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Abstract

This work aims at investigating the use of reduced basis (RB) methods to diminish the cost of the reso-
lution of parameter-dependent partial differential equations (PDEs) present in elastoplasticity problems
arising from geotechnics modeling. Computation times for large three-dimensional analysis commonly
take tens of hours, making optimization procedures or sensitivity analysis, relying on repeated simula-
tions, hardly feasible. In many cases the analysis requires very specific features such as highly non-linear
constitutive laws, involving a complex description of hardening phenomena in soils, which could not be
solved using a standard reduced basis method. Given this constraint, an approach making it possible
to use the reduced basis framework with any finite element software (without modifying the code) and
considering it as a ”black box” gives the so-called non-intrusive reduced basis method a versatility of
great practical interest. Our approach involves the computation of less expensive (but less accurate) FE
approximation during the online stage and improvement of those solutions using a RB-based rectifica-
tion method. The chosen application belongs to the field of tunnel engineering, the particular problem
being the displacement of the soil around a shallow tunnel for varying values of parameters: Young’s
modulus, friction angle, cohesion coefficient (characterizing the soil) and confinement loss (caused by
the excavation of the tunnel). CESAR-LCPC, a FEM-based software, was used as a black-box to
compute displacements during the offline and the online stages, whereas Freefem++ was used for the
implementation of the RB-based rectification method and analysis of the results. We proposed two
rectification methods in the non-intrusive framework, and found that a modified rectification method
was more adapted to the problem considered. With this non-intrusive method computation time has
been reduced by 85% compared to P2 finite element method without loss of accuracy.
Keywords : Reduced Basis method; Finite Element method; Parametric studies; Elastoplasticity;
Soils.

1. Introduction

Numerical modeling has met growing success over the last decades, becoming indispensible in the
field of geotechnical engineering, leading to the resolution by finite elements of even larger nonlinear
problems. This trend stems from the need to account for the influence of constructing new structures,
such as deep foundations of high-rise buildings or shallow tunnels for transport infrastructures, on
neighboring structures (e.g. sewers, existing buildings, etc.) in dense urban areas. Computation times
for large three-dimensional analysis commonly take tens of hours, making sensitivity analysis relying
on repeated simulations hardly feasible. A common approach is to develop simplified models, such
as metamodels, to approximate the model without significant loss of accuracy. In [1] a metamodel
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Preprint submitted to Elsevier September 2, 2016



based on Proper Orthogonal Decomposition (POD) with radial basis functions (RBF) was applied to
test problems in material mechanics with the goal of illustrating the capability of these metamodels to
reproduce mechanical responses to the loading of complex non-linear material systems. An extended
version of the POD-RBF metamodel was proposed in [2] to surrogate a 3D finite element simulation of
a tunnel using Hardening Soil model.

Another approach to rapidly compute reliable approximations of solutions of complex problems with
many parameters is reduced basis (RB) methods [3]. These methods rely on the parametric structure of
the model and that when the parameters vary, the manifold of all possible solutions can be approximated
by a low-dimensional space, the reduced basis space. The reduced basis is constructed from solutions
of the parametrized problem for a well-chosen set of parameters. Standard reduced basis methods are
Galerkin approximations of the full order model within a lower-dimensional reduced basis space. One of
the keys of RB techniques is the decomposition of the computational work into offline and online stages.
During the offline stage the reduced basis functions are computed, as well as all parameter-independent
quantities. This is done only once, whereas parameter-dependent quantities are computed during the
online stage. Application of the reduced basis method to linear elastic solid mechanics problems with
parameters of different natures (either physical or geometrical) was proposed in [4, 5, 6, 7, 8]. The
efficiency of the reduced basis or POD-based reduction methods relies on liberating online calculation
costs from dependency on the discretization. However in elasto-plastic problems with highly nonlinear
behavior, not uncommon in the field of soil mechanics, the computational complexity related to the
local integration of the nonlinear constitutive laws is not reduced. Several alternative ways to carry out
the standard POD-based reduction method for problems with nonlinear behavior were investigated. For
example in [9, 10] a partial reduction is performed over the region of the domain with elastic behavior,
while the plastified region remains unreduced. This selective POD-based model reduction was extented
by an adaptive method of sub-structuring POD(A-SPOD) in which the subdomain where model reduc-
tion is applied is determined automatically. In [11, 12, 13] a hyper-reduction approach was proposed by
Ryckelynck to treat the problem of local dependency and extended by Zhang [14] to a thermo-elasto-
plastic model. The hyper reduction method consists in introducing reduced integration domains for
internal variables.
However these methods require modification of the finite element calculation code leading to an in-
trusive procedure, which is particularly restrictive in the case of the considered geotechnics modeling
applications. Analysis of the displacement field around a tunnel opening using numerical techniques is
quite sensitive to the constitutive models of the soil used to described the fundamental behavior of the
materials involved. In many cases the analysis requires very specific features which are not available
in all finite element softwares, such as highly non-linear constitutive laws, involving a complex descrip-
tion of hardening phenomena in soils. Given this constraint, an approach making it possible to use
reduced basis methods with any finite element software (without modifying the code) and considering
it as a ”black box” gives the so-called non-intrusive reduced basis method a versatility of great practical
interest. Our approach involves the computation of less expensive FE approximation (but less accu-
rate) with a black-box FE software and improvement of those solutions using a reduced basis during
the online stage. In this work, we aim to demonstrate the feasibility of this approach – a two-grid
finite-element/RB method, introduced in [15, 16] – to geotechnics modeling.

