previous results
do not apply anymore if the delay is time-varying. The
following example has been shown {52] to be unstable!:

#(t) = —az(t) — bz(t — h(t))
h(t) = t— kT, Vte kT, (k+1)T]
T = 1, a=35  b=4

while for any constant value of the delay h{t) = h < 1,
its characteristic roots have negative real parts. Inversely,
for a = —1, b = 1.5, it is asymptotically stable, while
linear time-invariant conditions don’t hold (see also [19]).
Then, even if the works which take into account time-
varying delays are rather fewer, they are of practical in-
terest when designing the control of a process which delays
variations are actually non negligeable. The next meth-
ods (presented for nonlinear systems) have then to be de-
veloped and used for this time-varying case, as for the
classical ODEs. For instance, the simple system (2) was
shown to be asymptotically stable for time-varying h(t) if
h(t) < h < 1 (note that this condition is only sufficient).
The special case of linear, periodical-time varying delay
systems (i.e. (7) in free motion with periodic A;, h;) re-
ceived particular attention, with the generalization of the
monodromy operators and characteristic multipliers en-
countered in the Floquet-Lyapunov theory (Stokes 1962,
Halanay 1966, see [49]{62](19]): but, here again, delays
imply an increasing complexity.

(then h(t) < T)

Nonlinear systems: the first Lyapunov method
The first Lyapunov method [31] still holds for the system

k
z(t) = Z Aiz(t — ki) + q(t, z¢) (23)
i=0
q(t,ze) = q(t,z(t),z(t — 1 (1)), ..z(t — 7e(?))
ho = 0, h; =constant, 7;(t) € [0, 7] continuous,

with a function g such that, for any u;, |lui] < ¢ =
llg(t, uo, ...y ur)|| < Be(lluoll + ... + |luxll), with constant
Bc uniformly decreasing to 0 as ¢ — 0. The “tangent”,
linearized system is, as usual, defined by

i(t) = Z Aiz(t — hy). (24)

Theorem. If system (24) is asymptotically stable, then
the zero solution of (28) is, too. If (24) has at least one
characteristic root with positive real part, then the zero
solution of (23) is unstable.

This result can be followed by some small-delays approxi-
mation theorem (obtained by continuity of the character-
istic roots with regard to delays h;). Here, “small” is to
be understood as “sufficiently small”.

Theorem. If Ef:o A; is a Hurwitz matriz, then the zero
solution of (24) is asymptotically stable for small values
of the delays h;. If this matriz is unstable, then the zero
solution of (24) is unstable for small values of the delays

This kind of time-varying delay corresponds to T-periodic
sampling.



hi. If 0 is a single eigenvalue of this matriz, the other
having negative real parts, then the zero solution of (24)
is stable for small values of the delays h;.

Nonlinear/linear systems: time-domain methods
The next subsections present three approaches based on
time-domain, FDEs representations. The direct method
of Lyapunov has been extended to FDEs in two differ-
ent ways: the first one, due to Krasovskii (1963), uses a
functional generalization of the notion of Lyapunov func-
tion; the other one (Razumikhin, 1956) keeps the classical
approach of Lyapunov functions but applies it to a cer-
tain type of solutions. For further details, the reader can
refer to [62][87](29]. A third approach is based on com-
parison systems, and will be lastly presented (see details
in [19][40][29)).

These very general time-domain approaches apply to both
linear and nonlinear systems:

- in the linear case, they contribute to many results on
robust stability, whereas previous necessary and sufficient
conditions are quite limited (see a survey of the induced,
sufficient conditions in the first chapter of [29]);

- in the nonlinear case, they simply appear as the only
way to the stability analysis.

Functional approach of Lyapunov-Krasovskii

This section gives a short overview of the first class of the
above-mentioned, time-domain methods. In order to ex-
tend the Lyapunov’s direct method to FDEs, Krasovskii
(1963) proposed to consider functionals instead of classi-
cal Lyapunov functions. This generalization permits in
particular to obtain some converse theorems. It is based
on the following, classical result:

Theorem. System (19) is asymptotically stable if there
ezists a continuous functional V(t,p) : R x C — R,
which is positive-definite, decrescent, admitting an infin-
itesimal upper limit, and whose full derivative V(t,z.)
along the motions of (19) is negative definite over a neigh-
borhood of the origin.

