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Abstract 
Morphogenesis of an epithelial tissue emerges from the behavior of its constituent cells, 
including changes in shape, rearrangements and divisions. In many instances the directionality 
of these cellular events is controlled by the polarized distribution of specific molecular 
components. In recent years, our understanding of morphogenesis and polarity highly benefited 
from advances in genetics, microscopy and image analysis. They now make it possible to 
measure cellular dynamics and polarity with unprecedented precision for entire tissues 
throughout their development.  
Here we review recent approaches to visualize and measure cell polarity and tissue 
morphogenesis. The review is organized like an experiment. We first discuss the choice of cell 
and polarity reporters and describe the use of mosaics to reveal hidden cell polarities or local 
morphogenetic events. Then, we outline application-specific advantages and disadvantages of 
different microscopy techniques and image projection algorithms. Next, we present methods to 
extract cell outlines in order to measure cell polarity and detect cellular events underlying 
morphogenesis. Finally, we bridge scales by presenting approaches to quantify the specific 
contribution of each cellular event to global tissue deformation. 
Taken together, we provide an in-depth description of available tools and theoretical concepts 
to quantitatively study cell polarity and tissue morphogenesis over multiple scales.  
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I. Introduction 
Epithelia are the most widespread tissue in the animal kingdom. They are characterized 

by tight connections between cells called junctions inhibiting diffusion of molecules across the 
epithelium. Epithelial cells also exhibit an apico-basal polarity underlined by an asymmetric 
distribution of intracellular and plasma membrane components. This polarized organization 
allows selective and directed transport of molecules (e.g. nutrients, proteins, ions etc.) across 
the epithelial barrier.  

Most epithelial cells exhibit a second polarity axis, called planar cell polarity (PCP) that lies 
within the plane of the epithelium. PCP coordinates the alignment of cell external and internal 
structures locally (between neighboring cells) and globally (across the tissue) (Goodrich & Strutt, 
2011). Striking examples of PCP are the coordinated alignment of hairs and cilia found in many 
epithelia. PCP also coordinates polarized cell rearrangements during convergence and extension 
movements in vertebrates and invertebrates (Bertet, Sulak, & Lecuit, 2004; Blankenship, 
Backovic, Sanny, Weitz, & Zallen, 2006; Irvine & Wieschaus, 1994; Tada & Kai, 2012; Walck-
Shannon & Hardin, 2014; Wallingford, 2012). Molecularly, PCP depends on the asymmetric 
segregation of polarity proteins to different sides of a cell (compare Fig. 1A and 1C). Therefore, 
in many instances PCP can be defined by a vector, which represents the asymmetric protein 
localization (Fig. 1A). However, several PCP components (e.g. the atypical cadherin Flamingo 
(Chae et al., 1999; Usui et al., 1999), Myo-II, E-cad and Par3 in the germband of Drosophila 
(Bertet et al., 2004; Blankenship et al., 2006; Zallen & Wieschaus, 2004)) localize to both sides of 
a cell and are therefore characterized by an axial rather than a vectorial polarity (Fig. 1B).  

During development, epithelia undergo dramatic morphogenetic changes to acquire their 
final shape. In most cases these shape changes occur without a loss of epithelial integrity and 
involve a limited set of cellular events occurring within the plane of the epithelium. Two classes 
of events can be distinguished, cell deformations and events changing the topology of the cell 
network (i.e. the local arrangement of cell connections). Cell deformations can be isotropic (i.e. 
equal changes in all directions), such as reduction or expansion of cell area, or anisotropic such 
as cell elongation along a specific axis. Most changes in the cell network topology result from 
three processes: neighbor exchanges, cell divisions and cell extrusions (Fig. 3A).  

A type of neighbor exchange, called T1 transition (Bohn, 2003; Weaire & Hutzler, 2001) is 
defined as the loss of contact between two cells (a,b) that become separated by two adjacent 
cells (c,d) (Fig. 3A). T1 transitions typically involve four cells and occur in two steps: first the 
shrinkage of the contact between cells a and b followed by extension of a new contact between 
cells c and d (Fig. 3A) (Bertet et al., 2004). In some cases more than four cells exchange their 
neighbors, inducing the formation of rosettes (Blankenship et al., 2006; Nishimura, Honda, & 
Takeichi, 2012). When T1 transitions occur in an oriented manner throughout an epithelium, 
e.g. in response to PCP signaling, this results in epithelial convergence and extension. Such 
polarized cell intercalation has been shown to underlie germband extension in Drosophila 
(Bertet et al., 2004; Blankenship et al., 2006; Irvine & Wieschaus, 1994; Walck-Shannon & 
Hardin, 2014), and convergent extension in the vertebrate neural tube (Nishimura et al., 2012; 
Nishimura & Takeichi, 2008), the renal tubules in mouse (Karner et al., 2009) and Xenopus 
(Lienkamp et al., 2012), and the mammalian cochlea (Chacon-Heszele, Ren, Reynolds, Chi, & 
Chen, 2012; Wang et al., 2005). 
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Cell divisions increase the number of cells, often contributing to epithelial growth, and 
modify network topology. Importantly, the orientation of cell divisions has been proposed to 
bias the orientation of growth in the Drosophila wing disc (Baena-Lopez, Baonza, & Garcia-
Bellido, 2005). Furthermore, oriented cell divisions have been implicated in releasing tissue level 
stresses as in the peripheral rim of the Drosophila wing discs (Legoff, Rouault, & Lecuit, 2013) 
and during zebrafish epiboly (Campinho et al., 2013).  

During cell extrusion a cell progressively loses contact with its neighbors and leaves the 
tissue layer. The resulting change in topology is termed T2 transition (Bohn, 2003) (Fig. 3A). 
Typically, they occur when cells undergo developmentally induced epithelial to mesenchymal 
transition (EMT) or die. Cell extrusions by T2 transitions constitute an important mechanism to 
maintain epithelial homeostasis and are observed in many epithelia, e.g. at the tip of gut 
microvilli in mammals (Eisenhoffer & Rosenblatt, 2013; Guillot & Lecuit, 2013), the developing 
fin of zebrafish (Eisenhoffer et al., 2012) and the midline of the developing dorsal thorax in 
Drosophila (Marinari et al., 2012). 

In this review we provide an overview of methods to quantify morphogenesis and planar 
polarity at the cell and tissue scale. We first outline a selection of biological strategies to label 
cells and unravel polarized protein distribution. We next discuss different microscopy 
approaches and illustrate in detail suitable methods for image projection, segmentation, and 
measurement of tissue deformation and polarity. Boxes provide the necessary mathematical 
background for the quantification methods. At each step, we highlight potential benefits and 
disadvantages of the presented methods.  

II. Biological Toolbox 
Morphogenesis can be studied with different levels of detail. Below, we first describe 

biological markers that can be used to monitor coarse-grained tissue deformation, as well as 
markers to visualize single cell polarity or unravel fine-grained cellular events underlying 
morphogenesis. We then outline strategies using mosaics to visualize hidden polarities in 
epithelial tissues    

A. Cell and polarity markers 
In general, a good biological marker: 1) must not perturb the developmental processes 

studied. Ideally, it should be expressed at endogenous levels from its endogenous locus or be 
biologically neutral when overexpressed. 2) The marker should be bright, in particular for live 
imaging. Fluorescent Proteins with high quantum yield and low bleaching are preferable. 
According to our experience, e-GFP, Venus and td-Tomato perform better than cyan fluorescent 
proteins. 3) The marker should be as much as possible restricted to and label only the structure 
of interest (e.g. cell membrane, nucleus, etc.). 

Coarse-grained analysis of tissue deformation can be performed by a method called 
“particle image velocimetry” (PIV) (see section IV.C) (Raffel, 2007). PIV exploits the natural 
heterogeneity of the tissue and works with most conventional markers (e.g. cell membrane, 
nuclei, organelles, etc.).  
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For a fine-grained analysis of cellular events underlying morphogenesis, an extraction of 
cell outlines is often required (i.e. segmentation). Optimal reporters for this display a sharp 
signal around the entire cell perimeter and have low or no cytoplasmic interfering signal (such as 
vesicles). E-cadherin::e-GFP is such a marker for Drosophila tissues. Discontinuous or less sharp 
markers can also be used to extract cell outlines (e.g. many planar polarity proteins and 
components of the cytoskeleton), but with poorer results. Note that to study the distribution of 
such proteins in the cell, cell outlines may be obtained with a second, more easily segmentable 
marker (e.g. E-cadherin::e-GFP) and then applied to the signal of the former (planar polarity 
proteins cytoskeletal components etc.). 
 

