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In this paper we show that it is possible to structure the longitudinal polarization component
of light. We illustrate our approach by demonstrating linked and knotted longitudinal vortex lines
acquired upon non-paraxially propagating a tightly focused sub-wavelength beam. Remaining de-
grees of freedom in the transverse polarization components can be exploited to generate customized
topological vector beams.

The concept of light being a transverse wave repre-
sents an approximation that is suitable if the angular
spectrum is sufficiently narrow [1]. However, many
practical applications ranging from microscopy to
data storage require tight focusing. Tight focus-
ing implies a broad angular spectrum and the no-
tion of light being transverse becomes inappropriate.
Hence, the longitudinal polarization component can
typically not be neglected [2, 3]. To mention a few
examples, a “needle beam” with particularly large
longitudinal component was proposed in [4], and ra-
dial transverse polarization permits the significant
decrease of the focal spot size [5, 6] while the gen-
erated longitudinal component may even dominate
the interaction with matter [7]. Last but not least, a
Möbius strip in the polarization of light was realized
in [8].

In addition, there is current substantial interest
in “structured light”, that is, generating customized
light fields that suit specific needs in applications in
a range of fields [9–12]. Since the proposal of the
Gerchberg-Saxton algorithm [13] 1972, advances in
light shaping [14–16] now permit the realization of
complex light patterns in the transverse polarization
plane, including light distributions the optical vortex
lines of which form knots [17–19]. Knotted topologi-
cal defect lines and their dynamics have been studied
in diverse other settings, including for example clas-
sical fluid dynamics [20–22], excitable media [23–25],
and nematic colloids [26, 27]. To date, the approach
has typically been to determine the longitudinal po-
larization component of the electric field from given
transverse components, and attempts to target com-
plex structures in the longitudinal component have
not yet been pursued. The reason for this is twofold.

On the one hand, the longitudinal component is not
directly accessible by beam shaping techniques. On
the other hand, non-paraxial beam configurations
are required, and topological light is usually stud-
ied in paraxial approximation. It is therefore not
immediately evident that the whole range of three-
dimensional light configurations known for trans-
verse components can be realized in the longitudinal
component as well.

In this paper, we will show that complex light-
shaping of the longitudinal polarization component
is indeed possible. To this end, we firstly identify
non-paraxial light patterns that give rise to vortex
lines that form knots or links. Secondly, we invert
the problem and derive how one must structure the
transverse components of a tightly focused beam to
give rise to a given complex pattern in the longitu-
dinal component, and thus present the first exam-
ple of non-transverse non-paraxial knots. Finally,
we demonstrate that remaining degrees of freedom
in the transverse polarization components allow for
simultaneous transverse shaping, which could be in-
teresting for applications, e.g., inscribing vortex lines
into Bose-Einstein Condensates.

We begin with the equations describing a
monochromatic light beam:

∇2E(r⊥, z) + k20E(r⊥, z) = 0, (1)

∇ ·E(r⊥, z) = ∇⊥ ·E⊥ + ∂zEz = 0. (2)

Here, k20 = ω2/c2 = (2π/λ)2, and we have intro-
duced the transverse coordinates r⊥ = (x, y) and
transverse electric field components E⊥ = (Ex, Ey)
as we consider propagation in the positive z direc-
tion. All three components of E in Eq. (1) fulfil
the same wave equation, and for a given field con-
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FIG. 1. The profiles fHopf and fTrefoil of Eqs. (4) and (5)
(a,e) at narrow widths contain evanescent waves. This
is demonstrated in (c,g), where the profiles are shown
in the transverse Fourier domain together with a circle
of radius k0. A spectral attenuation (d,h) according to
Eq. (3) removes the evanescent amplitudes as well as
amplitudes close to k⊥ = 0 (see text for details), and
alters Ef

z in the focal plane significantly (b,f).

figuration Ef(r⊥) at z = 0 (e.g., at focus) the gen-
eral solution for propagation in the positive z di-
rection reads Ê(k⊥, z) = Êf(k⊥) exp(ikzz), where
kz(k⊥) =

√
k20 − k2

⊥, k⊥ = (kx, ky) and the sym-
bol ˆ denotes the transverse Fourier domain. The
prescribed field configuration Êf must obey certain
constraints. Firstly, in order to get a valid bulk so-
lution, there must be no evanescent fields present,
that is, Êf = 0 for k2

