N

N

Do Convolutional Networks need to be Deep for Text
Classification ?
Hoa T. Le, Christophe Cerisara, Alexandre Denis

» To cite this version:

Hoa T. Le, Christophe Cerisara, Alexandre Denis. Do Convolutional Networks need to be Deep for
Text Classification 7. AAAI Workshop on Affective Content Analysis, Feb 2018, New Orleans, United
States. hal-01690601

HAL Id: hal-01690601
https://hal.science/hal-01690601
Submitted on 24 Feb 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01690601
https://hal.archives-ouvertes.fr

arXiv:1707.04108v1 [cs.CL] 13 Jul 2017

Do Convolutional Networks need to be Deep for Text Classification ?

Hoa T. LE !, Christophe Cerisara !, Alexandre Denis 2
! LORIA, UMR 7503, Nancy, France; ? SESAMm, France

Abstract

We study in this work the importance
of depth in convolutional models for text
classification, either when character or
word inputs are considered. We show on 5
standard text classification and sentiment
analysis tasks that deep models indeed
give better performances than shallow net-
works when the text input is represented
as a sequence of characters. However, a
simple shallow-and-wide network outper-
forms deep models such as DenseNet with
word inputs. Our shallow word model fur-
ther establishes new state-of-the-art per-
formances on two datasets: Yelp Binary
(95.9%) and Yelp Full (64.9%).

1 Introduction

Following the success of deep learning approaches
in the ImageNet competition, there has been
a surge of interest in the application of deep
models on many tasks, such as image classifi-
cation (Krizhevsky et al., 2012), speech recog-
nition (Hinton et al., 2012), Each new
coming model proposes better and better ar-
chitectures of the network to facilitate train-
ing through longer and longer chains of layers,
such as Alexnet (Krizhevsky et al., 2012), VG-
GNet (Simonyan and Zisserman, 2014), Google-
LeNet (Szegedy et al., 2015), ResNet (He et al.,
2016a) and more recently Densenet (Huang et al.,
2016).

Several works have explained this success in
computer vision, in particular (Zeiler and Fergus,
2014) and (Donahue et al., 2014): deep model
is able to learn a hiearchical feature representa-
tion from pixels to line, contour, shape and object.
These studies have not only helped to demistify
the black-box of deep learning, but have also led

the path to other approaches like transfer learn-
ing (Yosinski et al., 2014), where the first layers
are believed to bring more general information and
the last layers to convey specific information on
the target task.

This paradigm has also been applied in text
classification and sentiment analysis, with deeper
and deeper networks being proposed in the litera-
ture: (Kim, 2014) (shallow-and-wide CNN layer),
(Zhang et al., 2015) (6 CNN layers), (Conneau
et al., 2016) (29 CNN layers). Besides the devel-
opment of deep networks, there is a debate about
which atom-level (word or character) would be the
most effective for Natural Language Processing
(NLP) tasks. Word embeddings, which are contin-
uous representations of words, initially proposed
by (Bengio et al., 2003) and widely adopted after
word2vec (Mikolov et al., 2013) have been chosen
as the main standard representations for most NLP
tasks. Based on this representation, a common be-
lief is that, similarly to vision, the model will learn
hiearchical features from the text: words combine
to form n-grams, phrases, sentences...

Several recent works have extended this model
to characters instead of words. Hence, (Zhang
et al., 2015) propose for the first time an alterna-
tive character-based model, while (Conneau et al.,
2016) take a further step by introducing a very
deep char-level network. Nevertheless, it is still
not clear which atom-level is the best and whether
very deep networks at the word-level are really
better for text classification.

This work is motivated by these questions and
we hope to bring elements of a response by pro-
viding a full comparison of a shallow-and-wide
CNN (Kim, 2014) both at the character and word
levels on the 5 datasets described in (Zhang et al.,
2015). Moreover, we propose an adaptation of
a DenseNet (Huang et al., 2016) for text classi-
fication and sentiment analysis at the word-level,

which we compare with the state-of-the-art.

This paper is structured as follows: Section 2
summarizes the related work while Section 3 de-
scribes the shallow CNN and introduces our adap-
tation of DenseNet for text. We then evaluate our
approach on the 5 datasets of (Zhang et al., 2015)
and show experimental results in Section 4. Ex-
periments show that the shallow-and-wide CNN
on word-level can beat a very deep CNN on char-
level. The paper concludes with some open dis-
cussions for future research about deep structures
on text.