[[[ Desired position of Figure 1:  somewhere within the section “Mosaics 
as a tool to visualize polarity and morphogenesis“ ]]] 

B. Mosaics as a tool to visualize polarity and morphogenesis 
The limited resolution of conventional light microscopy cannot resolve the relative 

protein contributions of adjacent cells to their shared boundary. Therefore, a protein localizing 
only to one side of the cell may appear bipolar or non polarized (Fig. 1E,F,I,K). Hence, vectorial 
polarity can be hidden (Fig. 1I,K and section V.A.2), although in many situations, an axial polarity 
can still be detected (Fig. 1D-F). 

Genetic mosaics, i.e. tissues consisting of two or more genetically distinct cell populations, 
provide an elegant solution to this problem, because they allow the expression of a labeled 
protein in only a subset of cells (Fig. 1G,H,L). As a consequence, any labeled protein localized at 
the interface between labeled and unlabeled cells comes only from the labeled cells. Thus, this 
interface can be used for the quantification of magnitude and direction of PCP vectors (Fig. 1D-
M and section V.A.1). Note however that there may be rare cases where vectorial polarity can 
be measured without requiring mosaics, for example when few cells show higher fluorescence 
intensity than their neighbors (Besson et al., 2015). 

Mosaics can be induced in several ways in several organisms. They can be created by 
injecting, infecting or transfecting cells with vectors or by creating chimeras between different 
animals (Kretzschmar & Watt, 2012). However, the two most widely used methods are the 
Flp/FRT and the Cre/lox systems (Nagy, 2000; Sauer & Henderson, 1988; Xu & Rubin, 1993). In 
both cases, the expression of a recombinase (Flippase/Flp or Cre) induces recombination 
between two target DNA sequences (FRT or loxP sites). Furthermore, both systems are highly 
versatile as they allow tight regulation of recombinase activity in time and space (Danielian, 
Muccino, Rowitch, Michael, & McMahon, 1998; Hayashi & McMahon, 2002; Xu & Rubin, 1993). 
Recombination in cis (i.e. between sites on a single DNA molecule) or in trans (on different 
molecules) can be mediated using both systems. When two recombination sites flank a DNA 
sequence, recombination in cis results in the excision of the flanked DNA fragment. This is often 
used to delete parts of a gene to mutate it or to excise a central “Stop” cassette to conditionally 
activate gene expression (Kretzschmar & Watt, 2012; Srinivas et al., 2001). This for example 
allows the generation of multiple small labeled clones in an otherwise unlabeled tissue. In 
Drosophila, recombination in trans between two FRT sites is used to exchange distal arms of 
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homologous chromosomes during mitosis (Golic, 1991; Xu & Rubin, 1993). Such a recombination 
can generate two genetically distinct daughter cells from a heterozygous mother cell.  

Genetic mosaics can also be used to label clonally related cells to visualize local 
morphogenesis. Indeed, clone shape results from all the cellular events occurring within the 
clone. For example, elongated clone shape indicates anisotropic cell behaviors (e.g. oriented cell 
divisions, oriented neighbor exchanges, and/or cell elongation), while round clones may result 
from either absence of anisotropies or opposing anisotropic cellular behaviors. Similarly, clone 
fragmentation indicates a high rate of neighbor exchange. However, absence of clone 
fragmentation does not necessarily indicate absence of neighbor exchanges. This is the case in 
the Drosophila wing, where clonally related cells mostly remain attached to each other despite 
extensive cell rearrangements (Aigouy et al., 2010; Heller et al., 2016). Additionally, 
reproducible differences in clone size indicate heterogeneous growth within the tissue. Also, 
obtaining few snapshots of the development of clones allows to observe their deformation as 
well as to infer global tissue deformation by triangulation between them (Heemskerk, Lecuit, & 
LeGoff, 2014).  

III. Imaging toolbox 
Imaging (i.e. the acquisition of images with a microscope) is an essential technique to 

understand the cell biological and molecular basis of development. Light microscopy allows to 
observe tissues with cellular and subcellular resolution. Since morphogenesis is a dynamic 
process that is better understood when followed in real time, live imaging is the primary 
approach to study morphogenesis in many labs. Furthermore, although cell and tissue polarity 
can be studied in fixed tissues, understanding how polarity is established and maintained in face 
of dynamic cell behaviors greatly benefits from live imaging. 

A microscopy image is nothing but a visual representation of a 2 dimensional (x,y) matrix 
of intensity values (Fig. 2A). Each element of this matrix is called a pixel. Pixels can be coded 
over n number of bits, typically 8 to 16 for most biological images. Pixel intensities in 8 bit 
images therefore range from 0 to 255 (i.e. 28 gray levels) and in 16 bit images from 0 to 65535 
(i.e. 216 gray levels). Imaging datasets of labeled biological samples can have more than just 2 
dimensions when also the sample depth (z dimension), time (t dimension) and multiple colors (c 
dimension) are considered. In this section we present the most common types of microscopy 
and discuss their applications, advantages and disadvantages relatively to different biological 
questions (Table 1). 
 

Table 1: Comparison of different types of microscopy. 

Microscope/type 
of analysis 

Polarity Tissue scale 
morphogenesis 

Cell scale 
morphogenesis 

Phototoxicity* 

Widefield + +++ + + 

Confocal +++ + +++ ++ 

Spinning disk +++ +++ +++ + 
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Light sheet 
microscope 

+ +++ +++ + 

Two-photon 
microscopy 

+++ + +++ +++ 

*more “+” means more phototoxic 

A. Types of microscopy 
The simplest and cheapest microscopy set-up is widefield imaging (also called 

epifluorescence). An epifluorescence microscope captures the light emitted by the whole 
sample with an objective lens and records each image at once with a CCD camera. Widefield 
imaging is therefore fast but it also collects out-of-focus light from regions above and below the 
focal plane. While this is generally not a problem when imaging thin samples (e.g. cells in a petri 
dish), the out-of-focus light reduces the contrast in images of whole mount organisms.  

This limitation is overcome in confocal microscopy, which allows to acquire thin optical 
sections to obtain sharp 3D representations of the sample. Laser scanning confocal microscopy 
(LSCM) and spinning disk confocal microscopy (SDCM) are the two most commonly used types 
of confocal systems. They both utilize pinholes, i.e. apertures in the detection path that reject 
out-of-focus light generating images with higher contrast compared to widefield. LSCM and 
SDCM differ in how the sample is scanned and signals are detected, making the two systems 
optimal for different applications.  

In LSCM a laser is moved with mirrors across the sample and the image is generated pixel-
by-pixel by recording the emitted photons using a photon-multiplying tube (PMT). The PMT 
converts the photons into electrical/analog signals stored as intensity values in an image by the 
recording software. LSCM offers good x, y, and z-resolution close to the theoretical limit of 
conventional light microscopy and a high signal-to-noise ratio (S/N). Properly adjusting the scan 
speed parameter, i.e. the time the laser spends on each pixel (also referred to as pixel dwell 
time), allows to improve S/N and therefore the quality of the acquired images. Traditionally, the 
main drawback of LSCM is the overall low speed of acquisition, especially when multiple 
channels, large (x, y) fields and big z-volumes need to be recorded. Nevertheless, modern LSCM 
systems can be used to perform relatively fast live imaging. Alternatively, scan speed can be 
increased by reducing the field of view or at the expense of S/N. Taken together, LSCM is an 
excellent choice for acquiring images with high resolution and good S/N, when slow acquisition 
is not a problem. Indeed, LSCM is most often the prime choice for fixed samples stained by 
immunofluorescence.   