⊥ ≥ k20. Secondly, Eq. (2) im-
plies for solutions propagating in the z direction that
Êf
z(k⊥ = 0) = 0.
As preparation for what follows, we first investi-

gate how to obtain a non-paraxial tightly focused
knot or link in Ez, assuming that we can directly
prescribe Ef

z. For the transverse paraxial case,
recipes to generate vortex lines in various shapes
are known, and they usually involve linear combi-
nations of Laguerre-Gaussian modes [19, 28]. These
recipes are not directly applicable to our problem,
since there are evanescent fields, due to the non-
paraxiality the wavelength cannot be scaled away
and it would lead to Eq. (2) being violated. Never-
theless, we found that it is possible to adopt those
recipes for the non-paraxial case by an educated
guess. Starting from a given linear combination of
Laguerre-Gaussian modes f , filtering in the trans-
verse Fourier domain [29],

Hk0(k⊥) = e

− 1

2λ2
(√

k2
⊥−k0

)2

, H0(k⊥) = 1−e−(3λk⊥)
2

,

chops off evanescent amplitudes as well as ampli-

FIG. 2. Propagation of the spectrally attenuated field
shown in Figs. 1(b,f) gives rise to the vortex lines (black)
in the forms of a Hopf link (a) and a trefoil (b). A phase
slice is shown in the xy plane at z = 0. As comparison,
idealised Hopf link and trefoil are shown as insets.

tudes close to k⊥ = 0, and the longitudinal polar-
ization component at z = 0 reads

Êf
z(k⊥) =

{
f̂(k⊥)Hk0H0, for k2

⊥ < k20
0 for k2

⊥ ≥ k20
. (3)

Since the higher-order Laguerre-Gaussian modes are
broader in Fourier space and thus lose relative weight
after attenuation, one must decrease the relative am-
plitudes of the lower-order modes to a certain ex-
tend. We have found that the following field struc-
tures produce a Hopf link or trefoil, respectively,

fHopf = 4LGσ
00 − 5LGσ

01 + 11LGσ
02 − 8LGσ

20 (4)

fTrefoil = 9LGσ
00 − 20LGσ

01 + 40LGσ
02

− 18LGσ
03 − 34LGσ

30,
(5)

for wavelength λ = 780 nm and width σ =
370 nm ≈ λ/2 of the usual Laguerre-Gaussian modes
LGσ

ij(r⊥). The resulting amplitudes before and after

filtering for f being either fHopf or fTrefoil defined
in Eqs. (4) and (5) are plotted in Fig. 1 after nor-
malization to unity. We note that individual mode
amplitudes can be changed by about 10% without
altering topology, demonstrating a degree of robust-
ness and hence experimental feasibility.

Let us now verify that the presented patterns in
the focal plane in fact give rise to vortex lines with
the desired topology. It is straightforward to propa-
gate the filtered component Ef

z, as defined in Eq. (3),
in the z-direction. The vortex lines throughout
three-dimensional space are depicted by the black
lines in Figs. 2(a,b) together with a slice in the z = 0
plane of the light profile phase. The obtained vortex
lines are topologically equivalent to a Hopf link and
a trefoil, as drawn in the insets.

We now address the main point of this paper,
i.e. how to choose the transverse polarization com-
ponents to obtain a given longitudinal polarization

2



TrefoilHopf link

FIG. 3. Amplitude and phase for the linearly po-
larized transverse components Eqs. (6) and (7) that
give rise to a longitudinal component forming the Hopf
link Fig. 1(b), Fig. 2(a) is shown in (a–d) and the tre-
foil Fig. 1(f), Fig. 2(b) is shown in (e–h). The colormaps
for each figure are on the right of the two rows of plots.

component. Because only the transverse compo-
nents Ex and Ey are accessible to beam shaping,
this point is also of great practical relevance. When
inspecting Eq. (2), at a first glance the problem may
seem to be ill-posed, given that only the longitudi-
nal derivative of the longitudinal polarization enters,
i.e., ∂zEz. However, in Fourier space it is easy to see
from Eq. (2) that a linearly polarized solution to this
problem is given by

Ef
x = −i

x∫
−∞

F−1
[
kzÊ

f
z

]
(x′, y)dx′, Ef

y = 0, (6)

where F−1[ĝ](x, y) = g(x, y) denotes the inverse
transverse Fourier transformation. Obviously, an or-
thogonally polarized solution also exists,

Ef
x = 0, Ef

y = −i
y∫

−∞

F−1
[
kzÊ

f
z

]
(x, y′)dy′. (7)

Both x and y polarized solutions Eqs. (6) and (7)
evaluated for Hopf link and trefoil are depicted in
Fig. 3. It is noteworthy that any superposition of
real and imaginary parts of the solutions Eqs. (6)
and (7) is admissible, as long as the coefficients of
this superposition add up to one. Furthermore, an
arbitrary solenoidal field can be added without hav-
ing an effect on the longitudinal component. We will
discuss this later in more detail.

