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Abstract  32 

Purpose: Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in 33 

cancer treatments. Many parameters influence their efficacy, such as their size, concentration, 34 

composition, their cellular localization, as well as the photon source energy. The current Monte 35 

Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as 36 

isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these 37 

physical parameters at the cellular and the nanometer scale. In parallel, in vitro assays were 38 

performed in presence of either the gadolinium contrast agent (GdCA) Magnevist® or ultrasmall 39 

gadolinium NPs (GdNPs, 3 nm) for comparison with the simulations.  40 

Methods: PENELOPE Monte Carlo Code was used for in silico dose calculations. Monochromatic 41 

photon beams were used to calculate dose-enhancements in different cell compartments and 42 

low-energy secondary electron spectra dependence with energy. Particular attention has been 43 

placed on the interplay between the X-ray beam energy, the Gd localization and its distance from 44 

cellular targets. Clonogenic assays were used to quantify F98 rat glioma cell survival after 45 

irradiation in the presence of GdNPs or GdCA, using monochromatic X-rays with energies in the 46 

30 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. 47 

The simulations that correspond to the experimental conditions were compared with the 48 

experimental results. 49 

Results: In silico, a highly heterogeneous and clustered Gd-atom distribution, a massive 50 

production of low energy electrons around GdNPs and an optimal X-ray beam energy, above the 51 

Gd K-edge, were key factors found to increase microscopic doses, which could potentially induce 52 

cell death. The different Gd localizations studied all resulted in a lower dose enhancement for the 53 

nucleus component than for cytoplasm or membrane compartments, with a maximum dose-54 

enhancement factor (DEF) found at 65 keV and 58 keV, respectively. In vitro, radiosensitization 55 

was observed with GdNPs incubated 5h with the cells (2.1 mg Gd/mL) at all energies. Experimental 56 
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DEFs were found to be greater than computational DEFs but follow a similar trend with irradiation 57 

energy. However, an important radiosensitivity was observed experimentally with GdNPs at high 58 

energy (1.25 MeV), whereas no effect was expected from modeling. This effect was correlated 59 

with GdNPs incubation time. In vitro, GdCA provided no dose-enhancement at 1.25 MeV energies, 60 

in agreement with computed data.  61 

Conclusions: These results provide a foundation on which to base optimizations of the physical 62 

parameters in Gd radiation-enhanced therapy. Strong evidence was provided that GdCA or GdNPs 63 

could both be used for radiation dose-enhancement therapy. Their in vivo biological distribution, 64 

in the tumor volume and at the cellular scale, will be the key factor for providing large dose-65 

enhancements and determine their therapeutic efficacy. 66 
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Introduction  67 

An innovative therapeutic approach using heavy elements (i.e. high atomic number) in conjunction 68 

with low-energy radiation of the order of tens to hundreds of keV, seems to offer a promising 69 

approach for the treatment of resistant cancers. Indeed, loading tumors with heavy elements results 70 

in a differential effect between the tumor and the surrounding unloaded healthy tissue due to the 71 

large increase in low energy X-ray absorption in these elements. This effect is defined as “radiation 72 

dose-enhancement”. Many studies have been published, with a particular emphasis in the last 73 

decade, on the use of nanoparticles (NP) replacing contrast agents (CA) as radiation dose-enhancers. 74 

Numerous in vivo and in vitro experiments have shown a significant increased efficacy in the 75 

presence of gold (ZAu = 79)1–5 or gadolinium (ZGd = 64)6–8 NPs, but the underlying mechanisms 76 

leading to increased cell kill are still unclear. This efficacy can be attributed in part to physical 77 

aspects, such as the macro- and nano-scale radiation dose-enhancement, but also to additional 78 

chemical and biological mechanisms, here defined as radiosensitization, such as high-density 79 

reactive oxygen species (ROS) generation, cell cycle effects2, DNA reparation impairment and 80 

cytoplasmic events due to damage to the lysosomal system9 or to mitochondria10. Numerical 81 

investigations showed the importance of considering the heterogeneous distribution of high-Z 82 

atoms at the micrometer scale11,12 as well as the influence of the NP structure at the nanometer 83 

scale13–21 to improve the description of gold NP (AuNP) radiation interactions. To better understand 84 

and optimize the dose-enhancement and toxicity effects of high-Z NPs, it is of great importance to 85 

study in detail the influence of beam energy. The main advantage of using low energy photon beams 86 

is the large cross sections of photoelectric (PE) interactions on the K and L shells of heavy materials, 87 

whereas high-energy beams predominantly induce Compton interactions. PE interaction is followed 88 

by an atomic reorganization that leads to the emission of a large number of Low-Energy Electrons 89 

(LEE: photoelectrons, Auger and Coster-Kroenig electrons) whose relative biological efficiency has 90 

been noted in the past and place LEE as a major responsible for the effectiveness of NP (see, e.g. 91 
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the review of Nikjoo et al.22). The prior work of McMahon et al.19,23 has demonstrated very high 92 

dose heterogeneities in the near vicinity (a few hundred nanometers) of an AuNP and attributed it 93 

to the large number of LEE produced. Assuming the AuNP location in the cell nuclei, their biological 94 

efficiency have been well correlated to in vitro results by combining these nanometric doses and 95 

the Local Effect Model17,19. However, the NPs currently used in in vivo and in clonogenic assays are 96 

often located outside the cell nucleus7,9,24,25. The question of other cellular targets then arises with 97 

the need of modelling realistic distributions of NPs within a cell to take into account these distances. 98 

