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Manufacturing composite laminates made of epoxy resin matrix and long carbon fibers is divided into several operations. The most critical one is the cross-linking stage of the thermoset resin. During this phase, uncured prepreg plies' stacking is transformed into a structural laminate by the achievement of a three dimensional macromolecular resin network. A question of matter is the quality of the polymerization process. If not optimized, it gives birth to defects in the bulk material, such as voids. These defects are considered as possible sources of damage in the composite parts. The aim of this work is to address void growth processes in thermoset composite laminates with dynamic modelling. Diffusion phenomena of gas molecules in resin are neglected for the moment, in order to study more easily viscous effects of the polymer on gas bubbles traped inside the fluid. Once model bases are fixed and validated, an optimization study is proposed to determine the best temperature and pressure cycles which permit to minimize the final void radius.

INTRODUCTION

When composite laminate structures made of epoxy resin and long carbon fibers are manufactured in production facilities, the curing step is one of the most critical. In an autoclave and thanks to appropriate vacuum pressure, temperature and hydrostatic pressure cycles, uncured prepreg plies stacking are cross-linked by an exothermic chemical reaction. High-performance structural laminates can be obtained that comply with aeronautical industry requirements. However, the quality of the manufacturing process and more precisely the quality of the layup and polymerization processes is sometimes uncertain. Defects like voids can indeed be detected in the manufactured composite parts. These voids may cause an important decrease of mechanical properties like a reduction of the interlaminate shear strength properties [START_REF] Wisnal | Reduction in ILSS by Discrete and Distributed Voids[END_REF]. Moreover they can favor damage and crack initiation and propagation. In this study a semi-analytical model of void growth in a viscous resin fluid has been developed in order to optimize the curing process with respect to void apparition and void growth. Final aim is to produce structures with minimum void rate. After description of the processing parameters used for the simulation, the viscous dynamic model and solving FPCM-9 (2008) The 9 th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8 ~ 10 July 2008 procedure are presented. The last part of the paper addresses an optimization study in order to determine the best temperature and pressure cycles to minimize the final void radius.

Main process parameters

The goal of the model is to describe the void radius evolution for prescribed curing conditions during an autoclave polymerization process. Conditions corresponding to those usually applied by industry are used and are shown in Fig. 1.

Fig. 1 Typical cure cycle imposed during the autoclave manufacturing process

As temperature increases, resin viscosity decreases rapidly and chemical reaction begins. Resin viscosity reaches a minimum at about 500 seconds and then begins to increase. Up to this point, little laminate consolidation has taken place other than that associated with interplies wetting. During the 135°C temperature hold, an autoclave hydrostatic pressure of 7 bar is applied and laminate consolidation occurs. Resin viscosity was determined as a function of time and temperature in accordance with chemorheological models proposed in literature [START_REF] Theriault | A numerical Model of Viscosity of an Epoxy Prepreg Resin System[END_REF] [3]. More particularly, M. Ivankovic [START_REF] Ivankovic | Curing Kinetics and Chemorheology of Epoxy/Anhydride System[END_REF] proposed a law, Eqn. 1, obtained empirically from an epoxy anhydride system:
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This model is a combination of the Williams-Landel-Ferry (WLF) equation and a conversion term originally used by Castro and Macosko. Fractional conversion (α) is calculated using modified Kamal and Sourour kinetic model [START_REF] Ivankovic | Curing Kinetics and Chemorheology of Epoxy/Anhydride System[END_REF]:
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The thermokinetic model parameters are summarized in Table 1. 

Void growth model in viscous media

A polymer foaming cellular model is used for void growth investigation in viscous media (Fig. 2). This model was largely developed by M. Amon [START_REF] Amon | A Study of the Dynamics of Foam Growth: Analysis of the Growth of Closely Spaced Spherical Bubbles[END_REF]. A gas bubble growing in a thermoset polymer matrix is considered, due to several parameters: • differential pressure between the imposed pressure P imp and gas pressure in the void P gaz , • gas temperature (T) variation,

• resin viscosity variation during the cure cycle due to the polymer cross-linking.

Fig. 2 Scheme of the cellular model

The following assumptions are made. a) The void and the thermoset resin are non-miscible. So, diffusion phenomena of gas molecules in resin are not yet taken into account. b) The void is spherical, with radius R p . c) The gas in the void is assumed to be a perfect gas. d) Thermoset resin is incompressible and Newtonian. e) Inertia and mass effects are neglected compared to viscous effects and stress due to gas pressure. The kinematics of spherical bubble growth are ideally described by a purely radial velocity field, which is obtained from the continuity equation. The strain rate tensor, Eqn. 3, is characteristic of a biaxial extensional flow.