This paper is organized as follows. In Section 2, we formulate the elastoplastic problem providing
a brief description of the physical system, the material behavior laws, the governing equations and
boundary conditions. In Section 3, we provide a brief introduction to reduced basis methods and
discuss a preliminary analysis of the feasibility and reliability of reduced basis approximations of the
elastoplastic problem. In Section 4 the problem is solved with a non-intrusive reduced basis method.
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Finally Section 5 presents the conclusions.

2. The elastoplastic problem

The chosen application belongs to the field of tunnel engineering. In urban areas, it is necessary to
consider the possible impact of the construction of a shallow tunnel on existing structures (buildings,
foundations, etc.). In many cases, the first step consists of evaluating the settlements that would be
induced by the construction of a tunnel in a “greenfield ” environment, i.e. with no structure built at
the surface. Let us consider a circular tunnel built through a 50-m horizontal ground layer. The tunnel
diameter is D=10 m and the axis depth is H=25 m. The analysis is carried out under the plane strain
assumption. If the ground is homogeneous and isotropic, only half of the ground layer needs to be
considered. For practical reasons, the analysis is limited to a distance of L=100 m from the tunnel axis
(see figure 1).

Figure 1: Geometry of the physical domain

2.1. From material behavior laws to the governing equations

In design calculations, materials (soil, concrete, rock, metal, liquid, gas) are considered as continu-
ous mediums (or continua). These materials are thus considered to obey certain general physical and
mechanical principles, such as the conservation of energy and momentum. Everyday experience can
tell us that different materials do not behave in the same way under the same forces. General physics
laws do not allow us to make the distinction between different sorts of materials. We therefore want to
characterize the specific behavior of the continuum equivalent to the material under consideration. This
is the goal of the constitutive laws associated to a material; the laws must characterize the evolution
caused by given exterior forces and be specific to the material in question. When switching from one
material to another, the laws must translate the differences in practically observed behavior. The con-
stitutive law associated to a material is necessary to complete the system of equations of any mechanics
problem of continua or structural design. The behavior of the soils in our problem is represented by an
elastoplastic model used for pulverulent soils (sands) and for long-term coherent soils (clay and silt).
Observations show that irreversible deformations appear when the stress exceeds a certain level. Let u
be the displacement vector; the deformation is assumed to be infinitesimal so that the strain tensor can

be written as ε(u) = 1
2(∇u + t∇u). The framework of plasticity is based on the assumption that the

strains can be split into the sum of two terms :

ε = εe + εp, (1)

where εe is the elastic strain tensor and εp is the plastic part of the total strain tensor ε, which corre-
sponds to the irreversible part of the strain. The elastic part of the behavior of the soil is linear2 and

2Let us note that here the term ”linear” or ”nonlinear” refers to the behavior of the material, not necessarily to a linear
or nonlinear equation.
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isotropic and described by Hooke’s law (characterized by Young’s modulus E and Poisson’s coefficient
ν). The plastic part of the soil’s behavior is considered nonlinear and is obtained via the Mohr-Coulomb
model [17] (characterized by the cohesion c, the friction angle ϕ, and the dilatancy angle ψ).