2 Related work

Text classification is an important task in Nat-
ural Language Processing. Traditionally, lin-
ear classifiers are often used for text classifi-
cation (Joachims, 1998; McCallum and Nigam,
1998; Fan et al., 2008). In particular, (Joulin et al.,
2016) show that linear models could scale to a
very large dataset rapidly with a proper rank con-
straint and a fast loss approximation. However,
a recent trend in the domain is to exploit deep
learning methods, such as convolutional neural
networks: (Kim, 2014; Zhang et al., 2015; Con-
neau et al., 2016) and recurrent networks: (Yo-
gatama et al., 2017; Xiao and Cho, 2016). Sen-
timent Analysis is also an active topic of re-
search in NLP for a long time, with real-world
applications in market research (Qureshi et al.,
2013), finance (Bollen et al., 2011), social sci-
ence (Dodds et al., 2011), politics (Kaya et al.,
2013). The SemkEval challenge has been setup
in 2013 to boost this field and is still bringing
together many competitors who have been using
an increasing proportion of deep learning models
over the years (Nakov et al., 2013; Rosenthal et al.,
2014; Nakov et al., 2016). 2017 is the fifth edition
of the competition, with at least 20 teams (over
48 teams) using deep learning and neural network
methods. The top 5 winning teams all use deep
learning or deep learning ensembles. Other teams
use classifiers such as Naive Bayes classifier, Ran-
dom Forest, Logistic Regression, Maximum En-
tropy and Conditional Random Fields (Rosenthal
et al., 2017).

Convolutional neural networks with end-to-end
training have been used in NLP for the first time
in (Collobert and Weston, 2008; Collobert et al.,
2011). The authors introduce a new global max-
pooling operation, which is shown to be effective

for text, as an alternative to the conventional lo-
cal max-pooling of the original LeNet architec-
ture (Lecun et al., 1998). Moreover, they pro-
posed to transfer task-specific information by co-
training multiple deep models on many tasks. In-
spired by this seminal work, (Kim, 2014) pro-
posed a simpler architecture with slight modifica-
tions of (Collobert and Weston, 2008) consisting
of fine-tuned or fixed pretraining word2vec em-
beddings (Mikolov et al., 2013) and its combina-
tion as multi-channel. The author showed that this
simple model can already achieve state-of-the-art
performances on many small datasets. (Kalch-
brenner et al., 2014) proposed a dynamic k-max
pooling to handle variable-length input sentences.
This dynamic k-max pooling is a generalisation of
the max pooling operator where k can be dynami-
cally set as a part of the network.

All of these works are based on word input to-
kens, following (Bengio et al., 2003), which intro-
duced for the first time a solution to fight the curse
of dimensionality thanks to distributed represen-
tations, also known as word embeddings. A limit
of this approach is that typical sentences and para-
graphs contain a small number of words, which
prevents the previous convolutional models to be
very deep: most of them indeed only have two lay-
ers. Other works (Severyn and Moschitti, 2015)
further noted that word-based input representa-
tions may not be very well adapted to social me-
dia inputs like Twitter, where tokens usage may be
extremely creative: slang, elongated words, con-
tiguous sequences of exclamation marks, abbrevi-
ations, hashtags,... Therefore, they introduced a
convolutional operator on characters to automat-
ically learn the notions of words and sentences.
This enables neural networks to be trained end-to-
end on texts without any pre-processing, not even
tokenization. Later, (Zhang et al., 2015) enhanced
this approach and proposed a deep CNN for text:
the number of characters in a sentence or para-
graph being much longer, they can train for the
first time up to 6 convolutional layers. However,
the structure of this model is designed by hand by
experts and it is thus difficult to extend or general-
ize the model with arbitrarily different kernels and
pool sizes. Hence, (Conneau et al., 2016), inspired
by (He et al., 2016b), presented a much simpler but
very deep model with 29 convolutional layers.

Besides convolutional networks, (Kim et al.,
2016) introduced a character aware neural lan-

guage model by combining a CNN on character
embeddings with an highway LSTM on subse-
quent layers. (Radford et al., 2017) also explored a
multiplicative LSTM (mLSTM) on character em-
beddings and found that a basic logistic regression
learned on this representation can achieve state-of-
the-art result on the Sentiment Tree Bank dataset
(Socher et al., 2013) with only a few hundred la-
beled examples.