Unfortunately, the transverse polarization com-
ponents computed from Eqs. (6) and (7) are im-
practical, since, even though Ef

z has finite sup-
port, the components Ef

x or Ef
y are non-zero on a

semi-infinite interval (see Fig. 3). However, sim-
ply attenuating these components by multiplying
with, e.g., a sufficiently wide super Gaussian pro-
file SGw

N (r⊥) = exp(−r2N⊥ /w2N ) allows the resolu-
tion of the problem of semi-infinite light distribu-
tions without affecting propagation of the longitu-
dinal component close to the optical axis. Evalu-
ating ∇⊥ ·

[
SGw

N (r⊥)Ef
⊥(r⊥)

]
reveals that, where

∇⊥SGw
N is large and points in the direction of Ef

⊥,
additional satellite spots in the longitudinal compo-
nent will appear. We have checked that using e.g.
a super Gaussian with N = 5 and w = 10λ ensures
that these additional spots are sufficiently far from
the region of interest and both Hopf link and tre-
foil develop in the propagation of the modified Ez
component.

So far, we have seen that the answer to the prob-
lem of how to choose Ef

⊥(r⊥) for realizing a pre-
scribed Ef

z is not unique, and there are certain de-
grees of freedom in the choice of Ef

⊥. The fundamen-
tal theorem of vector calculus (Helmholtz decompo-
sition) allows us to decompose a (sufficiently well-
behaved) vector field F into an irrotational (curl-
free) and a solenoidal (divergence-free) vector field,
and F can be written as F = −∇φ + ∇ × A. We
wish to apply this theorem to the transverse plane,
that is, we set F = Ef

⊥(r⊥). In this case, the de-
composition reduces to

Ef
⊥(r⊥) = −∇φ(r⊥) +∇× [A(r⊥)ez] , (8)

with ez the unit vector in z direction. It is straight-
forward to verify that

φ̂(k⊥) = −ikz(k⊥)Êf
z(k⊥)

k2
⊥

(9)

gives rise to a valid transverse polarization compo-
nent Ef

⊥. The scalar function A(r⊥) may be chosen
arbitrarily, because the term Esol

⊥ = ∇ × [A(r⊥)ez]
produces the solenoidal part of Ef

⊥, which does not
give rise to any longitudinal polarization component.
The irrotational choice for Ef

⊥, that is, evaluating
Eqs. (8) and (9) with A(r⊥) = 0, for Hopf link and
trefoil are shown in Fig. 4.

While the transverse polarization components
shown in Figs. 3 and 4 produce exactly the same
longitudinal field, they are completely different, in
particular from a topological point of view. Unlike
the light distributions in Fig. 3, which do not contain
vortices in the transverse polarization components,
the irrotational transverse polarization components
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FIG. 4. Irrotational transverse amplitude and phase pro-
files producing a Hopf link (a–d) and a trefoil (e–h) in
the longitudinal polarization component.

in Fig. 4 each feature phase singularities. Further-
more, note that the amplitudes required in the ir-
rotational transverse polarizations are only roughly
two to three times the peak amplitude in the longi-
tudinal polarization.

We have seen that all possible transverse polar-
ization components producing a certain longitudi-
nal component differ by a solenoidal field Esol

⊥ =
∇ × [A(r⊥)ez], and the function A(r⊥) represents
the degrees of freedom one has when shaping the Ef

⊥.
As our examples show, it is possible to control the
topological structure of longitudinal and transverse
electric field components simultaneously. Tightly fo-
cused beams containing vortex lines play a role in
inscribing vortex lines with specific topology into
Bose-Einstein condensates using two-photon Rabi-
transitions [28, 30]. The demonstrated knotted or
linked longitudinal vortex lines have an extent of
roughly 1 µm3 and thus match the typical size of a
Bose-Einstein Condensate. Being able to exploit the
unique features of structured light in all three vector
components of the electric field opens new avenues
in controlling the interaction of light with matter.

An important practical issue is to actually exper-
imentally detect such a small structure in the lon-
gitudinal polarization component. Probing of the
longitudinal field using molecules was achieved ex-
perimentally roughly 15 years ago [31] and continues
to be of interest for light-matter interactions [32].
We propose using a tomographic method using a
thermal Rubidium vapour cell that is very thin com-
pared to the wavelength [33] to experimentally ac-
cess the longitudinal polarization component. Using
an additional strong static magnetic field parallel to
the optical axis and tuning the light field to reso-

nantly drive a π-transition allows the selective cou-
pling of the longitudinal polarization only. To sepa-
rate the π-transition from the σ±-transitions beyond
Doppler broadening (roughly 0.5GHz at 100 ◦C) we
need a sufficiently large magnetic field (roughly
B ∼ 1T ). For such large magnetic fields, isolated
pure π-transitions exist e.g. from |5S1/2mjmI〉 =
|5S1/2 ± 1/2± 3/2〉 to |5P3/2 ± 1/2± 3/2〉. This
method of light-matter coupling can however be ex-
tended to more general settings, where the angle of
the magnetic field can be tuned and thus different
components of vectorial topological light can super-
posed and inscribed into matter.