2.1.1. Linear elastic behavior : Hooke’s Law

Hooke’s law (2) describes the relationship between the stress tensor σ(u) ∈ Rd×d and the elastic
strain tensor εe(u) ∈ Rd×d.

σ(u)− σ0 = E ν

(1 + ν)(1− 2ν) tr
(
εe(u)

)
Id

+ E

(1 + ν) ε
e(u) (2)

with σ0 the initial stress tensor, E and ν soil’s parameters.

2.1.2. Nonlinear plastic behavior : Mohr Coulomb’s model

It is assumed that the plastic strain does not evolve as long as the stress tensor remains in the
interior of a region of the stress space, called the elastic domain [17, 18]. The elastic domain is generally
defined by a condition of the type f(σij) < 0, where f is called the yield function. The yield surface is
the boundary of the elastic domain and thus defined by f(σ) = 0. For sands, the yield function can be
expressed as follows.

f(σij) = (σ` − σs)− (σs + σ`) sinϕ− 2c cosϕ, (3)

where σ` and σs represent the largest and smallest eigenvalues of the stress tensor σ (often call principal
stresses in mechanics). The parameters ϕ and c are the friction angle and the cohesion characterizing
the soil. In this study, we focus on the case of elastic-perfectly plastic models, in which the yield surface
does not evolve with loading. Let us consider the stress tensor σij corresponding to a given load. If
f(σij) < 0, then σij is in the elastic domain, and so we have that the deformation variation is described
simply by

dε = dεe.

If f(σij) = 0, then σij is on the boundary of the elastic domain. To describe the behavior at this point,
we need to know if the material is in loading, in which case the deformation variation is described by

dε = dεp + dεe.

or if the material is unloading and has an elastic behavior. At a regular point σij of the elasticity
boundary, the plastic deformation can be described by the so-called “plastic flow rule”

dεp = dλ̂
∂g

∂σ
,

where dλ̂ ≥ 0 is a scalar called the plastic multiplier and g is given by

g(σij) = (σ` − σs)− (σs + σ`) sinψ − 2c cosψ. (4)

The problem is closed by the ”consistency condition”

df dλ̂ = 0. (5)
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2.1.3. Equilibrium equation

We consider a static process, then the equilibrium describing our system is:

div(σ) + ρF = 0, (6)

where ρF =
(

0
−γ

)
is the external body force and γ is the volumetric weight of the soil.

The elastic deformation is linked to the variation of the stress by a linear relation:

σ − σ0 = C : εe. (7)

From (2) one can see that Cijkl (representing the elasticity tensor of the material) is constant, symmet-
rical (Cijkl = Cjikl = Cijlk = Cklij) and depends only on E and ν.

2.1.4. Boundary conditions

In this paper, we consider a 2D problem on the bounded domain Ω ⊂ R2 (see figures 2 and 3).

Figure 2: 2D representation of the domain Ω

We will impose zero horizontal displacement on Γ1 and Γ3 and zero horizontal and vertical displace-
ment on Γ2. The load consists of a surface density of force I applied on the wall of the tunnel (Γ6)
calculated from the initial stress tensor (which we assumed geostatic):

I = λσ0 · ~n, with σ0 =
(
x2K0γ 0

0 x2γ

)
,

where λ represents the confinement loss caused by the excavation of the tunnel and K0 = 1 − sin(ϕ)
the coefficient of the earth pressure at rest.

Figure 3: Boundaries of the domain Ω
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Let (ui,i=1,··· ,d) be the displacement components in the xi-directions in Ω. The boundary conditions
of our problem read as follows: 

σ · −→n = −λσ0 · −→n on Γ6,

u1 = 0 on Γ1 and Γ3,

(σ · −→n )2 = 0 on Γ1 and Γ3,

ui,i=1,2 = 0, on Γ2,

σ · −→n = −→0 on Γ4,

(8)

2.2. Weak formulation and finite element approximation

Associated to the physical domain Ω, we defined the following functional space

X =
{
v ∈ (H1(Ω))2 v1 = 0 on Γ1,Γ2,Γ3

v2 = 0 on Γ2

}
(9)