Capitalizing on the effectiveness of character
embeddings, (Dhingra et al., 2016) proposed a hy-
brid word-character models to leverage the avan-
tages of both worlds. However, their initial ex-
periments show that this simple hybridation does
not bring very good results: the learned represen-
tations of frequent and rare tokens of words and
characters is different and co-training them may
be harmful. To alleviate this issue, (Miyamoto and
Cho, 2016) proposed a scalar gate to control the ra-
tio of both representations, but empiricial studies
showed that this fixed gate may lead to subopti-
mal results. (Yang et al., 2017) then introduced
a fine-grained gating mechanism to combine both
representations. They showed improved perfor-
mance on reading comprehension datasets, includ-
ing Children’s Book Test and SQuAD.

3 Model

We describe next two models architectures, re-
spectively shallow and deep, that we will compare
in Section 4 on several text classifications tasks.
Both models share common components that are
described next.

3.1 Common components
Lookup-Table Layer

Every token (either word or character in this work)
i € Vocab is encoded as a d-dimensional vector
using a lookup table Lookupyy (.):

Lookupy (i) = W, (1)

where W € IR9x1V0cabl i the embedding ma-
trix, W; € IRY is the i** column of W and d is the
number of embedding space dimensions. The first
layer of our model thus transforms indices of an
input sentence si, S, - - -, Sy of n tokens in Vocab
into a series of vectors Wy, Wyo, - -+ . Wy,
Classification Layer

The embedding vectors that encode a complete
input sentence are processed by one of our main

models, which outputs a feature vector x that rep-
resents the whole sentence. This vector is then
passed to a classification layer that applies a soft-
max activation function (Costa, 1996) to compute
the predictive probabilities for all K target labels:

emp(ng + b)
K
Py ea:p(wg,x +b,)

p(y =k|X) = 2)

where the weight and bias parameters wy, and by
are trained simultaneously with the main model’s
parameters. The loss function is then minimized
by cross-entropy error.

3.2 Shallow-and-wide CNN

Our first shallow-and-wide CNN model is adapted
from (Kim, 2014).

d=5
I
like

this

-“I\;r ~
TR L

Figure 1: Shallow-and-wide CNN, from (Zhang
and Wallace, 2015): 3 convolutional layers with
respective kernel window sizes 3,4,5 are used. A
global max-pooling is then applied to the whole
sequence on each filter. Finally, the outputs of
each kernel are concatenated to a unique vector
and fed to a fully connected layer.

Let x; € IR? be an input token (word or char-
acter). An input h-grams x;.;p—1 is transformed
through a convolution filter w,. € IR":

¢i = f(We - Xiipn—1 + be) 3)

with b, € IR a bias term and f the non-linear
ReLU function. This produces a feature map ¢ €
R" 1 where n is the number of tokens in the
sentence. Then we apply a global max-over-time
pooling over the feature map:

¢ =max{c} € R 4)

This process for one feature is repeated to
obtain m filters with different window sizes h.

The resulting filters are concatenated to form a
shallow-and-wide network:

g:[él7627'.'7ém] (5)

Finally, a fully connected layer is applied:

9= f(wy-g+0by) (6)

Implementation Details

The kernel window sizes h for character tokens
are Ny = (15,20,25) with m = 700 filters. For
word-level, Ny = (3, 4,5) with m = 100 filters.

3.3 DenseNet
Skip-connections

In order to increase the depth of deep models,
(He et al., 2016a) introduced a skip-connection
that modifies the non-linear transformation x; =
Fi(x;—1) between the output activations x;_; at
layer [— 1 and at layer [with an identity function:

x; = Fi(x—1) + X1 (7)

This allows the gradient to backpropagate
deeper in the network and limits the impact of var-
ious issues such as vanishing gradients.

Dense Connectivity

(Huang et al., 2016) suggested that the additive
combination of this skip connection with F;(x;_1)
may negatively affect the information flow in the
model. They proposed an alternative concatena-
tion operator, which allows to create direct con-
nections from any layer to all subsequent layers,
called DenseNet. Hence, the [*" layer has ac-
cess to the feature maps of all preceding layers,
Xg, - - ,X;—1, as input:

©,X-1]) ®)

X = ﬂ([XO7X1)' :

This can be viewed as an extreme case of a
ResNet. The distance between both ends of the
network is shrinked and the gradient may back-
propagate more easily from the output back to the
input, as illustrated in Figure 3.

Convolutional Block and Transitional Layer

Following (He et al., 2016b), we define F;(.) as
a function of three consecutive operations: batch
normalization (BN), rectified linear unit (ReLU)
and a 1x3 convolution.