The impact on dose distribution of Au-clusters located in the cytoplasm15 or AuNPs located around 99 

mitochondria18,26 have been investigated with a compartmentalized cell model. Although most of 100 

the literature is focused on AuNP dose-enhancement, recent experimental studies have promoted 101 

the use of gadolinium nanoparticles (GdNP), by demonstrating both cellular and in vivo increased 102 

efficacy7–9,24,27. Some of GdNPs (AGuIX® NPs) have proved to be of interest for in vivo imaging and 103 

for image-guided radiation therapy, because of their paramagnetic properties used in MRI 104 

techniques6,28. Verry et al.29 in a recent study announced their use in an ongoing Phase I clinical trial 105 

(Grenoble University hospital, France). It is therefore especially important to better characterize 106 

GdNPs behavior under irradiation. In a previous study7, we reported large sensitization-107 

enhancement ratio (SER) measured by clonogenic assays, when F98 cells (rodent glioma cells) were 108 

irradiated after incubation with ultra-small GdNPs, both in the kilo-voltage energy range (31-80 keV) 109 

and at high energy (1.25 MeV).  In the same study, we evaluated the radio-sensitizing effect of 110 

gadolinium contrast agent (GdCA) using various concentrations (2.1, 5 and 10 mg/mL) of Gd and we 111 

observed radiosensitization only in the kilo-voltage energy range. For cells irradiated in presence of 112 

GdCA, the SER profile versus x-ray energy was in good agreement with the macroscopic dose-113 

enhancement calculated by Monte Carlo simulations. These simulations however could not describe 114 

the SER profile versus x-ray energy obtained when the cells were irradiated in presence of GdNPs7.  115 
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In the present study, complementary clonogenic experiments were performed with GdNPs 116 

and GdCA. The F98 cells were incubated during 5h with GdNPs and then rinsed before irradiation, 117 

for removing the contribution of GdNPs in the culture medium. This treatment condition differs 118 

from the previous study, where the GdNPs remained in the culture medium during the irradiation. 119 

Cell survival was measured after irradiation at various monochromatic X-ray beam energies (from 120 

31 keV to 80 keV) at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) and using 121 

a Cobalt-60 source (mean energy 1.25 MeV). Radiation produced by synchrotron source provides a 122 

unique tool for evaluating the mechanisms by which radiosensitization and radiation dose-123 

enhancement occur since it is possible to tune monochromatic X-ray beams over a broad energy 124 

range. The dose-enhancement factor (DEF) was defined as the ratio of the dose in presence of Gd 125 

relative to the dose without Gd. In the Monte Carlo simulations, the role of the Gd micro-distribution 126 

(homogeneously distributed Gd-atoms or clustered Gd-atoms in nanospheres), as well as that of the 127 

primary beam energy, were investigated at the sub-cellular scale, in terms of secondary particles 128 

generated from Gd ionization and DEF within different cell compartments (membrane, cytoplasm 129 

and nucleus). The homogeneously distributed Gd-atoms configuration was used to represent GdCA 130 

while clustered Gd-atoms in nanospheres were used to represent isolated GdNP or accumulation of 131 

GdNP in Lysosomes. At the nanometer scale, the dose distribution around a single GdNP varying in 132 

size was studied for various primary beam energies. The objectives of this study were, firstly, to 133 

evaluate by Monte Carlo simulations the dose-enhancement produced by Gd at the sub-cellular and 134 

nanometer scale and secondly, to compare selected simulations with the corresponding 135 

experimental data.    136 

 137 

I. Materials and Methods 138 

I.1. Experimental parameters 139 
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Experimental dose-enhancements induced by ultra-small GdNPs and the GdCA Magnevist® were 140 

evaluated in vitro by clonogenic assays performed at different energies.   141 

Gd compounds: The GdNPs were provided by the laboratory of O. Tillement (Institut Lumière 142 

Matière, univ Lyon, 69622 Villeurbanne cedex, France). These NPs were made of gadolinium 143 

chelates (diethylenetriaminepentaacetic acid (DTPA)) covalently grafted to a polysiloxane inorganic 144 

matrix. Theses nanoparticles had a mean hydrodynamic diameter of 3 nm ± 1.0 nm (full description 145 

of their synthesis is given in Di Corato et al.30). The GdCA Magnevist®, is a complex of Gd with the 146 

same chelating agent, DTPA.  147 

Cell irradiations: F98 rat glioma cells (American Type Culture Collection, Manassas, VA (ATCC, # CRL-148 

2397)) were irradiated in suspension in a volume of 500 µL of DMEM in 1.5 mL Eppendorf tubes. 149 

Low energy irradiations (31 to 80 keV) were performed at the ESRF medical beamline (ESRF-150 

biomedical ID17 beamline - ΔE/E ≈ 0.1%). The dosimetry was performed using an ionization 151 

chamber (PTW Semiflex ion chamber 31010 – 0.125 cm3) placed into an Eppendorf tube. The 152 

ionization chamber was scanned vertically through the beam (2 mm in height and 50 mm in width) 153 

at a speed of 2.5 mm/s to measure the dose rate. Taking into account, the ring current and the dose 154 

rate, the number of scans to deliver 4 Gy to the cells was calculated. High-energy irradiations were 155 

performed at the NUCLEART facility (CEA, Grenoble, France), using a cobalt-60 source, whose 156 

gamma emissions are 1.17 and 1.33 MeV (1.25 MeV mean energy). For all conditions, the cells were 157 

irradiated at a single dose (D) of 4 Gy evaluated in water.  158 

Cell survival study versus X-ray energy after 5h incubation with GdNPs: in a first experiment, F98 159 

cells were incubated for 5 hours in culture medium (DMEM) containing GdNPs at a concentration 160 

of 2.1 mg Gd/mL and then rinsed before irradiation with beam energies from 31 keV to 1.25 MeV. 161 