We then introduced the weak form of our elastoplastic problem, arising from (6) and (8):
Find u ∈ X such that, ∫

Ω

(
ε(u)− εp(u)

)
: C : ε(v) dΩ

=
∫

Ω
ρFv dΩ−

∫
Ω
σ0 : ε(v) dΩ

−
∫

Γ6
σ0−→n · v dΓ, ∀v ∈ X

(10)

with εij(u) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

In what follows, we fix the Poisson coefficient at ν = 0.3, the volumetric weight of the soil at γ =
20kN/m3 and assume that the dilatancy angle is equal to the friction angle (ψ = ϕ).
Let us denote by µ = (E, λ, ϕ, c) our parameter set and by D ⊂ R4 our parameter domain. We will
decompose the left hand side of equation (10) into a linear term:

ae(u(µ), v;µ) =
∫

Ω
ε(u(µ)) : C(µ) : ε(v) dΩ

and a nonlinear term

ap(εp(u(µ)), v;µ) =
∫

Ω
εp(u(µ)) : C(µ) : ε(v) dΩ,

and denote by L(v;µ) the right-hand side term∫
Ω
ρFv dΩ−

∫
Ω
σ0 : ε(v) dΩ−

∫
Γ6
σ0−→n · v dΓ.

We consider a parametrized problem with varying values of E ∈ [100; 300]MPa, ϕ ∈ [22; 34] degrees,
λ ∈ [0.2; 0.4] and c ∈ [20; 40] kPa: for a given µ ∈ D, find u(µ) ∈ X such that, ∀v ∈ X,

ae(u(µ), v;µ)− ap(εp(u(µ)), v;µ) = L(v;µ). (11)

Let {Th}h be a family of regular triangulations of Ω and denote by Xh the following Pk finite element
space

Xh = {v = (v1, v2) ∈ X,∀K ∈ Th, vi|K ∈ Pk(K)}.
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The finite element discretization of (11) is as follows : for a given µ ∈ D, find uh ∈ Xh(µ) such that,

ae(uh(µ), vh;µ)− ap(εp(uh(µ)), vh;µ) = L(vh;µ), (12)

In this work, CESAR-LCPC [19], a FEM-based software, has been used to solve (12), which employs
the following iterative procedure (see algorithm 1) to approximate the displacement uh, the stress tensor
σh, the strain tensor εh and the plastic strain tensor εph. For more details on the computational procedure
see [17, 18].

Algorithm 1 : Resolution in cesar-lcpc

1: Initialization εp0 = 0, σ0 = σ0

2: for k = 1 to Nb iter max do
3: Compute displacement ukh such that
4:

ae(ukh, vh) = ap(εpk−1, vh) + L(vh) (13)
5: Compute σ∗k = C : ε(ukh)
6: for all Kh ∈ Th do
7: for all integration points xq do
8: if f(σ∗k(xq)) > 0 then

9: Compute λ̃k = f(σ∗k)
∂f(σ∗

k
)

∂σ : C : ∂g(σ
∗
k
)

∂σ

10: Compute εkp = λ̃k
∂f

∂σ
(σk−1
h )

11: Compute σkh = σ∗k − C : εpk
12: else
13: Set εkp = εk−1

p and σkh = σ∗k
14: end if
15: end for
16: end for
17: Compute residual error
18: err = ae(ukh, vh)− ap(εpk, vh)− L(vh)
19: if err < tol then
20: Break
21: end if
22: end for
23: Set uh = ukh, σh = σkh, εph = εkp

We want to apply reduced basis methods within this framework to compute the displacement uh
corresponding to different values of E, λ, ϕ, c.

3. Methodology

The resolution of the problem introduced in the previous section can prove costly, particularly in
the many-query context due to its parametric nature, making it an ideal candidate for reduced basis
methods. The reduced basis method relies on the fact that when the parameters vary, the set of solutions
is often of small Kolmogorov dimension, implying that Mh = {uh(µ) ∈ Xh | µ ∈ D}, the manifold of
all solutions, can be approximated by a finite set of well-chosen FE solutions of the parametrized PDE.
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One can identify a set of parameters, SN = (µ1, µ2, · · · , µN ) ∈ DN such that the particular solutions
(uh(µ1), · · · , uh(µN )) will generate this low dimension space. The idea of reduced basis methods is to
compute an inexpensive and accurate approximation, uNh (µ), of the solution to problem (11) for any
µ ∈ D by seeking a linear combination of the particular solutions (uh(µ1), · · · , uh(µN ))

uNh (µ) =
N∑
i=1

αhi (µ)uh(µi). (14)