To adapt the variability of the changing dimen-
sion of the concatenation operation, we define a

[fic (2048, nClasses) |
¥

[fc(4096, 2048), Rell |
T output: 512 x k

| Local Max-pooling, k=8, stride=8 |
T output: 512 x s/16

pool/2
T output: 512 xs/8
=
Dense <
Block4 %
T
-

4 output: 512 xs/B
pool/2
T output: 512 xs/d
3, Temp Conwv, 512
T output: 256 x s/d

A=

Dense < '
Block3 4

4 output: 256 x s/d
pool/2
T output: 256 x 52
3, Temp Conv, 256
T output: 128 x 5/2

-

Dense <
Block2z %

T

g

4 output: 128 xs5/2
pool/2
T output: 128 x s
3, Temp Conv, 128

T output: 64 x s

<

Dense <

Block1l %

t

T output: 64 x s
| 3, Temp Conv, 64

4 output: 69 x5
| Lookup table, one-hot enceding |
input: 1 x5

Text

Figure 2: Character-level DenseNet model for
Text classification. 3, Temp Conv, 128 means
temporal convolutional operation with kernel win-
dow size = 3 and filter size = 64; pool/2 means
local max-pooling with kernel size = stride size =
2, it will reduce the size of the sequence by a half.

transition layer which composes a 1x3 convolution
and a 1x2 local max-pooling between two dense
blocks. Given a vector ¢~! outputed by a convo-
Iutional layer [— 1, the local max-pooling layer [
outputs a vector ek

G
v, =
ek 4 e

Figure 3: Dense Block. Multiple convolutional
filters output 2D matrices, which are all concate-
nated together before going into another dense
block.

[]; = max[c'™]

i kx(j—1)<i<kxj 9)

where 1 < ¢ < n and k is the kernel pool-
ing size. The word-level DenseNet model is the
same as the character-level model shown in Fig-
ure 2, except for the last two layers, where the
local max-pooling and two fully connected lay-
ers are replaced by a single global average pooling
layer. We empirically observed that better results
are thus obtained with word tokens.

Implementation Details

The kernel window size with both character and
word tokens is h = 3 tokens. For word-level, the
kernel of the last local max-pooling is 8 while it
is equal 3 for char-level (because the size of the
sequence is shorter). Following (Conneau et al.,
2016), we experiment with two most effective con-
figurations for word and character-level: N, =
(4—4—-4—4)and N, = (10 — 10 — 4 — 4),
which are the number of convolutional layers in
each of the four blocks.

4 Experimental evaluation

4.1 Tasks and data

We test our models on the 5 datasets used
in (Zhang et al., 2015) and summarized in Table 2.
These datasets are:

e AGNews: internet news articles (Del Corso
et al., 2005) composed of titles plus descrip-
tions and classified into 4 categories: World,
Entertainment, Sports and Business, with 30k
training samples and 1.9k test samples per
class.

e Yelp Review Polarity: The Yelp review
dataset is obtained from the Yelp Dataset
Challenge in 2015. Each polarity dataset has
280k training samples and 19k test samples.

e Yelp Review Full: The Yelp review dataset is
obtained from the Yelp Dataset Challenge in
2015. It has four polarity star labels: 1 and
2 as negative, and 3 and 4 as positive. Each
star label has 130k training samples and 10k
testing samples.

e DBPedia: DBPedia is a 14 non-overlapping
classes picked from DBpedia 2014
(wikipedia). = Each class has 40k train-
ing samples and 5k testing samples.

e Yahoo! Answers: ten largest main categories
from Yahoo! Answers Comprehensive Ques-
tions and Answers version 1.0. Each class
contains 140k training samples and 5k test-
ing samples, including question title, ques-
tion content and best answer. For DenseNet
on word-level, we only used 560k samples
because of lack of memory.

4.2 Hyperparameters and Training

For all experiments, we train our model’s param-
eters with the Adam Optimizer (Kingma and Ba,
2014) with an initial learning rate of 0.001, a mini-
batch size of 128. The model is implemented
using Tensorflow and is trained on a GPU clus-
ter (with 12Gb RAM on GPU). The hyperparam-
eters are chosen following (Zhang et al., 2015)
and (Kim, 2014), which are described below. On
average, it takes about 10 epochs to converge.

4.2.1 Character-level

Following (Zhang et al., 2015), each character is
represented as a one-hot encoding vector where
the dictionary contains the following 69 tokens:
"abede f ghijklmnopqrstuvwayz0123456789—,
1707)| #%& 7+ =<> ()[]”. The maximum
sequence length is 1014 following (Zhang et al.,
2015); smaller texts are padded with O while larger
texts are truncated. The convolutional layers are
initialized following (Glorot and Bengio, 2010).