Among the particular choices of the functional V, several
authors proposed stability conditions for linear systems
(22) with the following, “generalized quadratic form”

V() = z(t)T Pa(t) + / ° z(t + 0)" Sz(t + 6)db.

This functional, applied to the linear systems, leads to
sufficient conditions in the form of Riccati equations, as
follows (see for instance [87]).

Theorem. System (22) is i.0.d. stable if there exist
positive-definite, symmetric matrices P, S, R wverifying
the following, auxiliary Riccati equation

ATP + PAy+PAIST'ATP+S+R=0. (25)
Other i.0.d. conditions [107][29] were formulated in terms
of Riccati equations. More complex functionals lead to
delay-dependent conditions, available for discrete-single
[91], discrete-multiple [29][64] and distributed [63] delays.
Moreover, many such Riccati-type results where trans-
lated in terms of linear matrix-inequalities (LMIs, see [8])
[29]]91](88][87]. For instance, the condition (25) can be
equivalently checked by means of LMIs, as

ATP+PA+S PA,
(%P4 ) <o

Note that the major part of the delay-dependent condi-
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tions were obtained by using some other formulation of
the initial, generally linear system. For instance, the fol-
lowing system,

z(t) = Zm: Aiz(t — hi). (26)
can be written under th;Ztlhree following forms [64],
i(t) = Aa(t) — i Asj / Y os)as, @)
i,j=1 t—hy;
z(t) = Az(t) — i A; /tth z(s)ds, (28)
im1 ~h;

d

dt

i

m t

z(t) + Y As / z(s)ds} = Az(t), (29)
i=1 t—h;

with notation

A= ZA“ A,ﬁj £ AiAj, hij = h; +hj, h = Zh,
i=1 i=1
Each formulation can be studied by specific Lyapunov-
Krasovskii functionals, leading to the three different Ric-
cati equations [64],

ATP+PA+mRh+P Y hiAi;R7'BLP =-Q, (30)

i,j=1

ATP+PA+) (hiPA;R™'B] P +mhA] RA;) = -Q,
i=1

(31)

—Q = ATP+PA+

m m

S Rihi+ Y ATPAR]T AT PAh,. (32)
i=1 i,j=1

Then, the system (26) is asymptotically stable if for some
symmetric positive matrices R; and @ there exists a pos-
itive solution, P, of one of the equations (30), (31), (32).
Note that, due to the neutral-like nature of the third equa-
tion (29), an additional condition must be assumed with
(32): z(t) + > A ‘ftt_hi z(s)ds = 0 is asymptotically
stable (see the section “neutral systems”).

However, in the general, nonlinear case, finding a suit-
able functional V can be compared... to an art! [13][60]
This question, already encountered with ODEs models, is
enforced for FDEs. A formal procedure to construct Lya-
punov functionals V for concrete equations with delay was
proposed by Kolmanovskii [60][58]. Basic features of this
procedure are as follows: represent the right-hand side
of the equation as a sum of two terms, first of which has
the form of an instantaneous negative feedback; construct
a Lyapunov function v for the auxiliary ordinary differ-
ential equation corresponding to the first term; obtain
functional V from by change of the arguments of v. Note
that various steps of the procedure can be implemented
non-uniquely.

The Lyapunov-Razumikhin approach

Because of the complexity of the construction of a
Lyapunov functional for nonlinear models, Razumikhin
(1956) proposed another generalization of Lyapunov sec-
ond method, keeping the idea of Lyapunov functions
V(z(t)) (and not functional V(x:)). The great difference
is that the derivative of the chosen Lyapunov function
has to be negative only for special solutions of the system
(very roughly speaking, the idea is to check the sign of



the derivative V only when the state function may go out
of a set V(z) = constant).

Theorem. Let u(p), v(p), w(p) and p(p) (Rt —
RY) be continuous, nondecreasing functions, positive for
p > 0, u(0) = v(0) = 0 and p(p) > p for p > 0.
If there is a continuous function V : Rx R* — R
such that u(||z]) < V(t,z) < v(||zl)) for any (x,t),
and V (t,z(t)) < —w(|| z(t) ||) for states z: verifying
{V8 € [—h,0],V(t+6,z(t + 0)) < p(V(t,z(t)))}, then the
zero solution of (19) is uniformly asymptotically stable.
A practical corollary was given in [117], changing the last
condition into: V (¢,z(t)) < —w(l} z(t) ||) for states x,
verifying V6 € [—h,0], || z(t +0) ||< 1 || z(t) || for an
n> 1.

