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We consider a two-machine permutation flow shop scheduling problem to minimise the total electricity cost of processing
jobs under time-of-use electricity tariffs. We formulate the problem as a mixed integer linear programming, then we design
two heuristic algorithms based on Johnson’s rule and dynamic programming method, respectively. In particular, we show
how to find an optimal schedule using dynamic programming when the processing sequence is fixed. In addition, we propose
an iterated local search algorithm to solve the problem with problem-tailored procedures and move operators, and test the
computational performance of these methods on randomly generated instances.
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1. Introduction

Due to the increasing energy cost, growing public concerns about climate change, and the gradual implementation of new

taxes and regulations related to carbon emissions, energy consumption management has been a primary for manufacturing

enterprises to succeed in a competitive market. To create energy efficient manufacturing systems, various approaches have

been proposed in both academia and industry, such as developing machines and equipments that are more energy efficient,

designing products with recycled materials, and so on. However, these energy saving strategies mainly focus on the machine

and product levels, and usually require considerable large capital investments as well as a comparative long time to implement,

which makes many companies, especially small and medium ones, not able to afford the cost of machine reconfiguration and

process re-engineering (Ding, Song, and Wu 2016b).

During the past decade, researchers have observed that the energy consumption of manufacturing enterprises can also

be effectively reduced using alternative operational strategies, such as scheduling jobs in a ‘smarter’ way to avoid extra

energy consumption caused by machine start-up and/or machine idling. Compared with the strategies at machine and product

levels, the operational strategies have the benefit of requiring fairly small capital investments and little time on replacing

and installing equipments, and have become one of the most attractive research areas in sustainable manufacturing. We give

a few examples. Mouzon, Yildirim, and Twomey (2007) considered a CNC machine in a shop making small aircraft parts

and investigated scheduling jobs on this machine to minimise total energy consumption, in which the energy consumption

on machine idling, start-up, and shutdown were analysed. Fang et al. (2011, 2013) considered scheduling jobs on flow shop

machines to minimise the peak power load, energy consumption and carbon footprint, in which jobs can be processed at

varying speeds. Dai et al. (2013) studied a bi-objective flexible flow shop scheduling problem to simultaneously minimise

the makespan and energy consumption, in which they proposed an energy-saving model to determine on/off status of

machines after a certain amount of machine idling time. Mansouri, Aktas, and Besikci (2016) considered a two-machine

flow shop scheduling problem with variable processing times to minimise the makespan and the total energy consumption.

Che et al. (2017a) investigated the problem of scheduling jobs on a single machine with power-down mechanism to minimise

total energy consumption and maximum lateness. For further pointers on the ever-growing literature on energy-efficient

scheduling in manufacturing, we refer the reader to the comprehensive surveys by Giret, Trentesaux, and Prabhu (2015) and

Gahm et al. (2016).

On the other hand, we know that most manufacturing enterprises use electricity as their main energy source

(Park et al. 2009), and the electricity cost is calculated based on the consumed energy over time, taking into account

that each time period has a corresponding electricity price per unit energy consumed. Fang et al. (2016) have shown that
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minimising total energy consumption and minimising total electricity cost can be quite different, especially when varying

pricing of electricity is implemented, such as time-of-use (TOU) electricity tariffs. Figure 1 shows the electricity market

price for industry during the non-summer time in Shanghai. We can see that the electricity price varies hourly, the higher

the customer demand during the peak period, the higher the electricity price charged on customers. Therefore, such price

structure may provide a great opportunity for electricity-intensive manufacturing enterprises to save costs by shifting their

electricity demand from peak hours to off-peak hours.

Recently, there has been an increasing amount of work on scheduling problems under time-varying electricity prices in

both computer science and manufacturing, in which most of them focused on the single or parallel machine environments.