4.2.2 Word-level

The embedding matrix W is initialized randomly
with the uniform distribution between [—0.1;0.1]

Models AGNews | Yelp Bin | Yelp Full | DBPedia | Yahoo
Char shallow-and-wide CNN 90.7 94.4 60.3 98.0 70.2
Char-DenseNet N, = (4 — 4 — 4 — 4) Global Average-Pooling 90.4 94.2 61.1 97.7 68.8
Char-DenseNet N, = (10 — 10 — 4 — 4) Global Average-Pooling 90.6 94.9 62.1 98.2 70.5
Char-DenseNet N, = (4 — 4 — 4 — 4) Local Max-Pooling 90.5 95.0 63.6 98.5 72.9
Char-DenseNet N, = (10 — 10 — 4 — 4) Local Max-Pooling 92.1 95.0 64.1 98.5 73.4
Word shallow-and-wide CNN 922 95.9 64.9 98.7 73.0
Word-DenseNet N, = (4 — 4 — 4 — 4) Global Average-Pooling 91.7 95.8 64.5 98.7 70.4%*
Word-DenseNet N, = (10 — 10 — 4 — 4) Global Average-Pooling 91.4 95.5 63.6 98.6 70.2%
Word-DenseNet N, = (4 — 4 — 4 — 4) Local Max-Pooling 90.9 95.4 63.0 98.0 67.6*
Word-DenseNet N, = (10 — 10 — 4 — 4) Local Max-Pooling 88.8 95.0 62.2 97.3 68.4*
bag of words (Zhang et al., 2015) 88.8 92.2 58.0 96.6 68.9
ngrams (Zhang et al., 2015) 92.0 95.6 56.3 98.6 68.5
ngrams TFIDF (Zhang et al., 2015) 924 95.4 54.8 98.7 68.5
fastText (Joulin et al., 2016) 92.5 95.7 63.9 98.6 72.3
char-CNN (Zhang et al., 2015) 87.2 94.7 62.0 98.3 71.2
char-CRNN (Xiao and Cho, 2016) 91.4 94.5 61.8 98.6 71.7
very deep char-CNN (Conneau et al., 2016) 91.3 95.7 64.7 98.7 73.4
Naive Bayes (Yogatama et al., 2017) 90.0 86.0 51.4 96.0 68.7
Kneser-Ney Bayes (Yogatama et al., 2017) 89.3 81.8 41.7 95.4 69.3
MLP Naive Bayes (Yogatama et al., 2017) 89.9 73.6 40.4 87.2 60.6
Discriminative LSTM (Yogatama et al., 2017) 92.1 92.6 59.6 98.7 73.7
Generative LSTM-independent comp. (Yogatama et al., 2017) 90.7 90.0 51.9 94.8 70.5
Generative LSTM-shared comp. (Yogatama et al., 2017) 90.6 88.2 52.7 95.4 69.3

Table 1: Accuracy of our proposed models (10 top rows) and of state-of-the-art models from the littera-

ture (13 bottom rows).

Dataset #y | #train | #test | Task
AGNews 4 120k | 7.6k | ENC
Yelp Binary 2 560k 38k | SA
Yelp Full 5 650k 38k | SA
DBPedia 14 560k 70k | OC
Yahoo 10 | 1400k 60k | TC
Table 2: Statistics of datasets used in our experi- i

ments: number of training tokens (#train), of test
tokens (#test) and of target labels (#y); ENC: En-
glish News Categorization. SA: Sentiment Analy-
sis, OC: Ontology Classification, TC: Topic Clas-
sification

and is updated during model’s training using back-
propagation. The embedding vectors have 300 di-
mensions and are initialized with word2vec vec-
tors pretrained on 100 billion words from Google

News (Mikolov et al., 2013). Out-of-vocabulary °

words are initialized randomly. A dropout of 0.5
is used on shallow model to prevent overfitting.

The shallow-and-wide CNN requires 10 hours
of training on the smallest dataset, and one day on
the largest. The DenseNet respectively requires 2
and 4 days for training.