A recent development in LSCM is the use of multi-photon excitation (most frequently 
two-photon on conventional systems) (Denk, Strickler, & Webb, 1990). Classically, fluorophores 
are excited by a single photon with a wavelength shorter than that of the emitted photon. In 
contrast, with multi-photon excitation, the fluorophore is excited by simultaneous absorption of 
two or more photons with a larger wavelength (multi-photon effect). This offers three main 
advantages compared to classical LSCM. First, photons with longer wavelengths can penetrate 
further into the sample and thereby allow deeper imaging (Helmchen & Denk, 2005). Second, 
since the photon density required for the multi-photon effect is reached only at the focal plane, 
all emitted photons are “in-focus” and there is no need for pinholes to filter out-of-focus light. 
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This dramatically increases the S/N giving this set-up an advantage when imaging light scattering 
samples (Denk & Svoboda, 1997). Third, because fluorophores are only excited in the focal plane 
and not, as in classical LSCM, throughout the sample, multi-photon microscopy causes less 
photobleaching, especially when acquiring large z-volumes (So, Dong, Masters, & Berland, 
2000). However, multi-photon imaging also has disadvantages. First, since the scanning principle 
is similar to regular LSCM, multi-photon imaging is slow. Additionally, it is not well suited for 
multicolor imaging because multi-photon lasers usually need time-consuming steps of tuning to 
switch between different wavelengths and cannot be easily combined with visible lasers for 
regular LSCM. Finally, the high photon density of multi-photon lasers can cause photodamage 
and in many cases is not well tolerated by the sample. In conclusion, multi-photon microscopy 
provides a good alternative to regular LSCM when deep sample penetration is required.  

Spinning disk confocal microscopy (SDCM) has emerged in the recent years as a powerful 
technique to perform fast imaging of living samples. In SDCM, instead of using a single pinhole, a 
rotating disk with several thousand pinholes (also called Nipkow disk) is put into the conjugate 
image plane. In a recent development of SDCM (the Yokogawa spinning disk unit) the 
illumination beam is focused on the spinning disk that effectively multiplies it into thousands of 
parallel beams focused onto the sample by the objective lens. Upon disk rotation the parallel 
beams simultaneously scan the entire specimen at a speed that is much higher than LSCM. The 
emitted light coming from the sample is collected back through the pinholes producing an 
optical section that is registered at once with an image by CCD cameras. Such a parallel scanning 
and reading strategy requires low sample illumination and thereby reduces photobleaching and 
photodamage. Thus, SDCM is a good choice to image living samples and fast developmental 
processes. Also this is an excellent device to image large samples with cellular resolution using 
image stitching (see section IV.B). Disadvantages of this setup are that the size of the pinholes in 
the spinning disk is fixed and usually adjusted to yield optimal results with a certain objective 
(usually 40x or 100x). Thus, when imaging with other magnifications, the size of the pinholes in 
the disk does not provide an optimal photon yield and z-resolution. In summary, spinning disk 
microscopes are a good choice for imaging fast developmental processes and/or entire tissues 
with cellular resolution. 

Recently, selective plane illumination microscopy (SPIM) has emerged as an interesting 
technique to study developmental processes. In SPIM, the specimen is illuminated with a thin 
light sheet and the emitted photons are collected in perpendicular direction (Keller & Stelzer, 
2008; Weber & Huisken, 2011). SPIM has two main advantages. First, optical sectioning is 
produced by illuminating only the desired planes rather than rejecting out-of-focus light with 
pinholes. This dramatically reduces photobleaching and photodamage allowing long-term 
imaging of living samples. Second, since the entire (x, y) plane is illuminated at once, this 
technique allows fast 3D scanning of the specimen with sensitive high-speed CCD cameras. By 
embedding the sample in a rigid transparent medium (e.g. agarose), it is possible to rotate it and 
collect 3D stacks at different angles, providing isotropic resolution in the x, y, and z dimension 
and allowing in toto 3D imaging of living specimens (Huisken & Stainier, 2009; Weber & Huisken, 
2011). This technique may however produce light scattering artifacts in opaque specimens (e.g. 
shading due to opaque objects). Recent development including dual-side illumination with 
multidirectional selective plane illumination (mSPIM) have been shown to significantly alleviate 
these problems (de Medeiros et al., 2015; Huisken & Stainier, 2007; Krzic, Gunther, Saunders, 
Streichan, & Hufnagel, 2012). Finally, since SPIM can produce large datasets, 3D reconstruction 
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can be long and computationally intensive. In conclusion SPIM is currently limited by difficulties 
in data handling and storing but remains a promising technique for fast 3-dimensional and 
multi-view imaging of biological samples with very low photobleaching.  

B. Tips and pitfalls to optimize imaging protocols 
Microscopy images have to respect certain criteria to provide meaningful data 

quantifications. In this section we discuss potential tips and pitfalls to optimize imaging 
protocols and acquire images appropriate for image analysis. 

1. Optimizing the dynamic range, the signal to noise ratio and the speed 
of imaging 

A good image is an image that: 1) uses the full dynamic range provided by the bit depth (8 
to 16-bit), 2) in which pixels neither reach the maximum nor the minimum value of such range 
3) has a good S/N ratio. In fluorescence microscopy this can be achieved by increasing the power 
of the illuminating laser. This generates higher signals and improves the S/N ratio without 
compromising on imaging speed. The major downside of using high laser power is 
photobleaching and photodamage (see next section). Usually, appropriate illumination power 
settings are those that maximize S/N while minimizing photobleaching.  

When increasing laser power is detrimental for the sample, other parameters controlling 
photon detection or photon conversion into digital signals can be tuned to improve image 
quality. In epifluorescent, SDCM and SPIM the amount of collected signal depends on the 
camera exposure time (i.e. the total time the camera spends collecting photons). Increasing 
exposure time yields brighter images with better S/N at the expense of imaging speed. It is 
important, especially for live imaging, to find the right trade-off between exposure time and 
image quality. In LSCM, detection can be regulated by controlling the pixel dwell time 
(equivalent of exposure time) or the pinhole aperture. S/N can be increased by either decreasing 
the scan speed (i.e. increasing the dwell time) or by averaging multiple scans. Of note, in LSCM, 
following an appropriate phase correction, dual scanning (scans of sequential lines in a left-
right-left manner) can be activated to reduce the scan time while keeping dwell time constant. 
This option is especially useful for live cell imaging. Furthermore, when the emitted fluorescence 
spectra do not overlap, simultaneous detection of multiple fluorophores can be used to avoid 
compromising on acquisition speed. Finally, differently from SDCM, in LSCM the aperture of the 
pinholes can be adjusted allowing to increase the thickness of the optical slice (i.e. decreases 
confocality) thereby collecting more photons without decreasing imaging speed. 

The gain parameter controls the electron amplification process. Upon increase higher 
signals are obtained from the same amount of photons collected. This allows a better use of the 
dynamic range, but also introduces more noise, having a moderate effect on image quality.  
 

2. Preventing photobleaching and photodamage 

Common problems in live imaging are photobleaching and sample photodamage. 
Photobleaching is the gradual loss of emitted fluorescence when labeled samples are 
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illuminated with a laser. This is due to the photochemical alteration of fluorophores resulting in 
the permanent loss of the ability to emit photons. Photobleaching is one of the first signs that a 
sample is either illuminated for too long or with too high laser intensity. Although 
photobleaching can be corrected a posteriori, it is preferable to reduce the intensity of the 
exciting laser or exposure of the sample to light whenever photobleaching is detected. 

Light can also damage the sample due to the generation of toxic side products (usually 
reactive oxygen species). Photodamage can lead to slower or abnormal development. 
Comparisons to fixed or living samples not subjected to the imaging protocol at comparable 
stages of development is usually sufficient to detect photodamage. Photodamage is therefore 
an important factor to be taken into consideration when designing live imaging protocols 
especially when studying long morphogenetic processes.  

Altogether, the choice of the imaging approach depends on the biological system and the 
question addressed, and proper tuning of imaging parameters are key to obtain high quality 
images for analysis while preserving sample health.  
 
[[[ Desired position of Figure 2:  somewhere within the section “Image 
Processing Toolbox“ ]]] 

IV. Image Processing Toolbox 
In this toolbox we present tools to project 3D stacks into 2D images and create large 

views of tissues by combining small high resolution views. Next we describe algorithms to follow 
and measure cell and tissue movements with or without segmentation. 