For example, in the single machine environments, Kulkarni and Munagala (2013) studied the online problem of scheduling

jobs on a single machine to minimise the total weighted flow time and electricity cost, in which the electricity prices can only

take two values (low and high) and the power requirement of each job is unit-size. Shrouf et al. (2014) proposed a genetic

algorithm to minimise total energy cost of scheduling jobs on a single machine with on/off switching under variable energy

prices. Fang et al. (2016) investigated the complexity results of scheduling jobs on a single machine under TOU tariffs using

the technology of dynamic speed scaling, and proposed different approximation algorithms to solve the problems. Che, Zeng,

and Lyu (2016) proposed an efficient greedy insertion heuristic to minimise the total electricity cost of processing jobs on

a single machine under TOU tariffs. Burcea et al. (2016) considered an offline scheduling problem on a single machine to

minimise the total electricity cost, in which the power requirement and the duration of jobs are both unit-size, and each job

can only be assigned to a predetermined subset of time slots. Antoniadis et al. (2017) considered the problem of scheduling

jobs preemptively on a speed-scalable machine under variable electricity prices to minimise the total electricity cost, in which

jobs have release dates, deadlines and speed limits. Cheng et al. (2017) studied a single machine batch scheduling problem

with machine on/off switching under TOU tariffs to simultaneously minimise total electricity cost and makespan.

In the parallel machine environments, Ding et al. (2016a) proposed a mixed integer programming formulation for the

problem of scheduling jobs on unrelated parallel machine under TOU tariffs to minimise the total electricity cost, and designed

a column generation heuristic algorithm to solve the problem. Che, Zhang, and Wu (2017b) proposed a two-stage heuristic

algorithm to schedule jobs on unrelated parallel machine under TOU tariffs to minimise the total electricity cost with bounded

makespan. Zeng, Che, and Wu (2017) investigated a bi-objective scheduling on uniform parallel machines to minimise the

total electricity cost and the number of machine used simultaneously under TOU tariffs, and developed an iterative search

framework to obtain the Pareto fronts.

As observed by Panwalkar, Dudek, and Smith (1973), more than 77% of practical problems in manufacturing are rather

close to some kind of shop environments, in which jobs often need to be processed on multiple machines in some order. Thus,

much of the previous studies on single and parallel machines may not be directly applicable to the shop scheduling problems

faced by manufacturing enterprises. According to our literature review, research on scheduling jobs in shop environments

under TOU tariffs appears to be rather sparse. One exception is the work by Zhang et al. (2014), who considered scheduling

jobs on flow shop machines to minimise total electricity cost while ensuring prefixed production throughput. However, since

they used a time-indexed mixed integer program to search for the optimal solutions, only few instances that with fairly small

number of jobs can be solved within a reasonable computational time.

In this work, we study a two-machine flow shop scheduling problem to minimise the total electricity cost under TOU

tariffs, motivated by a practical shop floor that with the processes of smelting and casting of injection die for automobile

components, in which the job casting process is high power-consumption and can take more than 50 hours. In particular, we

assume that jobs must be processed non-preemptively in a permutation way. This is reasonable, since the injection die in the

shop floor is very heavy (sometimes more than 10 tons), and it is very difficult for the manufacturing enterprises to interrupt

the processing of a job, or to break the processing sequence of jobs across machines. For simplicity, we call this problem the

two-machine permutation flow shop scheduling problem with electricity costs, or the TMPFSEC problem for short.

To the best of our knowledge, we are one of the first to study the TMPFSEC problem as defined here. To solve this

problem, we first propose a mixed integer programming formulation (MILP) for the problem in Section 2. Then, in Section 3,

we design heuristic algorithms to obtain feasible solutions for the TMPFSEC problem. In particular, when the job sequence

is fixed, we provide a dynamic programming approach to search for the optimal schedules. Furthermore, in Section 4, we

propose an iterated local search method to tackle with the general case, and test the computational performance of our

proposed methods on randomly generated instances in Section 5. Finally, we present the conclusions and future research

directions in Section 6.

2. Mathematical description of the problem

As we mentioned in the introduction, we refer to the problem that we study in this paper as the two machine permutation flow

shop scheduling problem with electricity costs (or the TMPFSEC problem for short). An instance of the TMPFSEC problem
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Figure 1. Electricity market price for industry during the non-summer time in Shanghai, China (Source: Shanghai Electricity Price, 2015,
http://www.sh.sgcc.com.cn/).

consists of a set J = {1, 2, . . . , n} of jobs and a set M = {1, 2} of machines. Each job j ∈ J on machine i ∈ M has a

processing time pi j , and must be processed non-preemptively first on machine 1, then on machine 2. In addition, there is a

TOU tariff scheme, which is represented by a set T = {1, 2, . . . , T } of time periods. Each period has an associated electricity

price ct > 0 per unit energy, and a duration of unit size, that is, period t is [t − 1, t) for t = 1, 2, . . . , T . We denote bi and

di as the amount of energy consumed per unit time when machine i is busy (i.e. processing some job) and idle respectively.