4.3 Experimental results

Table 1 details the accuracy obtained with our

models (10 rows on top) and compare them with °

state-of-the-art results (13 rows at the bottom) on 5
corpus and text classification tasks (columns). The

models from the litterature we compare to are:

e bag of words: The BOW model is based

on the most frequent words from the training
data (Zhang et al., 2015)

ngrams: The bag-of-ngrams model exploits
the most frequent word n-grams from the
training data (Zhang et al., 2015)

ngrams

TFIDF: Same as the ngrams

model but uses the words TFIDF (term-
frequency inverse-document-frequency) as
features (Zhang et al., 2015)

fastText:

A linear word-level model with
a rank constraint and fast loss approxima-
tion (Joulin et al., 2016)

char-CNN: Character-level Convolutional
Network with 6 hand-designed CNN lay-
ers (Zhang et al., 2015)

char-CRNN: Recurrent Layer added on top
of a Character Convolutional Network (Xiao
and Cho, 2016)

very deep CNN: Character-level model
with 29 Convolutional Layers inspired by
ResNet (Conneau et al., 2016)

Naive Bayes: A simple count-based word
unigram language model based on the Naive
Bayes assumption (Yogatama et al., 2017)

e Kneser-Ney Bayes: A more sophisticated
word count-based language model that uses
tri-grams and Kneser-Ney smoothing (Yo-
gatama et al., 2017)

e MLP Naive Bayes: An extension of the
Naive Bayes word-level baseline using a two
layer feedforward neural network (Yogatama
etal., 2017)

e Discriminative LSTM: Word-level model
with logistic regression on top of a traditional
LSTM (Yogatama et al., 2017)

e Generative LSTM-independent comp.: A
class-based word language model with no
shared parameters across classes (Yogatama
et al., 2017)

e Generative LSTM-shared comp.: A class-
based word language model with shared
components across classes (Yogatama et al.,
2017)

Figure 4 visually compares the performances of
3 character-level models with 2 word-level mod-
els. Character-level models include: our shallow-
and-wide CNN model with two models on the lit-
terature 6 CNN layers (Zhang et al., 2015), 29
CNN layers (Conneau et al., 2016). On word-
level, we present our shallow-and-wide CNN with
the best DenseNet N, = (4 — 4 — 4 — 4) using
Global Average-Pooling.

The main conclusions of these experiments are
threefold:

Impact of depth for character-level models

Deep character-level models do not significantly
outperform the shallow-and-wide network. A
shallow-and-wide network (row 1 in Table 1)
achieves 90.7%, 94.4%, 98.0% on AGNews,
Yelp Bin, DBPedia respectively, comparing to
91.3%, 95.7%, 98.7% of a very deep CNN (Con-
neau et al., 2016). Although the deep structure
achieves a slight gain in performance on these
three datasets, the difference is not significant. In-
terestingly, a very simple shallow-and-wide CNN
can get very close results to the deep 6 CNN lay-
ers of (Zhang et al., 2015) which structure must be
designed meticulously.

For the smallest dataset AGNews, we suspect
that the deep model char-CNN performs badly
because it needs more data to take benefit from
depth. The deep structure gives an improvement

of about 4% on Yelp Full and Yahoo (first row of
Table 1 vs. very deep char CNN), which is inter-
esting but does not match the gains observed in im-
age classification. We have tried various configu-
rations: Ny = (15,20, 25), Ny = (10,15, 20, 25)
and Ny = (15,22,29,36) on shallow models but
they didn’t do better.

Impact of depth for word-level models

The DenseNet is better with 20 layers N, = (4 —
4—4—4) than with 32 layers N, = (10—10—4—
4) and Global Average-Pooling is better than the
traditional Local Max-pooling. It is the opposite to
char-level. This is likely a consequence of the fact
that the observed sequence length is much shorted
with words than with characters.

However, the main striking observation is that
all deep models are matched or outperformed by
the shallow-and-wide model on all datasets, al-
though it is still unclear whether this is because
the input sequences are too short to benefit from
depth or for another reason. Further experiments
are required to investigate the underlying reasons
of this failure of depth at word-level.

State-of-the-art performances with
shallow-and-wide word-level model

With a shallow-and-wide network on word-level,
we achieved a very close state-of-the-art (SOTA)
result on AGNews, SOTA on 2 datasets DBPedia,
Yahoo and set new SOTA on 2 datasets: Yelp Bi-
nary and Yelp Full. We also empirically found
that a word-level shallow model may outperform
a very deep char-level network. This confirms
that word observations are still more effective than
character inputs for text classification. In practice,
quick training on word-level with a simple convo-
Iutional model may already produce good result.