A. Projection algorithms 
Although often imaged with 3D stacks, epithelia are well approximated in 2D. Hence, 

image analysis is usually performed in 2D images. Such images are obtained by converting the 
three-dimensional information contained in a (x, y, z) stack into a single two-dimensional (x, y) 
image, through a process called a projection. Numerous projection algorithms are available, but 
according to our experience, some are better suited than others for segmentation and polarity 
quantification (Table 2). 
 
Table 2: Comparison of different 2D projection algorithms. 

Projection 
algorithms/Experimen
ts 

Polarity Tissue scale 
morphogenesis 

Cell scale 
morphogenesis 

Maximum ++ ++ ++ 

Average +++ +++ + 

Stack focuser + + +++ 
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Merkel et al. 2014  
(M. Merkel et al., 
2014) 

++ + +++ 

Extended Depth of 
field 

+ + ++ 

 
The most widespread projection algorithm is the maximum (Max) projection. It is a pixel-

based algorithm that identifies the pixel at position (xp, yp) with the maximum intensity value 
along the Z-axis of the stack (Fig. 2B,D). This brightest pixel is then used in the 2D projection 
image. Max projection works particularly well when the signal is spatially restricted, especially in 
the z direction, as for most junctional markers. However, by construction Max projection 
gathers noise from every focal plane, often yielding a noisy image when the input is noisy.  

Another useful pixel-based algorithm is the average projection. This algorithm computes 
for every pixel at position (xp, yp) the average pixel intensity over all z planes (Fig. 2B,D). This 
average is then assigned to the pixel at position (xp, yp) in the 2D projection (Fig. 2B,D). In 
contrast to max projection, the average projection does not discard any signal. However, 
average projections often show poorer contrast than other algorithms, especially for large z-
stacks when the signal of interest is confined to few planes. Although average projection is not 
the best choice for segmentation, it remains the preferred algorithm for polarity quantification. 

Often, max projection is sufficient to easily segment images. However, when this is not 
the case, we recommend using one of the “focusing” projection algorithms described below. 
These algorithms assign to each region of the projection the signal from the most focused z-
plane at this position. This usually enhances image contrast and hence simplifies image 
segmentation. The extraction of in-focus signals can be done pixel by pixel, using the “extended 
depth of field” ImageJ/FIJI plugin (Fig. 2D) (Forster, Van De Ville, Berent, Sage, & Unser, 2004; 
Preibisch, Saalfeld, & Tomancak, 2009; Schindelin et al., 2012; Schneider, Rasband, & Eliceiri, 
2012), or for image blocks of defined width and height (Fig. 2C). "Stack focuser" is an efficient 
block-based algorithm that runs an edge detection filter on each z-plane of the block. The z-
plane presenting the sharpest edges is used for the 2D projection. The major drawback of this 
algorithm is that the sharpest signal is sometimes not the signal of interest. This can give rise to 
projection artifacts, where neighboring blocks carry signal coming from different depths with an 
intensity mismatch (Fig. 2D’). Such block artifacts can be corrected by ensuring that the selected 
z-planes of adjacent blocks have similar depths. This correction is usually achieved using surface 
smoothing algorithms (Heller et al., 2016; Legoff et al., 2013; M. Merkel et al., 2014). This 
correction can be combined with a max projection of a few planes surrounding the best-focused 
plane to further attenuate block artifacts (M. Merkel et al., 2014). Of note, block-based 
projections are by construction sensitive to sample curvature and can give different results 
depending on chosen block size. Consequently, block-based projections are not optimal for 
polarity measurements. 

Altogether, some projection algorithms are optimized for polarity measurements (e.g. 
average projection) while others are better suited for segmentation (e.g. max projection). Note, 
however that images can first be projected with one algorithm and the resulting segmentation 
mask (see section D) can be applied to a different projection of the same image for 
measurement (see section V). 
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B. Imaging large samples with cellular resolution/Stitching 
Studying morphogenesis or polarity greatly benefits from imaging with cellular resolution 

(see section V). However, high resolution is obtained at the expense of the size of the field of 
view. Hence, with conventional microscopes it is not possible to capture an entire tissue with 
cellular resolution. This drawback can be overcome by moving the sample to acquire a mosaic of 
several overlapping x,y,z stacks (i.e. tiles) that together cover the entire tissue. Bringing those 
tiles together into a single image of the tissue is called stitching. In practice, stitching algorithms 
identify features within stacks used as landmarks. Matching these landmarks between adjacent 
tiles allows to compute the x,y,z translation required for their alignment. Some rules need to be 
observed in order to obtain efficient stitching: 1) Neighboring tiles must slightly overlap 
(according to our experience, 5 to 10% overlap is sufficient) and 2) The time difference between 
the acquisitions of overlapping tiles should be sufficiently small to preserve landmark 
correspondence. We have obtained best results using the highly flexible “Grid/Collection 
stitching” FIJI plugin (Preibisch et al., 2009).  

C. Particle Image Velocimetry 
PIV (particle image velocimetry) allows to visualize the relative speed of displacement of 

different regions in a tissue and can be used to measure tissue deformation (see also section 
V.B.1). PIV was initially designed to study fluid dynamics by adding small (non-perturbing) tracer 
particles to the fluid (Raffel, 2007). Following the displacement of the particles allows to 
characterize the fluid’s flow field. This technique can be directly applied to study subcellular, 
cellular or tissue motion upon injection of fluorescent beads or by using the natural 
heterogeneities of fluorescently labeled images (Aigouy et al., 2010; Collinet, Rauzi, Lenne, & 
Lecuit, 2015; Ganguly, Williams, Palacios, & Goldstein, 2012; He, Doubrovinski, Polyakov, & 
Wieschaus, 2014; Levayer & Lecuit, 2013; Mayer, Depken, Bois, Julicher, & Grill, 2010; M. 
Merkel et al., 2014; Supatto et al., 2005). PIV divides the image into rectangular blocks and tries 
to infer, how much and in which direction each of these blocks displace from one frame to the 
next. As a measure of block similarity, spatial cross correlations between pixel intensities are 
computed across consecutive frames. Knowing the displacement of all blocks over time allows 
to calculate the flow field of the sample. PIV works for a broad range of tissues irrespective of 
the staining used (e.g. cell membranes, nuclei, intracellular organelles, etc.) and is fast because 
it does not require segmentation. Several PIV implementations are available in ImageJ/FIJI and 
Matlab (i.e. MatPIV by J. K. Sveen). 

D. Segmentation 
PIV provides rapid quantification of tissue movements, but is not sufficient to deeply 

characterize the cellular events at the basis of morphogenesis. To access this information, 
images need to be segmented. Here, we focus on algorithms to segment membrane-labeled 
cells.  

Segmentation is nothing but a simplification process. For our purpose segmentation 
means assigning image pixels to two categories, 1) the boundary pixels and 2) the cytoplasmic 
pixels. The watershed segmentation is often used for that (Vincent & Soille, 1991). In the 
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watershed representation, the 2D image is seen as a landscape; regions with high pixel 
intensities (in our case, cell membranes) are mountains and regions with low pixel intensities (in 
our case, cell cytoplasm) are valleys. Immersing this virtual landscape in water will create one 
basin per valley. Each basin is assigned a unique identity represented by a color. Raising the 
water level expands individual basins until adjacent basins meet. When this occurs, a so-called 
watershed line is drawn between them. This watershed line labels the cell outline while the 
colored basin corresponds to the cell cytoplasm (Fig. 2E). There are several implementations of 
the watershed algorithm available for ImageJ and Matlab. In FIJI/ImageJ, we recommend using 
the “graylevel watershed” plugin (http://bigwww.epfl.ch/sage/soft/watershed/) rather than the 
default implementation. Blurring images is often useful before using the watershed algorithm, 
as noise leads to oversegmenation (i.e. too many cells detected). However, in order to preserve 
cell outlines it is important to use so-called “edge preserving filters” (such as Gaussian, bilateral, 
anisotropic diffusion or Kuwahara filter) (Pal, Chakrabarti, & Ghosh, 2015). 