The LaSalle principle

The invariance principle of LaSalle (1960) is a well known
extension of the Lyapunov functions theory, that allows
to study of asymptotic behavior of ODEs solutions (in
particular, the boundedness properties). It involves the
notion of positive invariance of sets, that can be easily
generalized to FDEs. Then, the LaSalle invariance prin-
ciple was extended to retarded, time-invariant systems,
by using either the Krasovskii functional procedure (Hale,
1965 [49]) or the Razumikhin functions one [47]. We don't
give here the statements (see for instance [19]).

The comparison approach

The direct stability analysis of a complex system often
remains too cumbersome or even can be impossible to
perform. An alternative, indirect way is to proceed wvia
a simpler system, called comparison system. This notion
was originally defined for ODEs [81] and then, extended
to FDEs [68]. Firstly, we present a wide definition of the
idea.

Definition. A system (A) is said to be a comparison
system of a system (B) with regard to the property P (for
ezample, stability of its zero solution), if the verification
of property P for system (A) implies the same property
for system (B).

For instance, the first-order approximation of a nonlin-
ear ordinary differential equation may be viewed as a
comparison system with regard to the local, uniform as-
ymptotic stability. However, most of comparison sys-
tems rely on differential inequalities [68][58] and vector-
Lyapunov functions'? [20][21]{19][42], which tools consti-
tute the framework of the approach. Major part of the ref-
erenced results use a Razumikhin approach in their proof.
The next definition is a continuation of the previous one.

Definition. Let V : R® — R (with k < n) be a con-
tinuous, positive function such that V(z) = 0 & z =
0. Assume that, along the solutions of (19), the right-
hand time-derivative (Dini derivative) of y(t) = V(z(t))
satisfies the functional differential inequality DVy(t) <
F(t,y:). Then system z(t) = F(t,2:) is an overvaluing
system of (19) with respect to the function V if the in-
equality V(z(t)) < z(t) holds for any t > to as soon as it
holds for initial times t € [to — h, to].

Using the assumptions made on V, it is simple to prove
that an overvaluing system is also a comparison system
with regard to stability or asymptotic stability. Condi-

12Vector—Lyapunov functions were simultaneously introduced for
ODE:s in [4] and [81].
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tions on functional F to be an overvaluing system are
called comparison principles (as, in ODEs case, the so-
called Wazewski conditions): some of them, very general,
are recalled in [19][29]. A particular but interesting com-
parison principle can be mentioned here for illustration,
providing an exponential convergence rate -y (this lemma
was proved in [114] for a single-delay inequality, and under
this two-delay form in [42}).

Lemma. Let C, D, and Dy be n X n matrices with real
entries and let z(t) be a solution of the differential in-
equality (t > 0),

(t) < g(m),
g(z) =

0<6<h, 0<6<hz

Assume that D1 > 0, Dy > 0, that the off-diagonal en-
tries of C are non positive, and that (—C + D1 + Da)
is the opposite of an M-matriz'3. Then the solution x(t)
of this inequality is overvalued by the asymptotically sta-
ble solution z(t) of the differential equation 2(t) = g(2:),
t > 0, with initial condition 0 < z(8) < 2(8) forh <0 <0
(h = —max{h1, ha}).

If in addition (—C + D1 + Da) is irreducible, then there
is a constant v > 0 and a constant vector ky > 0 such
that z(t) < kye 7" for t > 0. Here, v and k are obtained
in the following way: v is the positive real solution of the
equation Am(Ay) = —v, where Ay = —C + D1e™ +
Doe™2. k., is a positive, importance eigenvector of A
associated with the importance eigenvalue Am(A~).

Vector-norms (each entry of V is a scalar norm of a sub-
vector z; of z) constitute a particular case of the gen-
eral (but hard to solve) vector-Lyapunov function(al)s:
they lead to systematic determination of comparison sys-
tems in many cases of FDEs {19][40}{29][111]. Applying
this tool on a nonlinear system with a single delay h, a
systematic construction of matrices C, D;, and possibly
D, (with hy = h, hp = 2h) is given in [42][29], leading
to the following, simple conditions (|.| denotes here the
entry-to-entry absolute value of vectors or matrices, M"
denotes the matrix obtained from M by replacing all its
off-diagonal entries by their absolute values).