Moreover, we assume that each machine will start ‘working’ (busy or idle) at time instant 0, and can be shut down only if

all the jobs on it have been completed. The objective of the TMPFSEC problem is to find a feasible schedule that minimises

the total electricity cost E.

In what follows, we propose a mixed integer programming formulation for the TMPFSEC problem. We define the

following decision variables:

• Si j is the start time of job j on machine i ;

• Ci j is the completion time of job j on machine i ;

• xi t is equal to 1 if machine i is ‘working’ (either busy or idle) during time period t , and 0 otherwise (i.e. shutdown);

• yi t is equal to 1 if machine i is idle during time period t , and 0 otherwise;

• zi j t is equal to 1 if job j is in processing on machine i during time period t , and 0 otherwise;

• δ jk is equal to 1 if job j precedes job k, and 0 otherwise;

• Fi is the shutdown time of machine i .

Then the TMPFSEC problem can be modelled as follows:

minimize
∑

i∈M

∑

j∈J

∑

t∈T

ctbi zi j t

︸ ︷︷ ︸

busy energy consumption

+
∑

i∈M

∑

t∈T

ctdi yi t

︸ ︷︷ ︸

idle energy consumption

(2.1a)

3

http://www.sh.sgcc.com.cn/


subject to
∑

j∈J

zi j t ≤ 1 for i = 1, 2; t ∈ T ; (2.1b)

∑

j∈J

zi j t + yi t = xi t for i = 1, 2; t ∈ T ; (2.1c)

∑

t∈T

zi j t = pi j for i = 1, 2; j ∈ J ; (2.1d)

Si j ≤ t + T (1 − zi j t ) for i = 1, 2; j ∈ J ; t ∈ T ; (2.1e)

Ci j ≥ t + 1 − T (1 − zi j t ) for i = 1, 2; j ∈ J ; t ∈ T ; (2.1f )

Ci j = Si j + pi j for i = 1, 2; j ∈ J ; (2.1g)

Ci j ≤ Sik + T (1 − δ jk) for i = 1, 2; j, k ∈ J , j �= k; (2.1h)

Cik ≤ Si j + T δ jk for i = 1, 2; j, k ∈ J , j �= k; (2.1i)

δ jk + δk j = 1 for j, k ∈ J , j �= k; (2.1j)

C1 j ≤ S2 j for j ∈ J ; (2.1k)

Fi ≥ Ci j for i = 1, 2; j ∈ J ; (2.1l)

Fi ≤ t + T xi t for i = 1, 2; t ∈ T ; (2.1m)

Fi ≥ t + 1 − T (1 − xi t ) for i = 1, 2; t ∈ T ; (2.1n)

Fi ≤ T for i = 1, 2; (2.1o)

xi t , yi t , zi j t , δ jk ∈ {0, 1} for i = 1, 2; j, k ∈ J ; t ∈ T ; (2.1p)

The objective (2.1a) calculates the total electricity costs including the energy consumption when machines are busy

and idle. Constraints (2.1b) ensure that each machine can at most process one job during each period. Constraints (2.1c)

ensure that machine i is either busy or idle if the machine is not shut down. Constraints (2.1d) ensure that each job will be

entirely processed. Constraints (2.1e)–(2.1g) ensure that jobs are processed non-preemptively. Constraints (2.1h)–(2.1j) are

the disjunctive constraints between any two jobs j and k, which ensure that job j precedes job k or vice versa. Constraints

(2.1k) ensure that jobs are processed in a flow shop way. Constraints (2.1l)–(2.1o) define the shutdown time on each machine.

For simplicity, we denote the above model (2.1) as the MILP model.