4.4 Discussion

Text representation - discrete, sparse

Very deep models do not seem to bring a sig-
nificant advantage over shallow networks for text
classification, as opposed to their performances in
other domains such as image processing. We be-
lieve one possible reason may be related to the fact
that images are represented as real and dense val-
ues, as opposed to discrete, artificial and sparse
representation of text. The first convolutional op-
eration results in a matrix (2D) for image while
it results in a vector (1D) for text (see Figure 5).
The same deep network applied to two different

AGNews

Yelp Bin

DEPedia
100

94

1
90 4 26
88 4 04
86 4 92
84 - 90 -

Yelp Full

64
62
60 4
58 -

Char Shallow-and-wide CNN

Word Shallow-and-wide CNN

99
98
Ml
96 -

I Char 8 CNM layers

Yahoo

0
63- l
66 -

Il Verydeepchar-CNMN

I Word-DenseMet

Figure 4: Comparison of character (in blue, on the left) and word-level (in red, on the right) models
on all datasets. On character-level, we compare our shallow-and-wide model with the 6 CNN layers
of (Zhang et al., 2015) and the 29-layers CNN of (Conneau et al., 2016). On word-level, we compare the
shallow-and-wide CNN with our proposed DenseNet.

representations (dense and sparse) will obviously
get different results. Empirically, we found that
a deep network on 1D (text) is less effective and
learns less information than on 2D (image).
Local vs Global max-pooling

A global max-pooling (Collobert and Weston,
2008), which retrieves the most influencial feature
could already be good enough for sparse and dis-
crete input text, and gives similar results than a
local max-pooling with a deep network.
Word vs Character level

Char-level could be a choice but word-level is
still the most effective method. Moreover, in or-
der to use char-level representation, we must use a
very deep model, which is less practical because it
takes a long time to train.

5 Conclusion

In computer vision, several works have shown the
importance of depth in neural networks and the
major benefits that can be gained by stacking many
well-designed convolutional layers in terms of per-
formances. However, such advantages do not nec-
essarily transfer to other domains, and in partic-
ular Natural Language Processing, where the im-
pact of depth in the model is still unclear. This
work exploits a number of additional experiments
to further explore this question and potentially

bring some new insights or confirm previous find-
ings. We further investigate another related ques-
tion about which type of textual inputs, characters
or words, should be chosen at a given depth. By
evaluating on several text classification and senti-
ment analysis tasks, we show that a shallow-and-
wide convolutional neural network at the word-
level is still the most effective, and that increas-
ing the depth of such convolutional models with
word inputs does not bring significant improve-
ment. Conversely, deep models outperform shal-
low networks when the input text is encoded as
a sequence of characters, but although such deep
models approach the performances of word-level
networks, they are still worse on the average. An-
other contribution of this work is the proposal of a
new deep model that is an adaptation of DenseNet
for text inputs.

Based on the litterature and the results pre-
sented in this work, our main conclusion is that
deep models have not yet proven to be more ef-
fective than shallow models for text classification
tasks. Nevertheless, further researches should be
realized to confirm or infirm this observation on
other datasets, natural language processing tasks
and models. Indeed, this work derives from refer-
ence deep models that have originally been devel-
oped for image processing, but novel deep archi-

60120 45115 -61 245 58 -20_36] J

214157 237 07 146 235 162120 42 ss{ 7
87208 215 23320 91 230 161 {93/213
3140 1791321143 35102 100248 45

232 172 142 26 189 167 107172 1901

57105 152323 33 £3(412 183 120 K
142 75 87 232 210 23185 137 o5/

“equivalent™ in text

Thi=
vellow
fazhion

car

is

pretty

fancy

16¢123 216, 75 30200 224 237 17§
26 51235 7B 124253 31 9208

o §7 108 17 E7 203 155, 4§ &7 147
B4l 145 117 2 38 13120(138 2 of /

Deep Model

= Deep Model

Vector

Figure 5: Inside operations of convolution on Image vs Text. Image has real-valued and dense. Text
has discrete tokens, many artificial and sparse values representation. The output of the first convolution
layer on image is still a Matrix but on text, it is reduced to a Vector.

tectures for text processing might of course chal-
lenge this conclusion in the near future.

Acknowledgments

Part of the experiments realized in this work
have been done on two GPU clusters: Grid5000
Inria/Loria Nancy, France and Romeo Reims,
France. We would like to thank both consortiums
for giving us access to their resources.

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137-1155.

Johan Bollen, Huina Mao, and Xiao-Jun Zeng. 2011.
Twitter mood predicts the stock market. J. Comput.
Science 2(1):1-8.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning. ACM, New York, NY, USA,
ICML 08, pages 160-167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res. 12:2493-2537.

Alexis Conneau, Holger Schwenk, Loic Barrault, and
Yann LeCun. 2016. Very deep convolutional net-
works for natural language processing. CoRR
abs/1606.01781.

Mario Costa. 1996. Probabilistic interpretation of feed-
forward network outputs, with relationships to sta-
tistical prediction of ordinal quantities. Interna-
tional Journal Neural Systems 7:627-638.