Theorem. The zero equilibrium of the uncertain system
#(t) = Az(t)+ Bz(t — h(t))
+f(z(t),t) + g(x(t — h(t), 1)
f@0l < Flal, lg(=.t)|<Glel,
h(t) < h, B=B+B"
is asymptotically stable if the matrizr M = (A + B')* +
|B"|+F+G+h||B'A| + |B' B| + |B'| (F + G)] is Hurwitz.

This result was accompanied with the determination of
positively invariant sets, and convergence rate. Note that
it does not need A to be Hurwitz, but A+B’. Such a result
is very closed to the matrix-based methods seen in the
linear case'?. Recently, results using the same comparison

134 matrix A is the opposite of an M-matrix if all its off-diagonal

elements are non-negative and if A is Hurwitz. This latter condi-
tion may be easily tested by verifying that all its successive, prin-
cipal minors are negative. Such matrix A has a real eigenvalue
Am(A) which is greater than the real parts of all others. A, (A)
is called the importance eigenvalue of A. If A is irreductible (i.e.
if it is not similar to a bloc-triangular matrix), then there is an
associated, importance eigenvector u,, of A verifying u,, > 0.

14 For unstructured perturbations || f(z,t)|| < o |iz||, ||g(z, )| <
Bilz|l , the condition can be stated in terms of measures as (A4 +

B+ ||B"| + o+ B+r(||BA]l + BBl +||B'] (a+8) <O

—Cz(t)+ D1 sup z(t—0)+ D2 sup z(t—86).



approach for discrete-plus-distributed delay systems have
also been obtained [111] on the basis of transformations
such as (27).

This shows that some comparison results are directly
workable: even if the main question with such procedure
may be its non-uniqueness (dependence with regard to the
chosen state basis and to the decomposition B = B'+B"),
it provides information about both qualitative and quan-
titative aspects that were presented at the beginning of
this section devoted to stability [29]. In our opinion, this
simplicity, compared with the wideness of the admissi-
ble models and possible applications, constitutes the main
point of the comparison approach.

The case of neutral systems

The above mentioned functional approach is also fruit-
ful for neutral systems [108](62][50](61]. In this case, the
procedure can be generalized to a bit more complex one,
involving functionals V(Fz.) with notation referring to
(5) and the stability of the operator F' also has to be
checked: F is stable if the zero solution of the equation
Fz; = 0 is uniformly, asymptotically stable. For instance,
considering the (usual) case Fz; = z(t) — Dz(t — h), with
constant matrix D, a necessary stability condition for the
linear, neutral system

©(t)—Dz(t—h) =Y Aw(t—hi) (33)

to be stable is that D has eigenvalues inside the unit circle
(or, equivalently, is Schur-Cohn stable).

Theorem. Consider the equation

d

i Fze = f(ze), (34)
with f : C — R™ taking bounded sets of C into bounded
sets of R™. Suppose F is stable, and that u(p), v(p), w(p)
are continuous and nondecreasing functions, cancelling at
p = 0 and positive elsewhere. If there is a continuous
function V : R x C — R such that u(||Fp|) < V(t,¢) <
v(llpll) and, along the motions, V' (t,:) < —w(|| =(2) ),
then the zero solution of (84) is uniformly asymptotically
stable.

On this basis, Riccati equations can be constructed
[108][29] similarly to the retarded case. In 1979, Kol-
manovskii and Nosov [62] also defined the principles of
f-stability and degenerate functionals (V(z:) is said to be
degenerate because it may cancel even if the function xz;
is not identically zero) for stability study of nonlinear,
neutral equations. Results based on the comparison ap-
proach were given by Tchangani et al. [29][112], together
with estimates of the stability domains and asymptotic-
behaviors bounds.

Stabilization

Many studies are devoted to stabilization of time-delay
systems. The previous stability criteria are of course di-
rectly involved in such control study, but some of them are
more useful regarding to the kind of stabilization problem.

Concerning the linear, time-invariant models, the meth-
ods are related to the controllability properties, with a
great interest in the finite-spectrum assignment problem.
Since the stability tests are to be made on the charac-
teristic equation (by previously presented N.S.C.), they
are much simpler in the particular case of finite-spectrum
assignment, since the aim is then to obtain a polynomial
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equation (hence, with finite number of roots). This aspect
will be presented in the following section “Control”.