For a stable implementation of the reduced basis method, it is necessary to build a better basis than the
one composed of the {uh(µi)}1≤i≤N , usually by a Gram-Schmidt method. In what follows, we denote by
{ξ1, · · · , ξN} these L2 orthonormalized basis functions, and by XN

h the approximation space which they
engender: the reduced basis space. During the implementation of the reduced basis method, the compu-
tational work is separated into two stages: offline and online. This decomposition is a key ingredient of
the method. The reduced basis functions, {ξ1, · · · , ξN}, as well as all expensive parameter-independent
terms are computed once during the offline stage and stored, whereas during the online stage – for each
new value of the parameters – inexpensive parameter-dependent quantities are evaluated, together with
the computation of the coefficients αhi (µ) .
The usual RB method is a Galerkin method on the space XN

h , which is of much smaller dimension than
the original approximation space Xh, the resolution of the problem (13) in XN

h is less expensive than in
the true finite element space Xh. However, to perform the online stage efficiently, one must isolate the
parametric contribution to the corresponding linear system, allowing all parameter-independent matri-
ces and vectors to be built only once and saved during the offline stage. In the case of Mohr-Coulomb’s
model used in CESAR-LCPC, a parameter-dependent term must be calculated at each integration point
of the mesh (see Algorithm 1) during the iterative procedure implemented to solve (12); it is hence im-
possible to free the online stage of the FE complexity. This entirely nullifies the advantages of the RB
method applied to our model. To overcome this flaw, we propose to use an alternative, less intrusive
method, introduced in [16, 15], where coarse FE approximations are computed during the online stage,
then projected into the reduced basis space and improved by a rectification technique.

We will begin by considering an analysis of the feasibility of RB methods for our problem (section
3.1), and will then discuss the non-intrusive method in more detail in section 3.2.

3.1. POD analysis

In order to determine if model reduction approaches, such as reduced basis methods or proper
orthogonal decomposition (POD), can be applied to this problem, we will try to evaluate the complexity
of the manifoldMh of all possible solutions induced by varying parameters. This analysis consists in a
singular value decomposition method applied to the correlation matrix of solutions of (12) computed for
different values of the parameters. Once the rapid decay rate of the singular values is confirmed, one can
assume that RB method is worth implementing. Using cesar-lcpc to compute P1 and P2-FE solutions
of (12) for varying values of µ ∈ Ξtest — a parameter set with sample size of Ntest = 525 selected over the
parameter domain D— a correlation matrix of L2-norm scalar products (uh(µi), uh(µj))L2(Ω), 1≤i,j≤Ntest

was computed. An L2-orthonormalized POD basis was constructed using the following eigenfunctions

wk = 1√
λk

Ntest∑
`=1

vk(`)uh(µ`) 1 ≤ k ≤ Ntest, (15)

where vk(`) represents the `th component of the kth eigenvector of the correlation matrix when ordered
by decreasing eigenvalues.
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Let PPODk be the L2-orthogonal projection operator from Xh into the space Xk,POD
h , spanned by the

k first POD basis functions wk. Each test solution {uh(µi), µi ∈ Ξtest} was projected onto Xk,POD
h to

analyze the ability of the POD basis to approach the manifold Mh, depending on the number of POD
modes. In figure 4 we can see the associated errors plotted along with the eigenvalues of the matrix,
where the average error is

1
Ntest

Ntest∑
i=1
‖uh(µi)− PPODk uh(µi)‖L2

and the maximal error is
‖uh(µkmax)− PPODk uh(µkmax)‖L2

with
µkmax = argmax

µi∈Ξtest

‖uh(µi)− PPODk uh(µi)‖L2 .
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Figure 4: Relative errors of the POD projection with P1-FE (left) and P2-FE (right) snapshots.