          - = 1 0 0 0 1 0 0 0 2 3 2 r R R p p & & ε (3)
As a consequence the radial component of momentum equations reduces to
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The boundary conditions are, Eqn. 5 :
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For a viscous liquid resin, the classical Cauchy stress tensor is:
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Dynamic viscosity is fitted versus time according to experimental data (Fig. 1). 
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Resin medium

Finally, by expressing gas pressure inside voids thanks to perfect gas law and initial conditions, the following differential equation is obtained:
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Where p R & is the void radius growth velocity, γ LV the surface tension and ( ) α η ,
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the resin viscosity calculated with Eqn. 1. T o , p o and R o are the temperature, the gas pressure and radius at t = 0 respectively. Cycle temperature variation is taken into account but it is assumed that gas and resin temperature are equal at each time step.

Results and discussion

The nonlinear differential equation, Eqn. 7, can be solved using Runge Kunta 4 implicit scheme, implemented in Matlab ® software. Autoclave pressure, temperature and gas pressure inside the void are updated at each time step. The range of parameter values considered covers those employed during the industrial manufacturing process of composite laminates ( Table 1). R max represents the void radius at t = 600 seconds, when hydrostatic pressure increase begins. R final is the void radius at t = 3000 seconds or when viscosity is over 10 8 Pa.s. In this case, it can be supposed that resin is too viscous to allow growth or shrink of void. In Fig. 3, void radius (R p ) is plotted for processing parameters presented previously in Fig. 1. 
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The radius variation can be divided in 3 stages: Stage 1: under constant pressure but increasing temperature, and decreasing viscosity, the void grows. After 600 seconds, the growth slows down due to the viscosity stabilization and also due to the decrease of the differential pressure between the polymer and the gas inside the void. Stage 2: the void radius is stabilized due to constant pressure and temperature. After 600 seconds, the hydrostatic pressure is increased from 1 to 7 bar. Moreover, viscosity reaches its minimum value during this stage. Consequently, the void radius is divided by approximately two. Stage 3: the pressure is constant and viscosity increases exponentially due to the cross-linking of the thermoset resin. A small increase of temperature may induce a small growth of the void. Finally, after 2500 seconds, the void size is stabilized to 6 µm. The influence of the surface tension parameter is studied and the results are presented in table 2. L.E. Scriven [START_REF] Scriven | On the Dynamics of Phase Growth[END_REF] mentioned that surface tension effects (γ LV ) are neglected since they are only significant during the initial expansion of the void nucleus. Nevertheless, this parameter is included in Eqn. 7. So its influence is studied with different imposed values from 0 to 0.5 Pa.m: the higher the surface tension, the smaller the final radius. And insteed, the results show that the surface tension has trifling effects on the final radius and can be neglected. Then, Eqn. 7 becomes:
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Using Eqn. 8, a numerical optimization study can be used to determine more precisely the whole pressure and temperature cycles with respect to resin viscosity values in order to minimize the final void radius.

Optimization procedure

Aim of the optimization study is to reduce as much as possible the void radius obtained at the end of the polymerization cycle. It is shown previously that this parameter depends on temperature and pressure conditions applied during the curing cycle. So, the values obtained by these two cycles can be modified in order to optimize the final void radius. To this aim, abscises of 3 points on the temperature curve (represented by triangles in Fig. 4) and 2 points on the pressure curve (represented by squares in Fig. 4) are fixed. The ordinates of the temperature and pressure points can vary between given limits. Indeed, there are 5 optimization parameters represented by the ordinates in temperature and pressure of the 5 points. At each optimization step, the algorithm determines the ordinates for these 5 points. Temperature and pressure cycles versus time are obtained using a cubic fit of the points obtained as explained previously. For each step, the final radius is calculated with these fitted temperature and pressure points. Starting with this radius, the optimization procedure recalculates the 5 temperature and pressure ordinates in order to minimize the final void radius. If a convergence criterion is reached, the procedure is stopped, and optimized temperature and pressure cycles are obtained to minimize the final void radius. Now, optimization algorithm has to be chosen carefully. On-deterministic or stochastic methods such as Monte-Carlo method and genetic algorithm [START_REF] Renders | Algorithmes Génétiques et Réseaux de Neurones[END_REF] can led to global minimums, but the objective function needs many iterations to converge. Gradient methods [START_REF] Sun | Global convergence of no monotone descent methods for unconstrained optimisation problems[END_REF] require the computations of the function gradients, such as BFGS [START_REF] Morales | A numerical study of limited memory BFGS methods[END_REF] and SQP [START_REF] Horowitz | Quadratic programming solver for structural optimisation using SQP algorithm[END_REF]. The computation of gradients by finite difference methods is time consuming and depends on the perturbed parameters. However, combined methods and particularly SQP (Sequential Quadratic Programming) [START_REF] Boggs | Sequential quadratic programming[END_REF], are considered to be the stabliest and most efficient for solving mathematical programming issues with objective functions and non linear contrains. This algorithm implemented in Matlab ® is used to minimize the final void radius by optimizing the temperature and pressure cycles. The results of this optimization procedure are presented in Fig. 4.