Concerning robust stabilization of linear models with con-
stant or nonlinear, time-varying parametric uncertainties
(see for instance [29]), the methods are mainly based on
the time-domain Krasovskii approach or on the compar-
ison approach; both allow one to deal with time-varying
delays, whereas the frequency-domain and complex-plane
methods generally need the delays to be constant.

The problem of stabilization with input-disturbances can
be treated by means of He norms: this involves time-
domain approaches, mainly the Krasovskii generalized
quadratic functionals, leading to Riccati equations or
LMISs (see for instance [120][87][88] and references herein).

It is to be mentioned that the main part of these two last
categories (robustness-type results) are dealing with sys-
tems with memoryless input (i.e. no delay on the control),
which imposes a real restriction: the delay phenomenon
is often induced by the actuators or sensors. A possible
solution to this problem consists in introducing an inte-
grator in the control: the simple system z (t) = u(t — k)
is then transformed by (u(t) = z2(t)) into:

@1 (t) = wa(t—h),
T2 (t) = o(t).

Lastly, constrained stabilizing control is mainly grounded
on the positive-invariance property, which is a little bit
more difficult to handle in functional spaces. Several re-
sults have been obtained in the case of linear delay sys-
tems (89][43][51] and nonlinear ones {22][29].

4. Structural properties

Controllability and observability of delay systems have
been studied through different modelling approaches. Two
large classes of properties can be distinguished:

- the functional ones aim to reach a function ¢ € C at
time ¢, this means to make the behavior reach some pre-
determined function z; € C; they mainly correspond to
the infinite-dimensional models; among them, the spectral
properties only concern the eigenvalues, thus, problems of
stabilization or observation.

- the point-wise ones consider the problem of reaching the
point z € R™ (solution at a given time); they can be stud-
ied through all the above-mentioned classes of models.

Many authors contributed to this study: surveys can be
found in [105][67][57]. Correspondences between differ-
ent properties in an unifying framework (in the module
theory) were given by Fliess and Mounier [84][33][76]. In
this paper, we shall mainly deal with the notions related
to controllability.

Functional controllability properties
Infinite-dimensional models as (11) received several con-
trollability definitions [25][80], that are of functional type.
The following ones refer to system (11) with solution (12),
and are also called “approzimate controllability”:

Definition. The state To is My-controllable at time t
to T1 € Ma([—h,0]; R*) if there is a sequence of con-
trols {u;} defined in L2 ([0,t]; R™) such that E(t;To,u:)
converges to T1 (in the sense of the norm over Mz). The
system (11) is Ma-controllable at time t if all states To are
Ma-controllable at time t to any T1 € M2 ([—h,0]; R™).



Ma-controllability was characterized by N.S.C. [25] but
the conditions are not so easy to check. This notion cor-
responds to a restricted notion (approzimate) if ones com-
pares it with the Ma-strict controllability at time t defined
in [25]: it only involves the limit trajectories that can be
obtained by sequences {u;}, because the domain of defi-
nition of operator Ais strictly included in M3 (only its
adherence is equal to M), while the strict notion needs
a unique, concrete control law u to exist. Other forms of
controllability were defined [80] for o = 0.

For systems with delayed control but without delay on
the state variables, the notion of absolute controllability
was defined (together with simple N.S.C.) in {93].

Definition. The linear system with commensurate delays
(8) with the restriction Vk > 1, A; = 0 is absolutely con-
trollable if, for any initial condition {wo, u(t)re[—ks, 0]},
there is a time t1 > 0 and a bounded control law u(t) such
that z(t1) = 0 with u(t) = 0 for all t € [t1 — k6, t1].
Theorem. The system (8) with A; = 0 Vk > 1, is
absolutely controllable iff rank[E,AoE,...,Ag_lE] = n,
k

with E =Y. e”**4p;.

i=0
Absolute controllability is actually a functional property,
since it implies the ability of maintaining z(t) at zero on a
time interval [t1,t1 + k6]. However, the main problem is
contained in its very demanding definition, needing u(t) =
0 for all t € [t1 — k6, t1]: such an “ending free-motion” is
too constraining in general.