The GdNPs uptake by the cells was determined by means of inductively coupled plasma-mass 162 
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spectrometry (ICP-MS). The “control” conditions correspond to cells irradiated at 4 Gy at each of 163 

the above mentioned energies without GdNPs.   164 

Cell survival study at high energy (1.25 MeV): A second experiment was performed to evaluate the 165 

influence of incubation time and Gd molecular shape on the cell radiosensitization at high energy. 166 

Five treatment conditions were evaluated: (1) control cells (i.e. 4 Gy irradiation alone); (2) cells 167 

irradiated in the presence of 2.1 mg Gd/mL Magnevist® (GdCA); (3) cells irradiated in the presence 168 

of 2.1 mg Gd/mL of GdNPs (GdNP); (4) cells incubated for 5h with 2.1 mg Gd/mL GdNPs, rinsed and 169 

irradiated (GdNP-5h-rinsed); and (5) cells incubated for 5h with 2.1 mg Gd/mL GdNPs and irradiated 170 

(GdNP-5h).  171 

Clonogenic assay: Three different cells concentrations were seeded in triplicate into Petri dishes 172 

(100 mm diameter) containing 8 mL of complete DMEM, and they were incubated at 37 °C in an 173 

atmosphere containing 95% air and 5% CO2 for 11 days. All experiments were repeated three times. 174 

Following staining with crystal violet, colonies of greater than 50 cells were enumerated7. The 175 

surviving fractions (SF) were determined as the ratio of the number of colonies counted divided by 176 

the number of cells plated, normalized to non-irradiated controls. The survival fraction (SFcontrols) of 177 

cells irradiated without Gd versus x-ray dose provided the alpha and beta parameters of the linear 178 

quadratic (LQ) model used to fit the survival plots (Eq. 1). These parameters were evaluated at three 179 

energies: 33 keV, 50 keV and 1.25 MeV. 180 

𝑆𝐹௧ = exp (−𝛼𝐷 − 𝛽𝐷ଶ)  Equation 1 181 

Sensitization-enhancement ratio and experimental DEF: The Sensitizing Enhancement Ratio versus 182 

energy (SER) was defined as the ratio of the SF for control cells to that of cells irradiated with 183 

gadolinium either as contrast agent or in the form of GdNP, (SFGd) (Eq. 2).  184 

𝑺𝑬𝑹 =
ௌிೝ

ௌிಸ
   Equation 2 185 
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Assuming that the sensitizing enhancement ratio measured in presence of Gd was uniquely induced 186 

by “physical dose-enhancement” (DEF), we could estimate an “experimental dose-enhancement 187 

factor” (DEFexp) (Eq. 3 to 5). 188 

𝑆𝐹 ௗ = exp  (−𝛼𝐷 × 𝐷𝐸𝐹௫ − 𝛽(𝐷 × 𝐷𝐸𝐹௫)ଶ))    Equation 3 189 

𝑆𝐸𝑅 = exp (𝛼𝐷 × ൫𝐷𝐸𝐹௫ − 1൯ + 𝛽𝐷ଶ ൫𝐷𝐸𝐹௫
ଶ − 1൯)    Equation 4 190 

From this expression, one can calculate the DEFexp by resolving equation 4: 191 

𝑫𝑬𝑭𝒆𝒙𝒑 =
ିఈାඥ (ఈ)మାସఉమ×(ఈାఉమା (ௌாோ))

ଶఉమ
    Equation 5 192 

Three energy ranges were defined: low (31 - 40 keV), intermediate (50-80 keV) and high (1.25 MeV) 193 

energy range. The α and β parameters obtained at 33 keV, 50 keV and 1.25 MeV were used to 194 

calculate the SER in these three energy ranges, respectively. 195 

Simulation parameters: Gd distributions were chosen to model the GdCA and GdNPs as 196 

homogeneously distributed Gd-atoms or clustered Gd-atoms in nanospheres, respectively. Images 197 

taken by confocal microscopy showed that, when incubated 2h and 5h with F98 cells, the GdNPs 198 

agglomerate in clusters around the cell membrane (see Supplemental Material Data). To take into 199 

account these clustered conditions and compare the computational DEF with experimental DEF 200 

versus photon energy, the GdNPs were modeled as Gd-nanospheres of 50 nm radius randomly 201 

distributed around the cell membrane. This geometry was also used for the experimental 202 

comparison at high-energy (GdNP-5h-rinsed).  The three other conditions at high energy were 203 

modeled using a homogeneous mixture of water and free Gd-atoms in an extracellular medium for 204 

the GdCA condition, 50 nm radius GdNPs randomly distributed in an extracellular medium for the 205 