We observe that the eigenvalues decay rapidly and that the projection errors are quite small. Figure
5 shows the average POD projection errors with respect to so-called reference solutions, computed on a
very fine mesh for parameter values not included in the sample space solutions. These errors are plotted
with the fine FEM error for comparison. Figure 6 displays the corresponding maximal errors.
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Figure 5: Average error of the POD projection vs FEM error using P1-FE (left) and P2-FE (right) snapshots
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Figure 6: Maximal error of the POD projection vs FEM error using P1 (left) and P2 (right) snapshots

We can see that with only k = 5 POD modes, the POD projection errors reach the same level of
accuracy as the P1 FEM errors. As for the P2 FE errors, we only need about k = 10 POD nodes. This
suggests that a reduced basis approach is worth implementing.

3.2. A non-intrusive reduced basis method : two-grid FE/RB method with a rectification approach

A popular strategy for constructing a reduced basis in the case of parameter-dependent problems
is to use greedy algorithms, based on the idea of selecting the locally optimal element at each step.
This option can be seen as an alternative to the POD strategy of the previous section. If we have an
appropriate a priori error estimator to avoid full resolution of the problem to compute the test solutions,
the greedy algorithm can be very low-cost. Knowing the Kolmogorov dimension of the solution space
is relatively small, we can fix a maximum number Ng of basis functions to be computed by the Greedy
algorithm (given below, algorithm 2). Additionally, for stable implementation the chosen basis functions
are L2-orthonormalized with a Gram-Schmidt method.

Algorithm 2 : Greedy’s algorithm to build the reduced basis space

1: Initialization: given

Ξtest = (µ1, . . . , µntest) ∈ Dntest , ntest >> 1
2: Choose randomly µ1 ∈ D
3: Set S1 = {µ1} and X1

h = span(uh(µ1)).
4: for N = 2 to Ng do

5: µN = argmax
µ∈Ξtest

‖uh(µ)−PN−1uh(µ)‖L2
‖uh(µ)‖L2

(where PN−1 is the L2-orthogonal projection operator from Xh into XN−1
h )

6: SN = SN−1 ∪ µN
7: XN

h = XN−1
h + span(uh(µN ))

8: end for

Standard reduced basis methods are based on a Galerkin approach, whereas the two-grid FE/RB
method involves the computation of a less expensive FE solution and improvement of this solution using
the reduced basis. The standard reduced basis method aims at evaluating the coefficients αhi (µ) inter-
vening in the decomposition (14) of uNh (µ), which can appear as a substitute to the optimal coefficients

βhi (µ) = (uh(µ), ξi)L2 (16)
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corresponding to the decomposition of the L2-projection of uh(µ) into the space XN
h . Let {TH}H be

a family of “coarse” regular triangulations of Ω, such that H >> h; we denoted by XH the coarse FE
approximation space associated to this mesh, and by uH(µ) the coarse FE approximation of (12) on
XH . The alternative two-grid FE/RB method consists in proposing another surrogate to the coefficients
βhi (µ) defined by

βHi (µ) = (uH(µ), ξi)L2 , (17)

While coarse FE approximations can be computed quickly enough to be used in the online stage, they
may not be accurate enough for practical use. As the computation of uH(µ), for H >> h, is significantly
less expensive than that of uh(µ), with the mesh size H (chosen adequately) the coefficients βHi (µ) can
be used to compute a low-dimensional approximation :

N∑
i=1

βHi (µ) ξi. (18)

Let PHN be the L2-projection operator from XH into the space XN
h . Considering that we have used

embedded FE spaces, namely XH ⊂ Xh, we have PNuH(µ) = PHN uH(µ), and in consequence we will
simplify the notation by also denoting by PN the L2 projection operator PHN .
To improve even further the accuracy of this technique we propose to perform a rectification of the
PN uH(µ). This is so far an empirical approach, which leads to great improvements in practice. A first
explanation of the successful post-processing strategy first presented in [15] and then used in [20] in
the framework of reduced basis simulation of PDE’s can be found in [21]. This treatment will ensure
that for the parameters {µi}1≤i≤N used in the construction of the reduced basis, the method returns
exactly βhi (µi). In practice, we want to identify a so-called rectification matrix RN associated to the
transformation RN such that :

RN PN uH(µi) = PNuh(µi) ∀ 1 ≤ i ≤ N.