An other property was defined by Weiss: the R"-
functional controllability [121][93] (see also in [105]), in
which there is not this zero-input constraint. The defini-
tion for a single-delay system without delay on the input
is as follows.

Definition. The linear system (10) is (¢, R")-
controllable (with regard to some function ¢ € C) if,
for any initial condition ¢ € C, there is a finite time
t1 > 0 and a control law u(t)€L2 ([0,t1 + A}, R™) such
that z (t; p,u) = Y(t — t1 — h) for all t € [t1, t1 + h)].
This property can be checked by generalizing the notion
grammian [121] as in equation (35).

Theorem. The linear system (10) is (0, R"™)-controllable
(i.e. with regard to ¥ =0) if

1) there is a finite time t1 > 0 such that

ty
rank ( / F(t, — )BoBg F(t1 — 9)Td0) =n, (35)
0

with F(t) solution of F (t) = AoF(t)+ A1 F(t—h), F(0) =
I s F (t1) = 0,

2) the equation Aoz(t — h) + Bou(t) = 0, t € [t1,t1 + h]
has a solution u(t)€ L2 ([t1,t1 + h], R™).

Condition 1) ensures R™-point-wise controllability at time
t1, whereas condition 2) allows to maintain the solution
at the origin after ¢;. Condition 1) can be replaced by
simpler point-wise controllability conditions, which are re-
called in the next subsection.

Spectral properties

The following spectral properties, as we shall see, consti-
tute very interesting bases for effective control of linear
systems. Spectral controllability can be seen as a func-
tional controllability property, but it only applies to the
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problem of controlling the spectrum of the linear system
(8) with model over ring (13),

o(A) = {s c€C, det (51 - A(e—“))} . (36)

in such a way it belongs to some region of the com-
plex, left half-plane. Of course, spectral properties concern
the problem of stabilization (functional controllability to
zero), but they also have been related to behavioral prop-
erties [103]{102]. We shall not consider here the infinite-
dimension models, however the spectral properties can
also be tested in this framework (see [57]).

Definitions. The system (8) or (138) is spectrally con-
trollable if, for any s € C,

rank [sI —A(e™®), B(e—és)] =n. (37)
It is spectrally observable if, for any s € C,
rank [sI —A(e™ )T, CT(e'ES)] =n. (38)

It is stabilizable if there exists a causal control law which
makes it asymptotically stable. It is detectable if there
exists a causal, asymptotic observer of the solution z(t) €
R™.

Theorem. The system (8) is stabilizable iff (37) holds
for any s € C, Re(s) > 0. It is detectable iff (38) holds
for any s € C, Re(s) > 0.

This result was proved in a constructive way in {9], which
work also studied the question of the realization:

Theorem. Any causal transfer matriz on R(s,e°°) has
a realization that is stabilizable and spectrally observable.
It also has a realization that is detectable and spectrally
controllable.

It was also remarked that in what concerns delay systems,
the notion of minimal realization (in the sense of spectral
controllability and spectral observability) does not always
exist (the transfer s—i‘fﬁ—?%
Point-wise controllability properties

Many other works have been devoted to point-wise struc-
tural properties: a main one is the so-called euclidean-
space controllability, or R™-controllability, that means,
let us recall it, defined for trajectories considered in the
vector-space R™. These works probably started with Kir-
illova, Churakova and Gabasov (1967), Buckalo (1968),
Weiss (1970), Zmood (1974) (see [105]). All approaches
use the same definition, but lead to different conditions
(sometimes equivalent). We recall here the definition for
linear systems with single delay (note it corresponds to
the notion of reachability), but it can easily be extended
to multiple delay systems with input delays, when the
delays are commensurate.

Definition. The linear system (8) is R™-controllable
at time t1 if, for any initial condition ¢ € C and
z1 € R™, there is a time t1 > 0 and a control law
u(t)eLs ([0,t1] , R™) such that x (t1;¢,u) = 1.

It is R™-controllable if there exists such a time t;.

was taken as example).

It is strongly R™-controllable if it is R™-controllable at any
time t1 > 0.

If the above R™-controllability property is restricted to
x1 = 0, then the system is R™-controllable to the origin.