In conclusion, we have presented a simple al-
gorithm to realize an arbitrary (sufficiently well-
behaved) field in the focal plane in the longitudi-
nal polarization component, and elaborated on how
to realize the transverse components for it. We
have highlighted the importance of the occurrence
of evanescent waves and discussed the important de-
grees of freedom in the choice of the transverse po-
larization components. Using this method has the
potential to broaden the range of possible vectorial
structured light fields extensively and lead to a range
of applications in various fields in physics, including
nonlinear optics and Bose-Einstein Condensates.
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search Programme Grant RP2013-K-009, SPOCK:
Scientific Properties Of Complex Knots. S.S. ac-
knowledges support by the Qatar National Research
Fund through the National Priorities Research Pro-
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G. Leuchs, Optics Communications 179, 1 (2000).

[6] R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev.
Lett. 91, 233901 (2003).

[7] C. Hnatovsky, V. Shvedov, W. Krolikowski, and
A. Rode, Phys. Rev. Lett. 106, 123901 (2011).

[8] T. Bauer, P. Banzer, E. Karimi, S. Orlov,

4



A. Rubano, L. Marrucci, E. Santamato, R. W.
Boyd, and G. Leuchs, Science 347, 964 (2015).

[9] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw,
and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

[10] H. Rubinsztein-Dunlop et. al., Journal of Optics 19,
013001 (2017).

[11] S. Franke-Arnold and N. Radwell, Opt. Photon.
News 28, 28 (2017).

[12] F. Maucher, T. Pohl, S. Skupin, and W. Kro-
likowski, Phys. Rev. Lett. 116, 163902 (2016).

[13] R. W. Gerchberg and W. O. Saxton, Optik 35, 227
(1972).

[14] D. G. Grier, Nature 424, 810 (2003).
[15] G. Whyte and J. Courtial, New J. Phys. 7, 117

(2005).
[16] E. R. Shanblatt and D. G. Grier, Opt. Express 19,

5833 (2011).
[17] M. V. Berry and M. R. Dennis, Proc. Royal Soc. A

457, 2251 (2001).
[18] J. Leach, M. R. Dennis, J. Courtial, and M. J.

Padgett, New Journal of Physics 7, 55 (2005).
[19] M. R. Dennis, R. P. King, B. Jack, K. O’Holleran,

and M. J. Padgett, Nat. Phys. 6, 118 (2010).
[20] H. K. Moffatt, J. of Fluid Mech. 35, 117 (1969).
[21] H. K. Moffatt, Nature (London) 347, 367 (1990).

[22] D. Kleckner and W. T. M. Irvine, Nature Phys. 9,
253 (2013).

[23] P. M. Sutcliffe and A. T. Winfree, Phys. Rev. E 68,
016218 (2003).

[24] F. Maucher and P. Sutcliffe, Phys. Rev. Lett. 116,
178101 (2016).

[25] F. Maucher and P. Sutcliffe, Phys. Rev. E 96,
012218 (2017).

[26] U. Tkalec, M. Ravnik, S. Copar, S. Zumer, and
I. Musevic, Science 333, 62 (2011).

[27] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan,
S. Zumer, and I. I. Smalyukh, Nature Materials 13,
258263 (2014).

[28] F. Maucher, S. A. Gardiner, and I. G. Hughes, New
J. of Phys. 18, 063016 (2016).

[29] J. W. Goodman, Introduction to Fourier Optics
(Roberts, (3rd edition), 2016).

[30] J. Ruostekoski and Z. Dutton, Phys. Rev. A 72,
063626 (2005).

[31] L. Novotny, M. R. Beversluis, K. S. Youngworth,
and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).

[32] G. F. Quinteiro, F. Schmidt-Kaler, and C. T.
Schmiegelow, Phys. Rev. Lett. 119, 253203 (2017).

[33] A. Sargsyan, A. Papoyan, I. G. Hughes, C. S.
Adams, and D. Sarkisyan, Opt. Lett. 42, 1476
(2017).

5


	 Creating Complex Optical Longitudinal Polarization Structures 
	Abstract
	 Acknowledgments
	 References