3. Heuristic algorithms for the TMPFSEC problem

As we know, Fang et al. (2016) have shown that a special case of the TMPFSEC problem, i.e. the problem of scheduling jobs

on a single machine under TOU tariffs, is strongly NP-hard, and in fact inapproximable within a constant factor. Thus, it is

expected that medium and large size instances of the TMPFSEC problem cannot be efficiently solved by the MILP model

proposed in Section 2 within a reasonable computational time. In this section, we develop a Johnson’s rule-based heuristic

algorithm, and a dynamic programming-based heuristic algorithm for the TMPFSEC problem.

3.1 A Johnson’s rule-based heuristic algorithm

Note that most of the TOU tariffs implemented in reality often restrict the electricity prices within a fixed range by either

the regulatory authorities or the electricity suppliers, so as to ensure the stability of the retail electricity market and reduce

the customer resistance on price uncertainty (Braithwait et al. 2007). For example, in Figure 1 (on page 3175), we can see

that the ratio of highest and lowest electricity market prices in Shanghai is less than 6. Moreover, as we mentioned before,

each machine will start working at time instant 0, and can be shut down only if all the jobs on it have been completed. Thus,

we expect that the smaller the makespan of the TMPFSEC problem, the lower the energy consumption caused by machine

idling, which may be useful to reduce the total electricity cost when the variance of the electricity prices is within a small

range.

It is well-known that Johnson’s rule (i.e. SPT(1)-LPT(2)) can solve the problem of minimising makespan on a two-machine

flow shop in O(n log n) time (Johnson 1954). Inspired by the above observations, we propose a Johnson’s rule-based heuristic

algorithm (Algorithm 3.1) for the TMPFSEC problem. For simplicity, we denote this algorithm as Algorithm JR, and the

derived total electricity cost as E(JR).
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Algorithm 3.1. A Johnson’s rule-based heuristic for the TMPFSEC problem

1: Schedule jobs with Johnson’s rule starting at time instant 0. Calculate the makespan C∗
max.

2: for t = 1 to T − C∗
max + 1 do

3: Start processing jobs at time instant t − 1 (i.e. the beginning of period t) with Johnson’s rule. Let E(t) be the

corresponding total electricity cost.

4: Calculate t∗ = arg min{E(t)|1 ≤ t ≤ T − C∗
max + 1}.

5: Schedule jobs starting at time instant t∗ − 1 with Johnson’s rule. Output E(t∗).

Note that when we start processing jobs at time instant t − 1 (i.e. the beginning of period t), an additional amount of

energy consumption 2(t − 1)
∑2

i=1 di will be incurred by machine idling before period t . We define θ = max{ct }/ min{ct },

then it is easy to obtain the following results.

Theorem 3.1 Algorithm 3.1 is a θ -approximation algorithm for the TMPFSEC problem.

Proof. For simplicity, we denote Eopt as the optimal electricity cost for the TMPFSEC problem, Emax and Emin as the optimal

electricity cost when we set the electricity prices of all periods to max{ct } and min{ct }, respectively. Obviously, we know

that Emin ≤ Eopt ≤ E(JR) ≤ Emax. As a result, we have

E(JR)

Eopt
≤

Emax

Emin
= θ,

and our claim follows.

3.2 A dynamic programming-based heuristic algorithm

In this section, we first propose a dynamic programming algorithm to search for the optimal schedule of the TMPFSEC

problem when the job sequence is fixed, and then use it to derive a heuristic for the general TMPFSEC problem.

Let σ be any given job sequence, and E(σ ) be the optimal electricity cost with job sequence σ . We define C i,σ (k) and

C i,σ (k) as the lower and upper bounds for the completion time of the kth job in σ on machine i , respectively. Then we have

the following:

C1,σ (k) =

k
∑

ℓ=1

p1,σ (ℓ) for k ∈ J ; (3.1)

C2,σ (1) =

2
∑

i=1

pi,σ (1) (3.2)

C2,σ (k) = max{C2,σ (k−1),C1,σ (k)} + p2,σ (k) for k ∈ J \{1}; (3.3)

C2,σ (k) = T −

n
∑

ℓ=k+1

p2,σ (ℓ) for k ∈ J ; (3.4)