 Many cellular properties can be directly extracted from the watershed segmentation 
mask. Cell area, for example, corresponds to the number of cytoplasmic pixels of a cell plus half 
of the number of perimeter pixels (since cell outline is shared with adjacent cells). The length of 
the cell perimeter (in pixels) is obtained by summing the distances between centers of adjacent 
cell outline pixels (Fig. 2F). A vertical or horizontal connection is 1 pixel long and an oblique 
connection has a length equal to	√2 (Fig. 2F). Cell perimeter or area in pixels can be converted 
to real units by multiplying them by the pixel size or the square of the pixel size in real units, 
respectively. The x and y coordinates of the cell center are obtained by averaging the x and y 
coordinates of all the pixels of the cell cytoplasm, respectively. Cell elongation, i.e. cell shape 
anisotropy, has been quantified in different ways (Aigouy et al., 2010; Blanchard et al., 2009; 
Brodland, Chen, & Veldhuis, 2006; Etournay et al., 2015; Graner, Dollet, Raufaste, & 
Marmottant, 2008; Guirao et al., 2015; Lynch, Veldhuis, Brodland, & Hutson, 2014). One 
widespread method first fits an ellipse to the cell outline or cytoplasm pixels. Then, cell 
elongation is defined as the ratio between the lengths of the long and short axes of the ellipse. 
The orientation of cell elongation is given by the orientation of the long axis of the ellipse. Note 
however that there are different ways to fit an ellipse to a set of pixels, which might give slightly 
different elongation and orientation (Stojmenovic & Nayak, 2007). 

To extract topological properties such as neighbor number or to identify individual cell-
cell contacts, further segmentation of the watershed mask is required. To identify vertices (i.e. 
the point of contact between three or more cells) and bonds (i.e. points of contact between 
exactly two cells), a 3X3 pixel mask needs to be slid over every pixel of the cell outline. If the 
central pixel is surrounded by exactly two colored basins, then the pixel belongs to a boundary 
(Fig. 2G). In contrast, if this pixel is surrounded by three (or more) different basins then it is a 
vertex (Fig. 2G). The length of these newly identified cell-cell contacts can be measured as 
previously described for the perimeter, the first and the last pixels of the contact being the 
vertices. Finally, cell neighbor number can be obtained by counting the number of vertices along 
the cell perimeter. 

Further information can be extracted by tracking cells. Tracking cells in a time-lapse movie 
means assigning unique identities to cells in the field of view and consistently re-identifying 
these cells over subsequent frames. Re-identification is usually based on cell position, cell 
neighborhood and/or on cellular features such as cell area or shape. Dividing and extruding cells 
can be found by analyzing appearance or disappearance of cell tracks. For example, cell division 
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can be detected as the sudden appearance of two new cells whose combined area is similar to 
that of the mother cell prior to division. A T2 transition is detected as a cell disappearing from 
the field of view. Note that in all cases, cells entering or leaving the field of view from the sides 
should not be considered as dividing or dying. A T1 transition is defined as a neighbor exchange 
involving four adjacent cells (Fig. 3A). To detect occurring T1 events, it is necessary to identify 
for each cell-cell junction in the movie the pairs of cells sharing (a and b) or separated (c and d) 
by this junction (Fig. 3A). When in a subsequent frame, cells a and b are separated by a junction 
between cells c and d, a T1 transition occurred (Fig. 3A). A rosette is an exchange of neighbors 
between five or more cells . It is characterized by the concomitant shrinkage of two or more 
adjacent contacts to a single point prior to the resolution of the rosette. The simplest way to 
detect a rosette is to detect two or more adjacent contacts with a similar orientation having a 
combined length inferior to a user-defined threshold (Blankenship et al., 2006). 

Note that several free software suites are available to segment and analyze epithelial 
cells. They conveniently combine in a single tool segmentation algorithms, cell feature 
extraction and, in some case, even allow to track cells (Aigouy et al., 2010; Cilla et al., 2015; 
Etournay et al., 2016; Gelbart et al., 2012; Heller et al., 2016; Khan, Wang, Wieschaus, & 
Kaschube, 2014; Leung & Fernandez-Gonzalez, 2015; Mosaliganti, Noche, Xiong, Swinburne, & 
Megason, 2012; Sagner et al., 2012). 

V. Measurements 

A. Planar Polarity  
In this section, we discuss different segmentation-based methods to quantify vectorial 

and axial polarity. In general, methods based on segmentation are more precise, but also more 
labor intensive. 

1. Vectorial polarity 
For light microscopy images, membrane-associated vectorial polarity should be measured 

on mosaic stainings (see section II.B). Several approaches have been used to quantify polarity 
vectors for a connected group of labeled cells in a mosaic tissue (Ambegaonkar & Irvine, 2015; 
Brittle, Thomas, & Strutt, 2012; Devenport, Oristian, Heller, & Fuchs, 2011; M. Merkel et al., 
2014; Sagner et al., 2012), which for the sake of simplicity we call “clone” throughout this 
section. Here, we present two methods to measure polarity of single cells and one method to 
measure the polarity of “clones”. 

Besson et al. (Besson et al., 2015) define the polarity vector of a single cell from the 
angular distribution of pixel intensities along the cell outline (Fig. 1R’). The polarity vector of the 
cell is defined as the sum of polarity vectors for pixels along the cell outline. Each pixel vector is 
computed as an outward directed vector, which points from the cell center to the pixel itself, 
and has a length equal to the product between the pixel intensity and its distance from the cell 
center. To include most of the signal at cell-cell junctions, the segmentation mask can be 
expanded in width. Besson et al. normalize the polarity vector of a cell by the product between 
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the total cell outline intensity and an average cell radius. This allows to compare cell polarity 
vectors among different cells. 

By construction, this method is sensitive to cell shape. In particular, a cell with a 
homogeneous signal along its outline may appear polarized when asymmetrically shaped. To 
overcome this shape dependency, we propose a modified version of the method described 
above. In this version, the length of each pixel vector is the product between the pixel intensity 
and the angle interval between its two neighbors along the outline (see next section and Fig. 
1P). Also, we propose to normalize by the sum of all vector lengths. As a consequence, a cell 
with constant pixel intensity along its outline will have a polarity vector of zero.  

To measure the polarity vector of “clones” of cells, Sagner et al. use the segmented 
“clone” outline (Sagner et al., 2012). The “clone” polarity vector (thick yellow arrow) is the sum 
of polarity vectors (green arrows) of each cell-cell interface along the “clone” outline (Fig. 
1Q,S,S’). Each interface polarity vector is an outward pointing vector with a direction 
perpendicular to the interface (defined by the straight line connecting its two vertices, blue lines 
in Fig 1S’) and a length equal to the sum of pixel intensities along the segmentation mask. To 
compare samples with different overall intensities, the “clone” polarity vector can be 
normalized by the total outline intensity. As a result, the length of the normalized “clone” 
polarity vector varies between zero (i.e. the “clone” is not polarized) and one (i.e. all non-zero 
interface vectors point in the same direction).  

Finally, in cases where polarity markers are clearly distinguishable from the cell 
membrane, neither clonal staining nor segmentation is needed to determine vectorial cell 
polarity. In such a case, the location of the signal of interest with respect to a reference signal 
(for instance the cell nucleus or the cell membrane) can be quantified using so-called 
“fluorescence cross-correlations” (Matis, Axelrod, & Galic, 2012). 