GdNPs condition and also distributed in the cell cytoplasm for the GdNPs-5h condition. The cell 206 

geometry is described in Section I.2. As the energy bandwidth of the synchrotron beam on the ID17 207 

beamline is very small (ΔE/E=0.1%), monochromatic photon beams were used in the simulations. 208 
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Additional configurations were considered using Monte Carlo simulations to simulate geometries 209 

described in the literature 9,24,25,31.  210 

I.2. Monte Carlo Simulations at the Sub-Cellular Scale 211 

A modified and parallelized version of the PENELOPE code was used to take advantage of its variance 212 

reduction tool that is well adapted to problems of low probability radiation interactions with 213 

nanoparticles32. We did not use the default PENELOPE variance reduction technique for "interaction 214 

forcing", but a technique developed in the laboratory. For each photon entering the volume of 215 

interest, the photon is split into two parts: one that undergoes interaction and one that continues 216 

without interacting until the next volume on the trajectory. In this way, the dose is calculated with 217 

much lower statistical uncertainty in the volume of interest and, weighted by the adapted 218 

probabilities, remain consistent with actual physical cross-sections. The PENELOPE code generates 219 

electron and positron histories based on a mixed procedure. The electron transport level of detail 220 

is controlled in PENELOPE by specifying the values of several parameters, viz. C1, C2, WCC and WCR. 221 

The C1 and C2 parameters are associated with the gathering of elastic scattering processes for 222 

electrons and positrons. WCC and WCR, represent the cut-off energy loss for, respectively, hard 223 

inelastic collisions and hard Bremsstrahlung emission. A detailed description of the algorithms used 224 

in PENELOPE can be found in Salvat et al.33. The present simulations were done with detailed event-225 

by-event transport setting C1 = C2 = 0, WCC = 50 eV, WCR = 50 eV and using 50 eV as the lowest 226 

absorption energy, PENELOPE's low energy threshold.  227 

We used a compartmentalized cell model15,26,34, that consists of a single spherical cell of 10 µm 228 

diameter (the mean diameter of F98 cells was estimated from the fluoroscopy images, see 229 

supplementary data file) with a 7.5 nm thick membrane and a 4 µm diameter spherical and centered 230 

nucleus. The cell was included in a cube of 15 µm side which represents the extracellular medium. 231 

All compartments were filled with water by default. The primary X-rays were monochromatic and 232 
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came from a non-divergent square source with 15 µm width, placed before the cube. Three-233 

dimensional dose-enhancement maps (voxels of 150 nm) and mean DEFs in nucleus, cytoplasm and 234 

membrane were calculated for various intracellular gadolinium distributions: A) Gd-atoms uniformly 235 

distributed in the cytoplasm; B) Gd-atoms agglomerated in 290 nm diameter spheres simulating 236 

lysosomes; C) 50 nm radius GdNP spheres randomly distributed in the cytoplasm; D) 50 nm radius 237 

GdNP spheres randomly distributed over the cell membrane. The geometries are shown in Figure 1. 238 

Configuration A simulates GdCA cytoplasmic internalization, as observed in vitro by De Stasio et al.31. 239 

Configuration D simulates the experimental study previously described with GdNPs. The B and C 240 

configurations correspond to other internalization of  nanoparticles in the cytoplasm, for example 241 

NPs aggregating in clusters or accumulating in vesicles, as described in the literature9,24,25,35. For all 242 

conditions, the gadolinium mass was 0.6 pg/cell, to simulate the measured GdNPs cellular uptake. 243 

The monochromatic photon energies range from 25 to 1250 keV, with a special focus above/below 244 

the Gd K-edge (50.24 keV).  245 

 246 

Figure 1: Geometries taken into account in the simulations for the different gadolinium distributions: A) homogeneous distribution of 247 
Gd-atoms in cytoplasm, B) accumulation in lysosomes, C) 50 nm-nanoparticles randomly distributed in the cytoplasm and D) 50 nm-248 
nanoparticles randomly distributed on the membrane. The gadolinium mass was 0.6 pg/cell in all conditions.  249 

The secondary electron spectra coming from Gd interactions were also computed. The electrons 250 

passing through the nucleus were analyzed and relative spectra were obtained as the ratio of 251 
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electrons collected in the presence of gadolinium versus the electrons collected in the control 252 

condition. 253 

I.3. Monte Carlo Simulations around a single nanoparticle 254 

In order to quantify the dose-enhancement due to low-energy secondary particles in the immediate 255 

vicinity of the nanoparticles, a study was carried out at a smaller scale using a geometry approaching 256 

those of previous works14,16,19. It consisted in the calculation of DEF in a 1 µm diameter water sphere 257 

in whose center a single GdNP is placed. Simulations were performed for GdNPs of different sizes 258 

(radius from 1 to 50 nm) and for different beam energies (from 25 keV to 1.25 MeV). The source 259 

was circular with the same radius as the nanoparticle and located just in front of it. Note that all the 260 

photons emitted from the source intercept the nanoparticle. This geometry was chosen to keep a 261 

reasonable computation time (about 12 h per beam energy and per GdNP size using 24 CPUs) with 262 

acceptable statistical errors (< 3%).  263 

II. Results 264 

II.1 Monte Carlo Simulations: Intracellular Gd Distribution  265 

The dose-enhancements calculated at the sub-cellular scale are shown in Figures 2 and 3 for the 266 

various gadolinium distributions described in section I.2. Figure 2 shows the dose-enhancement 267 

maps for the beam energies bracketing the gadolinium K-edge (50 and 52 keV), the energy for which 268 

the maximum radiosensitization effect (65 keV) was observed7, and the cobalt-source mean energy 269 

(1250 keV). The color scale maximum (Figure 2) was set to DEF = 3 for better readability. However, 270 

the dose-enhancements were much larger in the close vicinity of the NPs and the “lysosomes”. The 271 

maxima observed with the homogeneous Gd-atom distribution are much smaller than those 272 

observed with nanoparticles. In all cases, the DEFs at high energy are close to 1. For kilovolt energies, 273 