Gianna M Del Corso, Antonio Gulli, and Francesco
Romani. 2005. Ranking a stream of news. In

Proceedings of the 14th international conference on
World Wide Web. ACM, pages 97-106.

Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and
Ruslan Salakhutdinov. 2016. Gated-attention read-
ers for text comprehension. CoRR abs/1606.01549.
http://arxiv.org/abs/1606.01549.

Peter Sheridan Dodds, Kameron Decker Harris, Is-
abel M. Kloumann, Catherine A. Bliss, and Christo-
pher M. Danforth. 2011. Temporal patterns of hap-
piness and information in a global social network:
Hedonometrics and twitter. CoRR abs/1101.5120.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. Decaf: A deep convolutional activation fea-
ture for generic visual recognition. In ICML.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-
brary for large linear classification. J. Mach. Learn.
Res. 9:1871-1874.

http://arxiv.org/abs/1606.01549
http://arxiv.org/abs/1606.01549
http://arxiv.org/abs/1606.01549

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS10). Society for Artificial Intelligence and
Statistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016a. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pages 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016b. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pages 770-778.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. 2012. Deep neural
networks for acoustic modeling in speech recogni-
tion. Signal Processing Magazine .

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger.
2016. Densely connected convolutional networks.
CoRR abs/1608.06993.

Thorsten Joachims. 1998. Text categorization with su-
port vector machines: Learning with many relevant
features. In Proceedings of the 10th European Con-
ference on Machine Learning. ECML °98, pages
137-142.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR abs/1607.01759.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. page 655665.

Mesut Kaya, Guven Fidan, and I. Hakki Toroslu.
2013. Transfer Learning Using Twitter Data for
Improving Sentiment Classification of Turkish Polit-
ical News, Springer International Publishing, Cham,
pages 139-148.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL. pages 1746-1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In AAAI. AAAI Press, pages 2741—
2749.

Diederik P. Kingma and Jimmy Ba. 2014.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
25. Curran Associates, Inc., pages 1097-1105.

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE.
pages 2278-2324.

Andrew McCallum and Kamal Nigam. 1998. A com-
parison of event models for naive bayes text classi-
fication. In IN AAAI-98 WORKSHOP ON LEARN-
ING FOR TEXT CATEGORIZATION. AAAI Press,
pages 41-48.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26. Curran Associates, Inc., pages 3111-3119.

Yasumasa Miyamoto and Kyunghyun Cho. 2016.
Gated word-character recurrent language model. In
EMNLP.

Preslav Nakov, Sara Rosenthal, Svetlana Kiritchenko,
Saif M. Mohammad, Zornitsa Kozareva, Alan Ritter,
Veselin Stoyanov, and Xiaodan Zhu. 2016. Devel-
oping a successful semeval task in sentiment anal-
ysis of twitter and other social media texts. Lang.
Resour. Eval. 50(1):35-65.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis
in twitter. In Proceedings of the 7th International
Workshop on Semantic Evaluation. pages 312-320.

Muhammad Atif Qureshi, Colm O’Riordan, and
Gabriella Pasi. 2013. Clustering with error-
estimation for monitoring reputation of companies
on twitter. In Information Retrieval Technology -
9th Asia Information Retrieval Societies Conference,
AIRS 2013, Singapore, December 9-11, 2013. Pro-
ceedings. Springer, volume 8281 of Lecture Notes in
Computer Science, pages 170-180.

Alec Radford, Rafal J6zefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR abs/1704.01444.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. Semeval-2014 task 9: Sen-
timent analysis in twitter. In Proceedings of the
8th International Workshop on Semantic Evaluation.
pages 73-80.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, New
York, NY, USA, SIGIR ’15, pages 959-962.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Seattle, Washington, USA, pages 1631-1642.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. 2015. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR).
http://arxiv.org/abs/1409.4842.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by com-
bining convolution and recurrent layers. CoRR
abs/1602.00367.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W. Cohen, and Ruslan Salakhutdinov. 2017.
Words or characters? fine-grained gating for reading
comprehension. In ICLR.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. Arxiv .

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In Proceedings of the 27th In-
ternational Conference on Neural Information Pro-
cessing Systems. MIT Press, Cambridge, MA, USA,
NIPS’ 14, pages 3320-3328.

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Com-
puter Vision - ECCV 2014 - 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I. pages 818—833.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems. MIT Press, Cambridge, MA, USA, NIPS’15,
pages 649-657.

Ye Zhang and Byron C. Wallace. 2015. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
CoRR abs/1510.03820.

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