2. Axial polarity 
Several methods to quantify axial polarity are available (Aigouy et al., 2010; F Bosveld et 

al., 2012; Floris Bosveld et al., 2016; Matthias Merkel, 2014; M. Merkel et al., 2014; Rezakhaniha 
et al., 2012, Sagner et al., 2012). Here we focus on two methods that require segmentation. The 
first method (Blankenship et al., 2006; Levayer, Pelissier-Monier, & Lecuit, 2011; Marcinkevicius, 
Fernandez-Gonzalez, & Zallen, 2009; Rauzi, Verant, Lecuit, & Lenne, 2008; Simoes Sde et al., 
2010; Tamada, Farrell, & Zallen, 2012) measures the relative protein concentration at junctions 
as a function of their orientation. Practically, for each junction the average intensity and angle 
relative to a reference axis (e.g. antero-posterior, proximal-distal etc.) are measured. Junctions 
are assigned to different angular bins and their intensities are averaged. The dominant axis (or 
axes) of polarity is revealed by plotting average intensities as a function of angle in a histogram. 
To compare data from different samples, the junctional intensities can be normalized by the 
average of all interface intensities within each image. To increase the dynamic range of the 
measured polarity, camera and cytoplasmic background can be subtracted before intensity 
measurements (Collinet et al., 2015; Heemskerk et al., 2014; Munjal, Philippe, Munro, & Lecuit, 
2015; Simoes Sde et al., 2010; Tamada et al., 2012). Note that, although this method may 
appear local, because it uses cell-cell interfaces, the local information is lost in the binning 
process and the method rather provides the axial polarity of the whole tissue. This method has 
often been applied to measure polarity in the germband of Drosophila using angular bins 
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between zero and 90 degrees (Levayer et al., 2011; Rauzi et al., 2008; Simoes Sde et al., 2010; 
Tamada et al., 2012). We recommend, instead, binning between 0 and 180 in order to 
distinguish not only polarities with horizontal and vertical orientations (i.e. enrichment at 
interfaces with 0 or 90 degrees), but also those with diagonal orientations (i.e. enrichment on 
interfaces with 45 and 135 degrees) (Blankenship et al., 2006). A related, but segmentation-
independent, method is provided by the tool “OrientationJ”. This uses an edge detection 
formula and displays the local edge orientation with an angle-dependent color (Matis, Russler-
Germain, Hu, Tomlin, & Axelrod, 2014; Rezakhaniha et al., 2012).  

As an alternative to an angular intensity plot, axial polarity can also be characterized using 
a mathematical object called “nematic” (polarity box). A nematic is composed of an orientation 
and a magnitude, much like a vector. The main difference is that the orientation of a nematic 
merely defines an axis, while the orientation of a vector defines an axis and “points into” one of 
the two possible directions (Figs. 1A,B). Throughout this manuscript, we will denote nematics by 
bold symbols with a tilde: $%. 

 The axial polarity of a cell can be quantified by a nematic $% similarly to the method 
illustrated above for vectorial polarity of a cell (Aigouy et al., 2010; M. Merkel et al., 2014; 
Sagner et al., 2012). The cell polarity $% is computed as the sum of nematics defined for each 
pixel of the cell outline (Fig. 1P). The axis of the pixel nematic is obtained by connecting the pixel 
to the cell center (green line, pixel marked by magenta outline, Fig. 1P). The magnitude of the 
pixel nematic is a product between the pixel intensity and the angle interval between its two 
neighboring pixels (angle marked in red in Fig. 1P). Like for the vectorial method discussed 
above, the angular factor ensures that a cell with constant pixel intensity along its outline will 
have zero axial polarity, even if its shape is elongated. For comparison among different cells, the 
cellular polarity nematic $% can be normalized by the sum of all pixel nematic magnitudes. Also in 
this case, the magnitude of the normalized cell nematic varies between zero and one. 

 Cell-based and interface-based methods typically yield in most cases similar results. 
However note that for strongly elongated cells, the results can differ.  
 
[Box] Mathematical representations of vectorial and axial polarity 

In order to represent polarity orientation and magnitude in 2D, we recommend using 
vectors for vectorial polarity, and nematics for axial polarity. A vector & can be represented by 
an arrow (Fig. 1A). It consists of two components & = ()! , )"), which correspond to its 
projections on , and - axes, respectively. Based on these components, the polarity direction . 
and magnitude |)| (i.e. vector length) can be computed as follows: 

. = arctan2()" , )!)    and    |)| = 5)!# + )"#. 

Here, “arctan2” denotes the arcus tangens function with two arguments. Conversely, the vector 
components can be computed from direction and length using the formulas 

)! = |)|cos(.)    and    )" = |)|sin(.). 
It is easier to visualize vectors using the representation by angle . and norm |)|, while the 
representation by components should be used for arithmetics. To average : vectors, one first 
adds them and then divides their sum by :. To add two vectors, &$ = ()$,! , )$,") and &# =
()#,! , )#,"), their respective components have to be added separately: &$ + &# = ()$,! +
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)#,! , )$," + )#,"). Similarly, to multiply (or divide) a vector by a number :, each of its 
components, )! and )", has to be multiplied (divided) by this number :. 

A nematic $% can be represented by a bar (Fig. 1B) and is composed of two components, 
;<!! and ;<!". Similar to a vector, these components can be computed from the polarity 
orientation angle = (i.e. the angle of the bar) and the polarity magnitude |;<| (the length of the 
bar): 

;<!! = |;<|cos(2=)    and    	;<!" = |;<|sin(2=), 
and vice versa 

= =
$
# arctan2(;

<!" , ;<!!)    and    |;<| = 5	;<!!
#
+	;<!"

#. 

The representation by angle and magnitude is used to visualize nematics, whereas the 
representation by components is used for arithmetics, which works as for vectors.  

Note that a bar representing a nematic is the same when you rotate it by 180 degrees, 
whereas a vector has to be rotated by 360 degrees to be the same. Consequently, while vectors 
add up to zero whenever they have the same lengths and opposing directions, two nematics add 
up to zero whenever they have the same magnitude and are perpendicular to each other. As a 
related example, two vectors of the same length add up to a vector with double length 
whenever they have the same direction (+/-360 degrees), while for nematics this is true 
whenever their axes are the same (+/-180 degrees). 

[End of box] 
 
[[[ Desired position of Figure 3:  somewhere within the section “Tissue 
deformation“ ]]] 

B. Tissue deformation 

1. Without segmentation 
Tissue deformation can be computed from the flow field extracted by PIV (see section 

IV.C). This method is fast and does not require segmentation, but does not provide information 
on the underlying cellular processes.   

The underlying idea is that tissue deformation is induced by the relative motion of 
adjacent tissue regions, while a global translation does not affect tissue shape at all (Fig. 3B-D). 
For example, Fig. 3C shows an expansion of a tissue along the horizontal (,) axis. This 
deformation corresponds to a velocity field whose , component, >!, increases towards the 
right. The corresponding rate of expansion can be measured by computing the relative increase 
of the velocity component >! per length unit in , direction. Fig. 3D shows another example, 
where the velocity component >! is constant along , direction, but increases in - direction. This 
corresponds to a so-called “simple shear deformation”. The rate of simple shear is the relative 
increase of the velocity component >! per length unit in - direction. In addition to these two 
kinds of deformations, also the - component of the velocity, >", may change in both , and - 
directions. The mathematical object that contains all four of the corresponding deformation 
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rates is called “velocity gradient” and is used to describe local tissue deformation (see 
deformation box).  

Deformations can be decomposed into a so-called “isotropic deformation component” 
and an “anisotropic deformation component” (Fig. 3E,F). This can be useful because certain 
cellular events, for instance T1 transitions, only contribute to one of the two, i.e. anisotropic 
deformation. The rates of both components can be extracted from the velocity gradient (see 
deformation box for details). Isotropic deformation refers to tissue expansion (or shrinkage) in 
all directions with the same rate, and is characterized by the isotropic deformation rate ?.  

Anisotropic deformation, also called “pure shear”, refers to a convergence-extension-like 
tissue deformation, where the area of the tissue remains constant (Fig. 3F). While isotropic 
deformation is described by the single parameter ?, pure shear deformation is characterized by 
the rate and the axis of tissue expansion. It is thus characterized by a nematic @%, like axial 
polarity (see polarity box). In addition to isotropic and anisotropic deformation rates, the 
rotation rate A of a piece of tissue can also be computed from the velocity gradient (Fig. 3G, see 
deformation box). 

Note that any deformation can be described as a combination of the four deformation 
modes shown in Figs. 3E-G. For instance, expansion along the , axis is a combination of isotropic 
deformation and pure shear along the , axis (Fig. 3H). Moreover, simple shear is the 
combination of pure shear along a diagonal axis and rotation (Fig. 3I). Finally, beware that tissue 
deformations are typically spatially heterogeneous. The deformation rates ? and  @% and the 
rotation rate A provide local information about tissue deformation. 