Gd strongly enhances the doses and the DEF is found to be larger above the Gd K-edge than below 274 

it (Figure 2).  275 
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At the surface of the “lysosomes”, the dose is increased by factors up to 60 and 25, for 52 and 276 

65 keV beam energies respectively. This tremendous dose increase may be explained by the high 277 

production of LEE (< 2 keV) following the photoelectric interactions that occur in the gadolinium 278 

clusters. These are essentially K photoelectrons as well as Auger and Coster-Krönig electrons 279 

resulting from atomic relaxation and secondary photoelectric interaction cascades.  280 

 281 

Figure 2: DEFs obtained at 50, 52, 65 and 1250 keV for the different gadolinium distributions: A) homogeneous Gd-atom distribution 282 
in the cytoplasm, B) accumulation of Gd-atoms in lysosomes, C) 50 nm radius nanoparticles distributed in cytoplasm and D) 50 nm 283 
radius nanoparticles distributed on the membrane. The gadolinium mass was 0.6 pg/cell in all conditions. Y and Z scales are in 284 
micrometers. The pixel resolution is 150 nm. 285 
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The mean DEF to the nucleus, cytoplasm and membrane are compared in Figure 3 for the Gd 286 

micro-distributions and for photon energies ranging from 25 keV to 1250 keV.  287 

 288 

Figure 3: Mean DEFs calculated to the nucleus, cytoplasm and membrane as a function of the beam energy (from 25 keV to 1250 keV) 289 
for four gadolinium distributions with 0.6 pg Gd/cell: homogeneous Gd-atom distribution in cytoplasm ( ), accumulation of Gd-atoms 290 
in “lysosomes” ( ), 50 nm radius GdNPs distributed in cytoplasm ( ) and 50 nm radius GdNPs distributed on the membrane ( ). 291 
Uncertainties of confidence interval 3 sigma are close to 1%. 292 
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In all the cases, the nucleus exhibits the lowest mean DEF (< 1.10) with a maximum value at 293 

65 keV regardless of the Gd distribution as long as Gd is in the cytoplasm. For the cytoplasm and the 294 

membrane, the K-edge is much sharper with a maximum around 58 keV. The mean DEF values are 295 

larger, up to 1.16 for the cytoplasm in the case of homogeneous Gd-atoms (representing GdCA) and 296 

1.27 for the membrane when the GdNPs are distributed around the membrane. It is worth 297 

mentioning that in all cases the DEF is very close to 1 for energies above 100 keV.  298 

 299 

II.2 Experimental results and comparison with the simulations 300 

The alpha and beta parameters calculated from the linear quadratic fits of the dose-survival plots 301 

without Gd are given Table 1. They were measured at 33 keV, 50 keV and 1.25 MeV. 302 

Beam Energy (keV) α  ± σα (Gy-1) β  ± σβ (Gy-2) 

33 keV 0.134 (0.015) 0.030 (0.013) 

50 keV 0.014 (0.013) 0.045 (0.018) 

1.25 MeV 0.221 (0.020) 0.009 (0.003) 

Table 1: Results of the fit of the linear-quadratic model (Eq. 1): parameters α and β and their standard deviation in parenthesis. The 303 
survival curves versus x-ray dose were measured for irradiations without Gd at 33 keV, 50 keV and 1.25 MeV, i.e. low, intermediate 304 
and high-energy range, respectively.  305 

The Gd uptake of the F98 cells in presence of GdNPs was measured by means of ICP-MS. The Gd 306 

uptake in the rinsed cells, measured after 5 h incubation with GdNPs, was 0.6 ± 0.05 pg Gd/cell. The 307 

remaining Gd concentration in the culture medium at the end of the incubation period was 308 

1.8 ± 0.05 mg Gd/mL (un-rinsed case). The kinetics for the uptake of GdNPs by F98 cells was 309 

reported in our previous publication7. No toxicity was observed when cells were incubated with 310 

GdNPs without irradiation. The experimental DEFs versus x-ray energy are shown in Figure 4-A, they 311 

were calculated using Eq. 5 and the corresponding α and β parameters. Figure 4 – A shows the mean 312 

computational DEFs calculated in the nucleus, cytoplasm and membrane in comparison with the 313 

experimental DEF (DEFexp) measured after 5h of GdNP incubation with F98 cells (rinsed before 314 
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irradiation), as a function of photon beam energy. Note that the mean DEF calculated on the entire 315 

cell (nucleus + cytoplasm + membrane) would be similar to the cytoplasm DEF.  316 

 317 

Figure 4: A) mean nucleus, cytoplasm and membrane DEF versus experimental DEF (DEFexp) as a function of photon beam energy (from 318 
31 keV to 1.25 MeV). Numerical calculations correspond to 50 nm – GdNPs randomly distributed at the surface of the cell membrane. 319 
B) Computational DEF versus experimental DEF obtained with various Gd-treatment conditions: in presence of 2.1 mg Gd/mL GdCA 320 
during irradiation (GdCA); in presence of 2.1 mg Gd/mL GdNPs during irradiation (GdNP); 5 h incubation with 2.1 mg Gd/mL GdNPs 321 
and cells rinsed before irradiation (GdNP-5h rinsed); 5 h incubation with 2.1 mg Gd/mL GdNPs and cells not rinsed before irradiation 322 
(GdNP-5h). The mean relative errors on the survival data was about 10%. Uncertainties of confidence interval 3σ on computational 323 
DEF range from 1% to 3% (increasing with energy). 324 