C1,σ (k) = min{C1,σ (k+1) − p1,σ (k+1),C2,σ (k)} − p2,σ (k) for k ∈ J \{n}; (3.5)

C1,σ (n) = T − p2,σ (n) (3.6)

For the sake of simplicity, we define Bi t = bi
∑t

k=1 ck and Di t = di
∑t

k=1 ck , where Bi t (Di t ) represents the total

electricity cost incurred by machine i when it keeps busy (idle) until the end of period t . It is easy to see that when machine

i keeps busy from time instant t to time instant t ′, then the corresponding electricity cost incurred by machine i within time

interval [t, t ′] can be determined as Bi t ′ − Bi t , similar results hold for the electricity cost incurred by machine idling.

Given the above notations, we are now able to propose our dynamic programming algorithm for the TMPFSEC problem

with fixed job sequences. We define E(k, φ, ψ) as the minimum total electricity cost of scheduling the first k jobs in a way

such that the kth job is completed at time instants φ on machine 1 and ψ on machine 2, respectively, in other words, we have

C1,σ (k) = φ,C2,σ (k) = ψ . In particular, we set E(0, 0, 0) = 0. Note that in order to obtain a feasible schedule, the following

two conditions must be satisfied: (i) C1,σ (k) ≤ φ ≤ C1,σ (k); (ii) max{φ + p2,σ (k),C2,σ (k)} ≤ ψ ≤ C2,σ (k).
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We define �(k, φ, ψ) as the set of possible completion time for the (k − 1)th job on two machines when the kth job

satisfies C1,σ (k) = φ,C2,σ (k) = ψ , that is,

�(k, φ, ψ) = (φ′, ψ ′)

∣
∣
C1,σ (k−1) ≤ φ′ ≤ min{C1,σ (k−1), φ − p1,σ (k)},

max{φ′ + p2,σ (k−1),C2,σ (k−1)} ≤ ψ ′ ≤ min{C2,σ (k−1), ψ − p2,σ (k)} . (3.7)

In particular, when �(k, φ, ψ) = ∅, we set E(k, φ, ψ) = +∞.

Then, we can compute the entries of E(k, φ, ψ) using the following recurrence:

E(k, φ, ψ) = min
(φ′,ψ ′)

B1φ − B1,φ−p1,σ (k)
+ B2ψ − B2,ψ−p2,σ (k)

+ D1,φ−p1,σ (k)
− D1φ′

+ D2,ψ−p2,σ (k)
− D2ψ ′ + E(k − 1, φ′, ψ ′)

∣
∣
(φ′, ψ ′) ∈ �(k, φ, ψ) , (3.8)

and the optimal electricity cost E(σ ) can be obtained as follows.

E(σ ) = min
(φ,ψ)

{

E(n, φ, ψ) Conditions (i) and (ii) are satisfied .

It is easy to see that computing �(k, φ, ψ) takes O(T 2) time, thus the entire entries of E(k, φ, ψ) can be computed in

O(nT 4) time. For simplicity, we denote the above dynamic algorithm for a fixed job sequence as Algorithm DP.

In what follows, we propose a dynamic programming-based heuristic algorithm (Algorithm 3.2) to generate feasible

solutions for the TMPFSEC problem. For simplicity, we denote Algorithm 3.2 as Algorithm DPK , where K is the size of

the generated job sequences, and the associated total electricity cost as E(DPK ). In particular, when we enumerate all the

possible job sequences and use Algorithm DP to search for optimal schedules for each job sequence, we denote this algorithm

as Algorithm EDP.

Algorithm 3.2. A dynamic programming-based heuristic for the TMPFSEC problem

1: Given a fixed number K .

2: Determine the job sequence σ1 when Johnson’s rule is implemented.

3: Generate K − 1 job sequences other than σ1 randomly, and denote them as σ2, . . . , σK .

4: for k = 1 to K do

5: Use Algorithm DP to calculate E(σk).

6: Calculate σ ∗ = arg min{E(σk)}.

7: Choose σ ∗ as the job sequence and schedule jobs in the way generated by Algorithm DP.