 

[Box] Velocity gradient and tissue deformation 
The velocity gradient is a combination of the respective gradients of both velocity 

components, >! and >". For instance the gradient of >! can be understood like a morphogen 
gradient: it has a direction and a magnitude (its steepness). Thus, it can be represented by a 
vector with two components B>!/B, and B>!/B-, which are the respective derivatives (i.e. 
changes) of >! in , and - direction. Hence, including >", the whole velocity gradient is 
composed of four different derivatives. These derivatives can be combined to compute the rates 
of isotropic deformation ?, anisotropic deformation @% (which is a nematic, see polarity box), and 
rotation A: 

? =
&'!
&! +

&'"
&" ,   ?D!! =

$
# (

&'!
&! −

&'"
&" ),   ?

D!" =
$
# (

&'"
&! +

&'!
&" ),   A =

$
# (

&'"
&! −

&'!
&" ). 

With these definitions, the average rate of isotropic deformation ? corresponds to the rate of 
relative area expansion (or shrinkage for negative ?): ? = ;̇(/;(, where ;(  is the area of the 
tissue and the dot denotes the time derivative. Anisotropic deformation changes the aspect 
ratio of a tissue. In particular, if both anisotropic deformation and tissue elongation are oriented 
along the , axis, the horizontal component of the anisotropic deformation rate corresponds to 
the relative change of the tissue aspect ratio G: ?D!! = Ġ/(2G). 
[End of box] 
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2. With segmentation 
PIV can be used to characterize tissue deformations, but not the underlying cellular 

events. To measure the contributions of individual cellular processes to tissue deformation, 
time-lapse movies need to be segmented and cells tracked over time (see section IV.D).  

The contribution of individual cellular processes to both isotropic and anisotropic tissue 
deformation can be precisely quantified. Isotropic tissue deformation can be due to cell area 
changes, cell divisions, and cell extrusions. More precisely, the rate of isotropic tissue 
deformation can be decomposed into the relative change of average cell area H plus the 
normalized rate of cell divisions I)  (number of divisions per cell per time unit) minus the 
normalized rate of cell extrusions I* (number of extrusions per cell per time unit) (Etournay et 
al., 2015; Matthias Merkel, 2014): 

? =
$
+, HJ̇ + I) − I*. (1) 

This remains true also when divisions occur without cell area growth. 
Decomposing the anisotropic part of tissue deformation into cellular contributions is 

more complex and several methods have been used (Blanchard et al., 2009; Brodland et al., 
2006; Butler et al., 2009; Economou, Brock, Cobourne, & Green, 2013; Etournay et al., 2015; 
Graner et al., 2008; Matthias Merkel, 2014; Rauzi et al., 2008). For instance, Blanchard and 
colleagues (Blanchard et al., 2009) quantify cell elongation by fitting ellipses to cell shapes. Note 
that throughout this section, “elongation” refers to shape anisotropy, not the process of 
elongating. Tissue deformation is obtained for small patches of cells by linearly fitting the 
movement of all cell centers within a given patch. The contribution of cell intercalation is 
quantified for each patch by subtracting the change of average cell elongation from the total 
patch deformation.  

Another method by Graner and colleagues (Graner et al., 2008; Guirao et al., 2015) 
describes the elongation of a cell using the connection lines between its center and the centers 
of all neighboring cells. Tissue deformation induces continuous changes in these connection 
lines. In contrast, T1 transitions, cell divisions, and cell extrusions induce rewiring of the 
connections. By comparing the connection lines before and after the respective topological 
transition, the contribution of the transition to tissue deformation can be extracted. 

In the following, we focus on the so-called “Triangle Method” (Etournay et al., 2015; 
Matthias Merkel, 2014). First, the centers of neighboring cells are connected by triangles (Fig. 
3J). The elongation of each triangle is quantified by a nematic KL (Fig. 3K), which can be used as 
proxy to define cell elongation (Fig. 3L). Upon cell motion and deformation, each triangle 
deforms with an anisotropic deformation rate >M (i.e. pure shear rate, Fig. 3M), which 
corresponds to the change of triangle elongation KL. The average triangle pure shear rate 
corresponds to the overall anisotropic tissue deformation rate @%. 

The triangles are used to define the respective contributions of the different cellular 
events to the tissue pure shear rate @% (Fig. 3A). In the simple case where all cells deform in the 
same way without topological transitions, the overall tissue pure shear rate @% corresponds to 
the change of the average triangle elongation, which we denote by N% : @% = DN%/DP. An example 
is given in Fig. 3N, where four cells elongate horizontally with a constant shear rate @% (Fig. 3O), 
reflected in the linear increase of the average triangle elongation N%  (Fig. 3P).  

Fig. 3Q illustrates how the contribution of T1 transitions to the pure shear rate is 
quantified by the Triangle Method. Shown is a process with a constant shear rate along the 
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horizontal axis with a T1 transition. As there is no net change in the cell elongation (i.e. the 
average triangle elongation) (Fig. 3Q), the T1 transition has to fully account for the deformation 
during this process. In particular, at the instant of the cell neighbor exchange, two triangles 
disappear and two new triangles appear (Fig. 3Q,S). Consequently, the average triangle 
elongation along the horizontal axis suddenly decreases (schemes and blue arrow in Figs. 3S). 
This decrease in triangle elongation quantifies the overall contribution of the T1 transition to 
pure shear. Note that also rosette formation and resolution can be accounted for in this way 
(details on how to handle vertices with more than three cells are provided in (Etournay et al., 
2015; Matthias Merkel, 2014)). 

To define contributions by cell divisions and T2 transitions to anisotropic deformation, the 
Triangle Method follows the same principle. In particular, during a cell division two triangles 
appear, whereas during a T2 transition, two triangles disappear. 

Finally, the Triangle Method reveals an additional contribution to anisotropic tissue 
deformation, which is due to collective cell motion. In general, this contribution appears 
whenever triangle elongation and local tissue rotation or local area expansion vary across a 
tissue (see details in (Etournay et al., 2015; Matthias Merkel, 2014)). 

All three methods described here require segmentation and cell tracking. While the 
method by Blanchard et al. relies on cell outlines, the other two methods use only information 
about cell centers and cell neighborship. The first method represents cell shape more directly, 
but does not take into account cell divisions and cell extrusions, while the other two methods 
do. Finally, the Triangle Method is so far the only method that captures the contribution by 
collective cell motion. 

A software suite that provides an implementation of the Triangle Method is available as 
part of the free tool “TissueMiner”. This tool together with hands-on explanations and step-by-
step tutorials can be found in (Etournay et al., 2016). 

Finally, note that also Heemskerk and colleagues (Heemskerk et al., 2014) use triangles to 
quantify tissue deformation. However there the triangles are much larger; triangle corners are 
defined by the centers of clones. This method is thus suited to quantify large-scale tissue 
deformation. In contrast, since the Triangle Method defines the triangles at the cellular scale, 
the deformation of each individual cellular event can be precisely measured. 

C. Averaging of tissue deformation and polarity patterns 
 Local averaging of deformation and cell- or clone-based polarity can be used to reveal 
their large-scale patterns and improve S/N ratio (Aigouy et al., 2010; Guirao et al., 2015; M. 
Merkel et al., 2014; Sagner et al., 2012). This can be done by dividing the image into blocks and 
by averaging measured quantities within each block. Note that in order to average oriented 
objects like vectors or nematics, their components need to be averaged separately. In particular, 
angles should never be averaged. Such blocks should be sufficiently large to ensure a good S/N 
ratio, but also small enough to preserve local differences between neighboring regions of the 
tissue. Note that averaging over several samples requires their alignment in space and time 
using tissue-specific landmarks (e.g. morphological landmarks, characteristic cell and tissue 
behaviors, etc.; (Aigouy et al., 2010; Collinet et al., 2015; Guirao et al., 2015; M. Merkel et al., 
2014; Sagner et al., 2012)). 
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VI. Concluding remarks 
Cell deformations, divisions, rearrangements and extrusions are well known to participate in 
epithelial morphogenesis. In many cases these events are coordinated within an epithelium 
through the action of planar polarized proteins. However, the extent to which each of these 
events contributes to overall tissue reshaping is not always obvious. In particular, the fact that a 
cellular event is frequent does not necessarily imply that it significantly contributes to 
morphogenesis. This highlights the importance of the development of new approaches to 
quantitatively study epithelial tissue deformations and planar polarity from the cell to tissue 
scale. In this review, we outline biological tools, imaging approaches and computational 
methods to quantify the individual contributions of cellular events to morphogenesis. These 
enhance our understanding of epithelial morphogenesis by allowing direct summation over all 
the individual events that occur at the cellular level, and even linking them to molecular 
mechanisms. Finally, such precise quantifications allow to refine and test quantitative models 
that are expected to broaden our understanding of this fundamental biological process.  
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Figure legends 
 