At all energies, experimental DEFs were found to be larger than the physical DEFs, but follow a 325 

similar trend versus the irradiation energy. Experimentally, a maximum is observed at 65 keV (DEFexp 326 

= 1.41 ± 0.16). The Membrane DEF represents, the strongest gradient across the Gd K-edge, with 327 

DEF = 1.05 ± 0.004 and 1.26 ± 0.006 calculated at 50 and 52 keV, respectively. 328 
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In Figure 4 – B is reported the comparison at high-energy of mean cell computational DEF versus 329 

experimental DEF with various incubation conditions (no incubation and 5 h incubation, rinsed or 330 

not before irradiation) and molecular shape (GdCA or GdNPs). An important radio-sensitivity is 331 

observed at high energy (1.25 MeV) with GdNPs whereas no effect was observed in presence of 332 

Magnevist®, as expected from modeling for all irradiation conditions. The maximum DEFexp (1.41 ± 333 

0.11) is found for the cells incubated 5h with GdNPs and irradiated with the remaining GdNPs in the 334 

medium. The presence of GdNPs inside the cells (GdNP-5h rinsed) induces higher DEFexp (1.3 ± 0.12) 335 

observed when cells are irradiated in presence of GdNPs but without incubation (GdNP, 336 

DEFexp = 1.17 ± 0.1), although the amount of Gd is far less in the first condition.  337 

 338 

II.3 Nanoparticle Size and Beam Energy at the Nanometer Level 339 

Figure 5 reports the computational DEF profiles calculated for a single GdNP. The aim was to 340 

evaluate the relative influence of the GdNP size and the beam energy at the nanometer scale. The 341 

first set of simulations was performed at 55 keV with the GdNP radius varying from 1 to 50 nm (left 342 

panel). The second set of simulations was performed with a 50 nm GdNP radius and with an X-ray 343 

beam energy ranging from 25 keV to 1.25 MeV (cobalt source).  344 
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 345 

Figure 5: Left panel: DEFs calculated along the beam direction as a function of the distance from the GdNP surface, beam energy 346 
55 keV and GdNP radius from 1 to 50 nm. Right panel: DEFs calculated along the beam direction as a function of the distance from 347 
the GdNP surface, 50 nm radius GdNP and beam energy from 25 keV to 1250 keV (cobalt source). Voxel size: 10 nm. 348 

All DEF profiles show a strong decrease with the distance from the NP surface. Their slopes greatly 349 

vary with the NP radius (left panel), being inversely related with it. The DEF maxima at the NP surface 350 

extend from 200 to 500. For small NP (radius less or equal to 5 nm), the DEF is less than 2 beyond 351 

60 nm from the NP surface, while, for the largest ones, it is still greater than 2 at 500 nm from their 352 

surface. Looking at the beam energy influence (right panel), the DEF profiles all demonstrate a rapid 353 

decrease over the first 100 nm (from the surface of the NP) and a softening slope beyond, with DEFs 354 

less than 10 for all energies. DEFs from 5 to 400 are obtained at the surface of the NP, with a 355 

minimum for the cobalt source energy and a maximum at 52 keV.  356 

 357 

II.4 Electron Spectra Reaching the Cell Nucleus 358 

Figure 6 - A shows the probability density of electrons crossing the nucleus when the cell contains 359 

gadolinium (neGd) and in the absence of gadolinium (necontrol). Figure 6 - B is the ratio of the two, 360 

representing only electrons due to Gd-interactions. Three homogeneous Gd-atom distributions 361 

were considered: in the extracellular medium (2.1 mg Gd /mL), in the cytoplasm (0.6 pg Gd /cell) 362 

and the combination of the two with a Gd-atom quantity of 0.6 pg Gd in the cytoplasm and a 363 
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concentration of 1.8 mg Gd /mL in the extracellular medium (in reference to the experimental 364 

conditions). The beam energy was set to 58 keV, i.e. 7.8 keV above the Gd K-edge.  365 

 366 

Figure 6: A: electron probability density versus the electron energy, where (ne)Gd refers to the number of electrons crossing the nucleus 367 
when Gd is distributed within extra-nucleus areas (cytoplasm ( ), external ( ) and both ( )) whereas (ne)control refers to the 368 
corresponding number in the absence of Gd ( ).The X-ray beam energy is 58 keV. B: Ratio of the number of electrons crossing the 369 
nucleus in presence of Gd relative to the number of electrons crossing the nucleus without Gd: (ne)Gd/(ne)control ratio. 370 

The amplitudes of the characteristic peaks vary from 3 to 15, for electron energies between 20 and 371 

50 keV (Figure 6B). This increase number of electrons reaching the nucleus due to Gd-interactions 372 

could be a cause of additional damages to the DNA, they are however not predominant in the 373 

electron spectra (Figure 6A). When the electrons are generated from Gd in the external medium, 374 
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they have to travel through more material before reaching the nucleus, inducing a spread of the 375 

spectrum and wider energy bandwidths compared to the internal condition. The origin of the peaks 376 

was identified by correlating their position with the atomic relaxation tables and the gadolinium 377 

binding energies (50.24 keV, 7.24 – 8.38 keV and 1.2 – 1.9 keV for K, L1-L3 and M1-M5 layers 378 

respectively). The peaks observed around 30 and 40 keV are due to the electrons originated from 379 

the second photoelectric interactions of Kα and Kβ fluorescence photons. Those coming from the 380 

primary interactions on the K and L shells are found around 0.5 and 48 keV respectively. The great 381 

majority of potential high-LET electrons22, K photoelectrons, Auger and Coster-Krönig electrons, are 382 