4. An iterated local search algorithm

We know that the iterated local search (ILS) algorithm is a simple yet quite powerful tool for improving the quality of

successive local optima, and there has been a great deal of research on various problems using the ILS approaches, such

as aircraft landing problem (Sabar and Kendall 2015), vehicle routing problem (Silva, Subramanian, and Ochi 2015) and

team orienteering problem (Vansteenwegen et al. 2009). In this section, we propose an ILS method with problem-tailored

procedures to solve the TMPFSEC problem. Similarly, we call our proposed ILS algorithm as Algorithm ILS, and the

corresponding total electricity cost as E(ILS).

For completeness sake, we provide an algorithmic scheme for the basic ILS methods below (Algorithm 4.1). For more

details about ILS methods, we refer the reader to the chapter by Lourenço et al. (2010).

From Algorithm 4.1, we can see that an ILS algorithm mainly includes four procedures: First, GenerateInitial

Solution generates an initial solution s0 as the starting point, and a LocalSearch is applied to the initial solution

to obtain a local optimal solution s. Then, at each iteration, a Perturbation of the obtained local optimal solution

is carried out to generate new starting point s′′ by the LocalSearch. The generated solution s′′ is accepted if the

AcceptanceCriterion can be met. This process iterates until a given stopping criterion (e.g. reaching a prefixed

number of iterations) is satisfied.

Given the framework of the basic ILS method, we now specify the main procedures which are used to implement our

proposed ILS algorithm as follows.
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Algorithm 4.1. General algorithmic outline for the basic ILS method

1: Given a fixed number of iterations K .

2: s0 ← GenerateInitialSolution.

3: s ← LocalSearch(s0).

4: for k = 1 to K do

5: s′ ← Perturbation(s, history)

6: s′′ ← LocalSearch(s′)

7: s ← AcceptanceCriterion(s, s′′, history)

8: Return the best solution.

4.1 Initial solution generation

Before describing the procedure about generating initial solutions, we first introduce the representation of a schedule which

will be used in our algorithmic implementation. As we know, within a given time horizon [0, T ], the total processing

time of jobs on machine 1 is P1 =
∑n

j=1 p1 j , that is, there are T − P1 periods during which no job is processed on

machine 1. In our ILS algorithm, we impose that each job on machine 2 must be processed as early as possible, that is,

S2,σ ( j) = max{C1,σ ( j),C2,σ ( j−1)}. As a result, we can see that once the schedule of jobs on machine 1 is fixed, then the

schedule of jobs on machine 2 is also determined.

Therefore, we can only consider the schedule of jobs on machine 1, and represent it as a (n+ T − P1)-dimension vector,

in which the elements of ‘0’ denote the periods during which no job is processed on machine 1, and others denote the indices

of jobs.

Example 4.1 To illustrate the above representation method of a schedule, we consider the following example. Let J =

{1, 2, 3} and p11 = 2, p12 = 2, p13 = 3, p21 = 3, p22 = 2, p23 = 2. We also set T = 14 with electricity price vector

c = (2, 2, 3, 4, 2, 4, 3, 4, 2, 3, 4, 2, 3, 6), where ck denote the electricity price of period k. Then s = (2, 3, 1, 0, 0, 0, 0, 0, 0, 0)

represents a feasible schedule as shown in Figure 2. For the sake of simplicity, given any job sequence σ , if there is no idle

time between any two adjacent jobs on machine 1, we simply put σ in s instead of listing each of the jobs explicitly. For

example, let σ ′ = (2, 3, 1), then s in Figure 2 can be described as (σ ′, 0, 0, 0, 0, 0, 0, 0).

Let Ei be the electricity cost incurred on machine i . Then, if b1 = 4, b2 = 6, d1 = 2, d2 = 3, we have E1 = 80, E2 = 156,

and E = E1 + E2 = 236.

Figure 2. Gantt chart for Example 4.1.

We define a feasible representation as a representation in which the corresponding schedule is feasible, i.e. the completion

time of the last job on machine 2 does not exceed T . Now we introduce the procedure of generating an initial solution as

follows.

Algorithm 4.2. The GenerateInitialSolution procedure

1: Given a fixed number Z of the population size.

2: Determine the job sequence σ0 when Johnson’s rule is implemented.

3: Generate Z job sequences other than σ0 randomly, and denote them as σ1, . . . , σZ .