Then, the evolution of the trajectory after ¢, is not con-
strained by these definitions (the trajectory may not stay
at x1, contrarily to the non-delayed case and to functional



controllability). Two other differences with ODEs are to
be remarked: the time ¢;, in general cannot be smaller
than the delay § (except in the rare case of strong con-
trollability) and the R™-controllability is not equivalent
to the R™-controllability to the origin (the difference cor-
responds to the so-called point-wise completeness, which
additional property makes the two definitions equivalent.
Completeness can be checked by matrix-type N.S.C. due
to Zwerkin (1971).

Many criteria give R™-controllability conditions (for in-
stance, eqn. (35) is a condition due to Weiss). The basic
one uses the Kirillova-Churakova operators (9):

Theorem. The single-delay system (10) 1is R"-
controllable to the origin if *°

rank[Po(O)Bo,P1 (O)Bo, P](I)Bo,
PQ(O)BO, PQ(I)BO, P2(2)Bo, ey Pn_l(n — l)Bo].

n =

Controllability over rings

The following, point-wise notions are of algebraic type
and are detailled in [67][105}[96]: roughly speaking, strong
controllability implies the existence of a non-anticipative
feedback control based on the past values of the solution,
te. z(t), z(t — 8), z(t — 26),... that one can say to be
of “polynomial type”. Weak controllability just needs a
“rational” feedback to exist, and the resulting control law
may be anticipative (thus, non realizable). A link between
this form of controllability and the subsystems description
[93][115] is given in [96].

Definition. System over ring (13) is controllable over
the ring R (V] or “strongly controllable”, if there exists a
control law of polynomial type u(t) = f(z, vz, vz, ...) al-
lowing to reach, any element of the module R™ [V]from any
initial state zo € R™ [V]. It is controllable over the field
R(V) or “weakly controllable”, if there exists a control law
of rational type u(t) = f(zx,vz,v3z,.., v 12, v 2z,) al-
lowing to reach any element of the module R™[V] from
any initial state zo € R™ [V].

The following theorem (see a more complete version in
[67]) uses the notations

(A/B) = [B,AB,A’B,..,A"'B],
and (A/ImB) for the controllability submodule associ-
ated to the pair (A,B), i.e.
(A/InB) =ImB + A’ImB+... + A" 'ImB.
Theorem. The following, equivalent conditions are nec-

essary and sufficient for system (18) to be strongly con-
trollable —i.e. over R[V]:

1) (A(v)/ImB(V)) = R" [v];

2) the Smith form of (A(V)/ImB(V)) is [Inxn | O]

3) rank{s] — A(z) | B(z)]=n for all s and z in C.
Theorem. The following, equivalent conditions are nec-

essary and sufficient for system (13) to be weakly control-
lable —i.e. over R(V):

1) rank(A(V)/B(V)) = n;

2) all the diagonal elements of the Smith form of
(A(V)/ImB(V)) are nonzero;

3) rank(s] — A(z) | B(z)] = n for all s and at least one
zinC.

15 This condition is also necessary if the system is point-wise
complete.
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In the first statement, condition 2) means that
(A(V)/B(V)) is Ru(V)-closed (see footnote 3). In the sec-
ond statement, it is not.

In the same framework of models over rings, the notion
of controllability indices has been extended to delay sys-
tems by Sename, Picard and Lafay [105]{106][96], giving
interesting informations about the smallest time ¢; that is
needed for given state variables (controllability submod-
ules) to reach the expected value z; in R". This ques-
tion is clearly illustrated by the very simple example [105]
z1 (t) = u1(t), T2 (t) = uz2(t — h) where different, mini-
mal delay times are needed for the control of z1 and z2.
Then, each of these indices are represented by a class and
an order in this class: class reflects the minimal delay,
whereas order corresponds to the classical notion for sys-
tems without delay (i.e., the lengthes of controllability
chains). Controllability submodules are also associated
(see details in [96]).

Relations between the controllabilities

The survey paper [67] makes appear the following impli-
cations (and other additional ones, using the notion of
torsion submodules):

Theorem. In the case of a linear system with commen-
surate delays (8), the following implications hold:

1) Strong controllability, over R[V] = Absolute con-
trollability = Weak controllability, over R(V) = R™-
controllability.

2) Approzimate controllability = Spectral controllability
= Weak controllability, over R(V).

Remark that it makes conclude that strong controllability
is a very demanding property: in fact, it means that the
system can be controlled as if it was not including any
delay.