not able to reach the cell nucleus because of their very low energies (< 10 keV), even in the case of 383 

internal gadolinium. 384 

 385 

III. Discussion  386 

LEE and more particularly Auger electrons, were suggested in the literature as a key agent in the 387 

radiobiological effects of NPs, since they are able to induce lethal DNA breaks via direct or indirect 388 

ionization22. However, the NPs usually remain in the cytoplasm or on the cell membrane and do not 389 

reach the cell nucleus7,9,24,25. We have shown in this study that the LEE produced in the cytoplasm 390 

or in the extracellular area are mostly absorbed before reaching the cell nucleus, even with 391 

intracellular gadolinium (Figure 6). In addition, we have shown that the very strong dose gradients 392 

observed around the NPs extend only a few tens of nanometers from small NPs (Figure 5). Since the 393 

NPs are mostly located at a few micrometers from the nucleus, other components like the 394 

organelles in the cytoplasm or the cell membrane may be potential targets.  395 

When the NPs are clustered on the cell membrane, the highest DEF (1.27) was found on the 396 

membrane with beam energy above the Gd K-edge (Figure 4 – A). The increase of dose can induce, 397 

by direct or indirect effects, a membrane degradation and lead to cell death36. Additional Gd 398 

distributions were simulated to model the case where the GdNPs accumulate in vesicles such as 399 
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endosomes or lysosomes, such as reported by others 25,37. Large clusters of gadolinium distributed 400 

into the cell cytoplasm were modeled and called “lysosomes” configuration. Dose-enhancement 401 

factors up to 60 in the lysosomes were calculated (cf. Figure 2). These DEFs may also induce lethal 402 

damage to the cell since the endosomal and lysosomal systems have important functions for cell 403 

survival9,37,38. Mitochondrial damage can also be a prevalent cause of cell death if NPs accumulate 404 

there10,18,24,26 and our geometry with GdNPs distributed in the cytoplasm (Figure 2) can represents 405 

the order of magnitude of achievable DEFs close to these structures. In good agreement with our 406 

results, Douglass et al., who modeled similar cellular geometry, suggested that LEE like Auger 407 

electrons coming from the NP have a negligible effect on the overall dose increase due to their small 408 

ranges15. The average dose-enhancement on the entire cell can be attributed mainly to higher 409 

energy photoelectrons. Note that our simulated cell model is spherical and implies a bias because 410 

of its symmetry and size. Indeed, cells actually have a more complex shape and the nucleus is 411 

sometimes very close to the cell membrane. The overall biological effect may be due to cumulative 412 

damage on the entire cell (nucleus, membrane and cytoplasm organelles). In a recent publication, 413 

Sung et al.34 have evaluated the influence of the cell shape and nucleus location on dose-414 

enhancement produced by AuNPs (2% Au in mass, distributed on the membrane of cells). They 415 

demonstrated that a small increase could be observed at kV energies (51 keV and 150 kVp) when 416 

the nucleus was shifted toward the membrane (up to 1.2 for F98 cell modelling), but no dose-417 

enhancement was obtained at high energies (6 MV). In addition, the shape of the cell did not 418 

significantly affect their results when the nucleus was placed in the cell center for the F98 cells.  419 

Various characteristic variations of the DEFs with beam energy were observed for the different 420 

intracellular Gd distributions and the cell compartment considered. The results clearly demonstrate 421 

that the larger heterogeneities and clustering behavior in Gd distribution lead to larger local DEFs 422 

(Figure 2). This is due to a significant production of electrons by atomic relaxation cascades and to 423 

secondary photoelectric interactions of fluorescence photons, the latter being more probable for a 424 
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higher density of Gd atoms. By contrast, homogeneously distributed Gd-atoms (representing GdCA) 425 

led to larger DEFs in the cytoplasm (Figure 3 – Cytoplasm) in comparison with GdNPs. This is mainly 426 

due to the auto-absorption of LEE in the Gd-clustered structures. This suggests that if the GdCA 427 

could be internalized in the cytoplasm, the radiosensitizing effect on the cells could be potentially 428 

important. This warrants further experimental studies to compare internalized GdCA with GdNPs.  429 

In all conditions, the interactions beyond the Gd K-edge produce the higher DEFs (Figures 2 430 

and 3). The DEF gradient as a function of the distance from Gd is very sharp at 52 keV (Figures 2 and 431 

5) because of the low-energy photoelectrons (< 2 keV). At 65 keV, maximum DEFs in the Gd clusters 432 

(lysosomes or GdNPs) are slightly lower than at 52 keV but with a more spatially extended DEF above 433 

1.5 (Figure 2). Such a DEF halo could reach various critical cellular targets and create potential cell 434 

death, as already mentioned.  435 

The experimental DEFs (DEFexp) in presence of GdNPs incubated 5h with cells showed higher 436 

values than computational DEFs at all energies, with a maximum enhancement ratio at 65 keV 437 

(DEFexp = 1.41 ± 0.16) and a sharp K-edge transition. As the membrane DEF attained the highest 438 

calculated value (DEF = 1.27) and also showed a sharp K-edge transition with beam energy, 439 

membrane damage could partly explain the observed biological effect. Interestingly, the DEFexp at 440 

1.25 MeV (Figure 4 – B) obtained in presence of pre-incubated GdNPs (DEFexp = 1.3 ± 0.13) was found 441 

to be much larger than the computational DEF obtained with the “GdNP on Membrane” condition 442 