Since {βhj (µi)}1≤j≤N and {βHj (µi)}1≤j≤N are the optimal coefficients intervening in the decomposition
of PN uh(µi) and PN uH(µi), the standard matrix, denoted by AN , associated to the transformation
RN is equal to

AN =
(
BN
h

)
×
(
BN
H

)−1
with AN ∈ RN×N ,

where BN
h =

 βh1 (µ1) · · · βh1 (µN )
...

...
...

βhN (µ1) · · · βhN (µN )

 and BN
H =

 βH1 (µ1) · · · βH1 (µN )
...

...
...

βHN (µ1) · · · βHN (µN )

 .
Let us note that, contrarily to the uh(µ), which we don’t want to compute for a large number of values
of µ, the true solutions uh(µi) have already been computed to build the reduced basis, making the
computation of AN relatively cheap. For each new value of µ, the coefficients βHi (µ) will be replaced by
N∑
k=1

ANik β
H
k (µ), and an improved two-grid FE/RB approximation to equation (12), for RN = AN , can

be :

RN PN uH(µ) =
N∑

i,j=1
ANij β

H
j (µ) ξNi . (19)

In our problem, we noticed that AN was rather poorly conditioned, and propose here a pre-processing
to improve the rectification. Instead of computing the coefficients from the fine and coarse RB solutions,

11



we will consider the previously computed POD basis functions to construct another rectification matrix
KN . To do so, in addition to the POD basis function wk introduced in the previous section, we
introduced ”coarse” POD basis function

wHk =
Ntest∑
`=1

vk(`)uH(µ`) 1 ≤ k ≤ N.

We defined a pre-processing matrix

DN =
(
FN
h

)
×
(
FN
H

)−1
,

where FN
h =

 (w1, ξ1)L2 · · · (wN , ξ1)L2

...
...

...
(w1, ξN )L2 · · · (wN , ξN )L2

 and FN
H =

 (wH1 , ξ1)L2 · · · (wHN , ξ1)L2

...
...

...
(wH1 , ξN )L2 · · · (wHN , ξN )L2

 .
We then construct the new rectification matrix KN as follows, for a suitable Nmax.

KN =
(
DNmax 0

0 TN

)
,

with TN = 1
N

 1 0
. . .

0 1

 ∈ R(N−Nmax)×(N−Nmax). By ”cutting off” the chosen rectification before

significant increases in the condition number (at Nmax), we can prevent associated peaks in error, thus
achieving the results of KN . Figure 7 shows condition numbers for the three proposed matrices: AN ,
DN , and KN . Figure 8 shows rectification errors for the three proposed rectification matrices. We can
see that the matrix DN is better conditioned than the matrix AN and that the rectification process is
improved. However the most significant improvements are seen with matrix KN .
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Figure 7: Condition number of the different rectification matrices: AN , DN , and KN during the offline stage (P2 FEM
solutions)
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4. Numerical experiments

The above-described method was applied to the problem using CESAR-LCPC for the FE resolution
of equation (12) and FreeFem++ [22] was used for the implementation of the two-grid FE/RB method
and analysis of the results.
Three meshes were considered: a coarse mesh TH for the inexpensive computation of coarse solutions
uH(µ), a fine mesh Th for the computation of satisfactory solutions used in the construction of the
reduced basis, and a reference mesh Tref considered fine enough to provide true solutions used for error
calculation. See figure 9 below.

P2 ndof = 1247 P2 ndof = 4853 P2 ndof = 19143

Figure 9: Coarse (left), fine (middle) and reference (right) embedded meshes used to compute FEM solutions

A parameter set Ξtrial with sample size of Ntrial = 16 is selected over D \ Ξtest to test our method
with P2 FEM grids. While in some applications, the simple rectification with RN = AN will achieve the
desired results, in this case the significant variation between coarse and fine solutions used to build the
rectification matrix caused inadequate rectification results. We thus used matrix RN = KN introduced
in the previous section to improve the rectification. Figure 10 shows rectification errors during the
offline stage. In figure 11, we can see the two-grid reduced basis method errors using rectification matrix
RN = KN , for N = 16; the error reaches the same order of precision as the P2-FEM fine solutions. We
note that while rectification error in figure 10 does not descend further for N ≥ Nmax, in contrast to the
fine projection errors during the offline stage, figure 11 shows that the rectification approximation online
does attain the same precision as the fine FEM solution. Figure 12 shows the actual displacement for a
given parameter, µ = µmax = argmax