Remarks on the observability

The previous notions of controllability (strong, weak,
spectral,...) can be transposed to observability (see
[96][99] and references herein). Indexes and classes can
be used for determining the minimum time needed by an
observer to construct the point z(t). General solution can
be obtained for retarded systems by means of realizations
over R.(V) but, in what concerns neutral systems, this
problem of reconstruction is still open [96].

5. Control

Since the Smith “posicast control” (1957) and predic-
tor (1959), control of delay systems has been widely
considered. A great part of the practices was based on
approximation methods, which are not necessarily con-
venient when significant uncertainties -including delays
variations- are involved in the process. We have previ-
ously mentioned some approaches in the subsection “Sta-
bilization” but, of course, the quasi-totality of the control
methods received attempts of generalization. This section
will provide a glance over some present trends.

Spectrum assignment

In the 70s, some papers emphasized the interest of using
distributed-delays controllers for discrete-delays plants
[71[83][54][80][79] (see also [118][120][9]): such operators,
placed in the feedback loop, allow a reduction of the spec-
trum o (A) (36) to a finite set. Contrarily to the problem
(initiated by Osipov in 1965, see [79]) of shifting an ar-



bitrary but finite number of eigenvalues, finite-spectrum
assignment does not require the preliminary knowledge of
the spectrum o(A); moreover, stability of the closed loop
is easy to check, since the characteristic function (20) be-
comes a polynomial. The following simple, scalar example
[9] can illustrate the idea:

PO = Yo rue-D, g =
u(t) = -2 / 1e9u(t—0)d9—2ey(t) + v(t).
0

Here, from (16), the control wu(t) achieves a finite-
spectrum assignment at s = —1. The following result
was proved (necessity [79], sufficiency [119]):

Theorem. The system is n-assignable iff it is spectrally
controllable.

Several algorithms followed, proposing calculation of the
corresponding feedback in the general case. A complete
algebraic formalism was recently proposed [9][10][75],
based on the set of pseudo-polynomials £ (see before in
section “Algebraic formalism”). The sketch of solution is
as follows: if the expected finite spectrum is defined by the
polynomial equation ¢(s) = 0, ¢ € R|[s], if the process is
described by Y (s)/U(s) = p(s)/q(s), p,q € R[s,e™°], and
if the control is to be calculated as U(s) = pc(s)/qc(s),
Pe, qe € €, then the problem has a solution if gg. +pp. = ¢
has a solution. This last condition holds because &£ is a
domain of Bézout. On these bases, the robustness aspects
now remain to be studied.

Some other control aspects

Many control problems can be studied by means of mod-
els over rings, then for the synthesis of discrete-delayed
feedback laws: disturbance decoupling [16] and block-
decoupling [17], model matching [98], pre-compensators de-
sign [97]. Some overview and results can be found in [96].

Concerning optimal control, many results and references
can be found in [65] (also considering stochastic FDEs).
[36]]26] considered some approaches by approximation of
infinite-dimensional Riccati equations, and additional re-
sults and references on LQG control are given in [95].

Self-adjusting control with reference model (with identi-
fication problem) is considered in [65]. Heo-robustness
results and references can be found in [120][88]. Feed-
back linearization of delay systems was considered in [35],
and wvibrational control in [72][29]. Constrained control
(with invariant or saturated control) was considered in
[22](89][29][43][51][2], and deadbeat control of ODEs by
means of delays can be found in [120]. Lastly mention
some trends in CRONE control (french abbreviation of “ro-
bust control with non-integer order of derivation”) [53].

Of course, if control can be studied with some success in
the case of unperturbed, linear, time-invariant models, it
is clear that, in more complex cases, the domain remains
widely opened.

6. Conclusion

This overview of three aspects of delay systems -
modelling, stability and controllability- makes appear four
points of view:

1- the functional point of view: FDEs and infinite-
dimensional models, Lyapunov-Krasovskii functionals for
stability, functional and spectral controllability proper-
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ties;
models over rings, Lyapunov-
point-wise R"-

2- the point-wise one:
Razumikhin functions for stability,
controllability properties;

3- the approzimative one: mainly based on classical,
finite-dimension simplifications, followed by usual crite-
ria for ordinary differential systems.

Only the two first approaches do take into consideration
the specific characters of delay systems. Roughly speak-
ing, the first class is the only one that allows to consider
nonlinear behaviors.
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