(DEFMC = 1.0 ± 0.004). On the other hand, in presence of GdCA, no dose-enhancement was observed 443 

at high energy (DEFexp = 1.01 ± 0.14), as predicted by the simulations. The increased biological 444 

efficacy observed with GdNPs at high energy appears to be correlated with the degree of Gd 445 

agglomeration in the cells and the incubation time (Figure 4 - B). Indeed, the internalized GdNPs 446 

seem to have a much higher impact on the radiosensitivity than those remaining outside the cells, 447 

given the differences in Gd concentrations. The experimental sensitivity reported after incubation 448 

with GdNPs seemed to have two origins: one that is energy dependent and related to the physical 449 
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dose-enhancement; and the second that is independent of the energy. In comparison with the 450 

condition of cells incubated during 5 h with GdNPs and irradiated without rinsing (reported in Taupin 451 

et al.7), the experimental DEF with the rinsed cells (Figure 4-A) follows the same trend versus the 452 

energy. 453 

At the nanoscale level, the DEF at significant distances from the NP surface (> 100 nm) 454 

increases with the size of the NP (Figure 5). This is explained by an increase of gadolinium mass with 455 

NP size and consequently of the number of secondary LEE released. A hardening of the spectrum is 456 

observed (auto-absorption within the NP of the LEE generated deeply) inducing a spreading of the 457 

dose. One should note that these profiles have not been normalized by the NP mass in order to 458 

focus on the effect of an isolated Gd cluster. By doing so and additionally normalizing the photon 459 

flux passing through the GdNP (method used in the publication of Chow et al.39), the average DEFs 460 

in the water sphere were found to be larger for the smallest radii (data not shown). The NPs of small 461 

radius therefore seem the most "efficient" at the nanoscale level due to the larger amount of LEE 462 

that can be extracted from them. By extension, for an equal Gd concentration in the entire volume 463 

considered, isolated heavy atoms (as GdCA) should be the most efficient Gd form in terms of LEE 464 

production and local DEF. Our results confirm this idea on Figure 3 – Cytoplasm as slightly larger 465 

DEFs are obtained in the homogeneous conditions.  466 

In terms of radiosensitization efficiency, if the cell survival is linked to the mean dose, it would 467 

be more appropriate to consider isolated atoms; on the other hand, if there is a specific biological 468 

target, large NPs close to it could be of particular interest to increase cell damage by inducing local 469 

hot spot of dose. However, to improve our understanding it would be crucial to consider the 470 

biological and chemical consequences of the presence of NP in a cell environment, using more 471 

specific radiobiological models (e.g. with Geant4-DNA and the LEM model). 472 

It is noteworthy that monochromatic energies were used in the present study. The linear 473 

accelerators conventionally used in clinics produce broad photon spectra including a large 474 
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contribution of photons around hundreds of keV. Polychromatic radiations might thus produce 475 

more significant radiation dose-enhancement effects than those obtained with cobalt 60 in the 476 

presence of NP, as discussed by McMahon et al.40,41. Anyhow, kilovolt energies remain the most 477 

adapted to this new therapy involving heavy atoms photo-activation since the dose-enhancements 478 

are always found to be much higher (factor > 10-100) in this energy range. In clinical situations, a 479 

compromise must be found in terms of low energy between the attenuation of the primary beam 480 

in the patient and the number of interactions in the heavy material injected within the tumor. The 481 

optimal X-ray beam energy seems to be around 80 keV according to the study by Edouard et al.11. 482 

In the perspective of patient’s treatment, tumor accumulation of the GdCA and GdNPs should be 483 

taken into account and preclinical data indicated quite different in vivo results. One should note that 484 

the pharmacokinetics of GdCA is quite rapid, limiting their in vivo tumor uptake in quantity and 485 

residence-time. On the contrary, the GdNPs might present a more favorable pharmacokinetic 486 

leading to much higher tumor uptake and potentially to tumor cell internalization, and therefore a 487 

higher radiosensitization effect. 488 

 489 

Conclusions 490 

The parameters which influence the local dose-enhancement were studied with Monte Carlo 491 

simulations at a sub-cellular and nano-scale, in presence of GdNPs or GdCA and were compared 492 

with experimental in vitro measurements. A high heterogeneity of the Gd distribution, a massive 493 

production of low energy electrons around NPs and an optimal X-ray beam energy, above the Gd K-494 

edge, were shown to be key factors to increase both microscopic doses and cells radio-sensitivity. 495 

The dose-enhancement calculated by Monte Carlo simulations at the sub-cellular scale account only 496 

for part of the biological response observed in presence of GdNPs. Higher experimental DEFs were 497 

observed at all energies, even at 1.25 MeV although no dose-enhancement was predicted by the 498 

simulations. To understand these discrepancies, it would be worth refining the simulations by using 499 
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more realistic geometries (such as the source and the cell model) and other codes adapted to 500 

nanodosimetry and chemistry modeling, such as Geant4-DNA. Performing further biological studies 501 

would also help to decipher the bio-mechanisms induced by the presence of GdNPs in the cells. On 502 

the other hand, the Monte Carlo simulations reflect the absence of dose-enhancement observed 503 

experimentally in presence of GdCA at high energy but suggest that high DEF would be obtained 504 

using GdCA in the energy range 50-65 keV. In conclusion, this study provides strong evidence that 505 

GdCA or GdNPs could both be used for radiation dose-enhancement therapy. Their biological 506 

distribution at the cellular scale will be the key factor for providing large dose-enhancements and 507 

this will determine their therapeutic efficacy.   508 
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