Fig. 4 Void radius and resin viscosity versus optimized temperature and pressure cycle

First graph (Fig. 4) describes the new optimized pressure and temperature cycles. Those can be compared with the former ones, plotted with dotted lines and presented in Fig. 3. In the optimized cycle, the autoclave pressure is imposed later (1500 s) than in the former one. The 135°C temperature hold disappears for the benefit of a small decrease of temperature. This allows slowing the exponential increase of viscosity as it can be seen in the second graph. This one represents radius and viscosity versus time. Like in Fig. 1, viscosity attempts a minimum at about 1500 seconds, where autoclave pressure is applied. After that, viscosity is more or less constant until 2600 seconds, and then increasing exponentially, due to the gelification of the thermoset resin. The void radius is maximal when the viscosity is minimal and decreases after 1500 seconds due to the imposed hydrostatic pressure. The radius is not calculated when viscosity is over 10 8 Pa.s, because it is supposed that the material is too 
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viscous to permit growth or shrink of the void. This limit is attempted when the fractional conversion (α), calculated with Eqn. 2, is near about the gelification one, α gel , determined empirically. In this case, α gel equals 0,331 like mentioned in Table 1. It can be noted that the final void radius obtained with the optimized cycles is very close to the one obtained with the traditional temperature and pressure cycles used in industrial field. This note permits to validate the good agreement between theoretical optimization study and reality. However, optimized cycles are longer than those obtained experimentally by supplier. So, a new optimization study can be investigated with taking into account the time between the beginning and the end of the cycle. The new aims would become to minimize at the same time the final void radius and the curing cycle time. Nevertheless, a new condition can be added in this optimization: in fact manufacturing societies want to obtain composite parts with fractional conversion more than 95%. This means the time of the second temperature hold (180°C) must be considered and calculated to cross link enough composite parts. Moreover, exothermic phenomena of the resin chemical reaction must not be forgotten when a new polymerization cycle is found, notably for parts thicker than 10 mm. Those phenomena can be taken into account in coupling Eqn. 8 with thermal equations. The same procedure can be applied to include diffusion phenomena in the optimization study. This also could be the final goal of this work.

Model simulation results show that the final void radius is essentially dependant on hydrostatic pressure and resin viscosity which itself depends on temperature and time. Resinvoid surface tension seems to have less influence. However, such analytical models need assumptions to find numerical solutions without excessive calculation time. So, 3-D numerical simulation has to be investigated to be closer to physical reality. Rem3D ® , polymer injection software is chosen for this task. It is able to follow the variation of the void radius and other parameters during autoclave type laminate processing parameters [START_REF] Bruchon | A Study of the 3D Polymer Foam Formation Based on the Simulation of Anisothermal Bubble Expansion[END_REF]. This part of the study is now under investigation.

CONCLUSION and PROSPECTS

The behavior of a gas bubble in epoxy resin bas been modeled physically considering temperature and pressure conditions applied during the autoclave manufacturing process used in aeronautic field to cure composite laminates. To this aim, a polymer foaming cellular model in viscous media is implemented. The viscosity variation is predicted with a chemorheological equation. This one is a combination of the WLF equation and a conversion term originally used by Castro and Macosko [START_REF] Ivankovic | Curing Kinetics and Chemorheology of Epoxy/Anhydride System[END_REF] which was verified for epoxy/anhydride system. This model emphasizes the important role of hydrostatic pressure and resin viscosity on the final void size. It is used successfully in the current optimization study to determine the best temperature and hydrostatic pressure cycles which permit to minimize the final void radius. However, the results are obtained by using an important assumption: diffusion phenomena are neglected for instance. Many authors have presented the important relation between void size and absorption or dissolution phenomena which occur during the polymerization stage [START_REF] Kardos | Void Growth and Resin Transport During Processing of Thermosetting -Matrix Composites[END_REF]. Then, the further prospect of this study is to couple our model with the one developed by Kardos and all. [START_REF] Kardos | Void Growth and Resin Transport During Processing of Thermosetting -Matrix Composites[END_REF], in order to improve the prediction of the final void size. In parallel, the optimization study can improve the processing schedule of cure to determine the best cure cycle. Finally an experimental setup will be designed to measure "in situ" the real void size during autoclave process manufacturing, in order to compare with numerical results.

Fig. 3

 3 Fig. 3 Void radius, temperature and pressure evaluation with time

Table 1 Parameters of chemorheology model of epoxy resin

 1 

	Symbol k o1 k o2 Unit s -1 s -1 kJ/mol kJ/mol K Pa.s / E a1 E a2 T go η g m	n /	α g /	α max /	C 1 C 2 a / / /
	Value e 10.7 e 12.6 61.4	62.1 235.4 10 17 0.64 1.36 0.33 -0.6555+0.0035T 36.5 19.6 2.7

Table 2 Process parameter parametric study

 2 

	γ LV (Pa.m)	0	0.05	0.5
	R max (µm)	11.17	10.84	8.64
	R final (µm)	6.04	6.00	5.60
		Defaults values: R o =10 µm; P o =1 bar.	
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