µ∈Ξtrial

‖uh(µ)−RNPNuH(µ)‖L2 = (125, 0.35, 23, 0.03). The application

of this problem being to evaluate impact on surface structures, we can consider displacement at the
surface to be a quantity of interest.
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Figure 10: Average (left) and maximal (right) rectified RB projection errors on test space during the offline stage with
RN = KN and Nmax = 16

10-4

10-3

10-2

10-1

 0  5  10  15  20  25  30  35  40  45  50

R
el

at
iv

e 
er

ro
r 

m
ea

su
re

d 
in

 L
2  n

or
m

N (dimension of the reduced basis space)

||uref (µ) -  PN uH (µ) ||L2

||uref (µ) - PN uh (µ) ||L2

||uref (µ) - R
-

N PN uH (µ) ||L2

||uref (µ) - uh (µ) ||L2

||uref (µ) - uH (µ) ||L2

10-4

10-3

10-2

10-1

 0  5  10  15  20  25  30  35  40  45  50

R
el

at
iv

e 
er

ro
r 

m
ea

su
re

d 
in

 L
2  n

or
m

N (dimension of the reduced basis space)

||uref (µmax) -  PN uH (µmax) ||L2

||uref (µmax) - PN uh (µmax) ||L2

||uref (µmax) - R
-

N PN uH (µmax) ||L2

||uref (µmax) -   uh (µmax) ||L2

||uref (µmax) -   uH (µmax) ||L2

Figure 11: Average (left) and maximal (right) rectified RB projection errors on trial space during the online stage with
RN = KN and Nmax = 16

Figure 12: Displacement value for µmax = (125, 0.35, 23, 0.03)

Figure 13 shows error maps with respect to the P2-FE approximation over the calculation domain
at various N -values of the two-grid FE/RB method with and without the rectification, where the pa-
rameter value µmax = (125, 0.35, 23, 0.03) corresponds to the solution with maximal error. We can see
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that the errors of the rectified solution with respect to the non rectified solution. Figure 14 shows
errors over the calculation domain for N = 15 with respect to the very fine reference solution, again for
µmax = (125, 0.35, 23, 0.03). We can see that the rectified solution errors closely resemble the fine FEM
errors.

Figure 13: Relative error maps of the two-grid FE/RB approximation without (left) and with (right) rectification as
function of N for µ = µmax = (125, 0.35, 23, 0.03)

Figure 14: Error maps for N=15 and µmax = (125, 0.35, 23, 0.03)

In figure 15 we can see a plot of the vertical displacement of the surface soil as a function of distance
from the tunnel. The most significant displacement occurs, of course, nearest the tunnel.
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Figure 15: Value of the vertical displacement on the surface for µ = µmax = (125, 0.35, 23, 0.03)

Figure 1 and table 16 show computation times for finite element simulations and the proposed online
reduced basis method. We can see that satisfactory results can be obtained in a total of 3.17s over the
full domain, a reduction by 85% of computation time compared to a fine finite element approximation.
In the case of many-query approximations – such as parametric studies, and possibly optimization
procedures which are currently too computationally expensive for practical use – this reduction would
prove to be significant.
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Figure 16: Comparaison of calculation times of P2-FE and two-grid FE/RB Methods

CPU Times

Coarse FEM 2.41s

Two-Grid RB/FE 3.17s

Fine FEM 20.22s

Table 1: Comparaison of calculation times of P2-FE and two-grid FE/RB Methods (for N = 15)

16



5. Conclusions

In this paper we proposed a non-intrusive reduced basis method for application to the parametrized
PDEs governing an elastoplasticity problem which could not be solved using a standard reduced basis
method. We demonstrated the small dimension of the solution space affiliated to the problem using
POD analysis. We then proposed two rectification methods in the non-intrusive framework, and found
that a modified rectification method was more adapted to the problem considered. The particular
problem being the displacement of the soil around a shallow tunnel, the displacement at the surface
approximated by the reduced model was considered, showing the successful approximation results held
true when considering only the most important area of the domain.
The results of this study demonstrate the feasibility of the presented two-grid non-intrusive reduced basis
method in geotechnics modeling, a domain for which reduced modeling techniques can provide great
benefit. Specifically, this technique is well-adapted to the particular PDE problem studied considering
its non-intrusive nature.
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