Figure 1 Axial and vectorial polarities in cells and tissues. 
(A) Three examples showing an asymmetric distribution of a membrane-associated polarity 
protein (red) within a cell. This kind of polarity is visually represented by an arrow and can be 
quantified by a vector. Throughout the figure, cell membrane is shown in gray. 
(B) Two examples of axial polarity for a single cell. Axial polarity is characterized by the presence 
of same amounts of a polarity protein on opposing sides of a cell. Magnitude and orientation of 
axial polarity is represented by a bar and can be quantified by a “nematic”.  
(C) In the absence of protein asymmetries, neither vectorial nor axial polarity can be detected 
(yellow dot). 
(D-M) Tissues with axial and vectorial polarities and how they appear in microscopy images (F-
H,K-M). (D) Tissue composed of axially polarized cells (left cell in (B)). (E) Tissue composed of 
vectorially polarized cells (middle cell in (A)). (F) Vectorial and axial polarity appear axial in 
microscopy images. (G,H) Mosaic tissue containing cells expressing a tagged PCP protein (green 
dot) surrounded by unlabeled cells. Mosaics allow to discriminate between axial (G) and 
vectorial (H) polarities. Also, the direction of vectorial polarity is made evident (H). 
(I) Tissue composed of vectorially polarized cells (right cell in (A)). (J) Tissue composed of 
nonpolarized cells (left cell in (C)). (K) Vectorially polarized and nonpolarized cells both appear 
unpolarized in microscopy images. (L,M) Mosaics can discriminate between vectorially polarized 
cells (L) and nonpolarized cells (M). 
(N-S’) Axial and vectorial polarity measurements using mosaics. (N)  
(O) PCP staining in the pupal wing of Drosophila. Note that the cells exhibit an axial polarity 
(P) Axial cell polarity is quantified by a nematic, which is the sum of individual pixel nematics 
(green bar) that pass through the cell center (green circle) and the respective pixel (magenta). 
The magnitude of each pixel nematic is given by the pixel intensity times the angular distance of 
neighboring pixels (red).  
(Q) Mosaic tissue containing cells expressing tagged PCP proteins (green dots). (R) Isolated cell 
expressing a tagged polarity protein surrounded by unlabeled cells. (R’) Corresponding vectorial 
polarity measurement for an isolated cell, as described in (Besson et al., 2015). The cell polarity 
vector is the sum of polarity vectors for the individual pixels of the cell outline (green arrows), 
which point from the cell center (green dot) to the respective pixel. The length of each pixel 
vector is the pixel intensity times the distance between cell center and pixel. (S) Clonal 
population composed of three cells expressing a tagged PCP protein, surrounded by unlabeled 
cells. (S’) Corresponding vectorial polarity measurement for this 3-cell clone [Sagner 2012]. The 
polarity vector of the clone (yellow) is the sum of polarity vectors (green arrows) computed for 
all interfaces (blue lines) that outline the clone. The vector for a given interface is perpendicular 
to the interface pointing outside the clone, and the vector length corresponds to the sum of 
pixel intensities along the segmented interface. 
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Figure 2 Projection algorithms and cell segmentation. 
(A) (Top) Image of an epithelial tissue. (Middle) Blow up of the same image, note that an image 
is composed of picture elements (pixels). (Bottom) Images are nothing but a matrix of pixel 
intensities (red numbers). 
(B) Examples of pixel-based 2D projection algorithms. (Left) Series of two-dimensional (x,y) 
optical sections (along the z axis) of an epithelium. (Middle) Max projection of the pixels along 
the dashed green line. The Max projection algorithm finds the pixel with the maximum intensity 
along the z axis (asterisk). This pixel is used in the 2D projection (arrow). (Right) Average (Avg) 
projection of the pixels along the dashed green line. The average pixel intensity is used in the 2D 
projection. 
(C) Example of a block-based 2D projection algorithm. The stack is cut into a series of blocks. 
Each block spans the whole z axis and has defined width and height. One such block, located on 
the top left side of the stack, is indicated. In most block-based projections, only the most 
informative z plane of the block is kept for the 2D projection (not shown). 
(D) Results of the extended depth of field (left), maximum (middle) and average (right) 2D 
projections of the stack shown in (B). 
(D’) Result of the Stack Focuser projection (left). Corresponding stack focuser height map 
indicating the depth of the z plane used for 2D projection. White blocks originate from deeper z 
planes than blue ones. 
(E) Watershed segmentation of the cell shown in (A). Each basin, i.e. cell cytoplasm, is attributed 
a unique color. Cell outlines are indicated by white pixels. 
(F) Pixels of the perimeter of the central cell in (E) are outlined (left). Perimeter length is 
quantified as the sum of the lengths of the (yellow) lines connecting the centers of adjacent 
pixels (red squares). (Right) Blow up of the region indicated by a rectangle on the left image. A 
vertical or horizontal connection is 1 pixel long and an oblique one line has a length equal to √2, 
i.e. the diagonal of a pixel. 
(G) (Left) Blow up of the region indicated by a rectangle in (E). (Middle) blow ups of two 3X3 
squares located at two positions along the outline of the dark blue cell (1 and 2). Counting the 
different basin colors surrounding the central pixel (indicated by a yellow circle) of a square 
allows to determine if a pixel belongs to a boundary (i.e. is surrounded by exactly two different 
basins) or to a vertex (i.e. is surrounded by 3 or more basins). (Right) Image with segmented 
vertices indicated in red, cell boundary pixels labeled with random colors and cytoplasmic pixels 
indicated in black. 
 

Figure 3 Quantification of large-scale tissue deformation and 
cell-scale contributions to it. 
(A) Cellular processes underlying tissue morphogenesis. 
(B) A uniform translation does not deform the tissue. 
(C,D) Tissue deformation is created by spatial variation of the velocity.  (C) A (uniaxial) expansion 
is created by increasing the horizontal component of the velocity along the , axis. (D) A simple 
shear deformation is created by increasing the horizontal component of the velocity along the - 
axis. 
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(E-G) Based on the velocity gradient, the rates of (E) isotropic deformation, ?, (F) anisotropic 
deformation, @% and (G) rotation, A, can be computed.  
(H) Uniaxial expansion can be decomposed into an isotropic and an anisotropic part. 
(I) Simple shear deformation can be decomposed into an anisotropic deformation (i.e. pure 
shear) and a rotation. 
(J-T) Triangle Method to quantify the contributions of individual cellular events to tissue 
deformation.  
(J) A triangle (red) is created by connecting the respective centers (green) of three neighboring 
cells. 
(K) The elongation (i.e. shape anisotropy) of a single triangle is quantified by the nematic KL.  
(L) The elongation of a cell (blue) is computed by averaging the elongations KL of the triangles 
(red) that have one of their corners at the center of this cell. 
(M) The anisotropic deformation of a single triangle is quantified by the nematic QL.  
(N-P) Pure shear of four cells along the horizontal axis with a constant pure shear rate (O) leads 
to a linear increase in the average triangle elongation (P). 
(Q-S) Pure shear deformation with a constant rate (R) during which a T1 transition occurs. 
Because the net cell elongation does not change between beginning and end (Q), the T1 
transition accounts for the whole pure shear deformation. Note that the cell neighbor exchange 
removes and adds two triangles (Q,S). This induces an instantaneous reduction of the average 
triangle elongation along the horizontal axis at the instant of the neighbor exchange (schemes 
and blue arrow in S). 
Note that panels O, P, R, and S show the horizontal component of pure shear rate and average 
triangle elongation. 
 