4: for z = 0 to Z do

5: Schedule jobs according to the representation (σz, 0, . . . , 0).

6: Calculate the corresponding electricity cost E(σz).

7: Calculate σ ∗ = arg min{E(σz)}.

8: Choose σ ∗ as the job sequence, output the initial solution s0 ← (σ ∗, 0, . . . , 0).
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4.2 Local search

We know that local search is usually used to iteratively replace the current solution by a neighbour that improves the objective

function. In our proposed ILS algorithm, we define the following move operator:

• Swap(j,*): Swap job j and any other element in a given feasible representation s. Note that ∗ can be either a job

or an element of ‘0’.

• OPTSwap(j): Fix job j , perform swapping between job j and any other element in s, and output the swap that

has a smallest value of electricity cost.

Example 4.2 Using the same setting as in Example 4.1, and fix job j = 3. Through some examination, we can find that

OPTSwap(3) can be obtained either by swapping job 3 with job 1, or by swapping job 3 with job 2, with a same electricity

cost E′ = 224. Figure 3 shows the corresponding schedule after performing the Swap(3,1) operator.

Figure 3. Gantt chart for the schedule after performing Swap(3,1) on s in Example 4.1.

During our local search procedure, we require that the generated representation of schedule after performing a move

operator must also be feasible. Now we describe the LocalSearch procedure as follows.

Algorithm 4.3. The LocalSearch procedure

1: Given a feasible representation of schedule s′.

2: for j ∈ J do

3: Perform OPTSwap(j), denote the new generated representation as s ′′( j).

4: Calculate the corresponding electricity cost E(s ′′( j)).

5: Calculate j∗ = arg min{E(s′′( j))}. s′′ ← s′′( j∗).

4.3 Perturbation

As we know, the perturbation procedure plays an important role in finding a good balance between intensification and

diversification (Lourenço et al. 2010). In general, there are two important factors, i.e. the type of perturbation operator and

the perturbation strength, can significantly affect the performance of the ILS method. The perturbation operator controls how

to modify the current local optimal solution, and the perturbation strength controls how many times the selected perturbation

operator should be applied.

In this paper, in addition to theSwap(j,*)operator, we also use the following move operator during ourPerturbation

procedure.

• Move(j,*): Fix job j , randomly select a different position ∗ in s, and move job j to that position. For example,

given s = (1, 2, 3, 0, 0, 0, 0, 0), if we perform Move(j,*) on job 2 to move it to the fifth position, we obtain a

new representation s ′ = (1, 3, 0, 0, 2, 0, 0, 0).

At each iteration k, we define n p = ⌈(K − k)T/nK ⌉ as the number of perturbation to be implemented during the

Perturbation procedure, where k and K are defined as in Algorithm 4.1. Note that the value of n p is time varying, which

starts with a relatively high value when k is small, and gradually decreases as k increases. This way, we are able to adapt

the ILS algorithm to derive more effective perturbations, since there is no single best size for the perturbation procedure

(Lourenço et al. 2010).

The Perturbation procedure is described as follows.
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Algorithm 4.4. The Perturbation procedure

1: Suppose the current iteration in Algorithm 4.1 is k, and the schedule to be perturbed is s.

2: Calculate n p.

3: for i = 1 to n p do

4: Randomly choose Swap(j,*) or Move(j,*), and perform it on any j ∈ J in s.

5: Return the new schedule as s if it is feasible.

6: Output s′ ← s.

4.4 Acceptance criterion

As shown in Algorithm 4.1, at each iteration, after implementing the Perturbation and LocalSearch procedures, we

generate a ‘neighbouring’ solution s′′ from a current solution s. The acceptance criterion is used to determine if s′′ should be

accepted, so as to balance the trade-off between the intensification and diversification of the search process.

In this work, we define an acceptance criterion as follows.

Algorithm 4.5. The AcceptanceCriterion procedure

1: Suppose the current iteration in Algorithm 4.1 is k, and the best found electricity cost is E∗.

2: Given two representations s and s ′′ with their associated electricity cost E(s) and E(s′′).

3: Calculate the value of pa = eE∗−E(s).

4: Generate a random number pb within (0,1).

5: if E(s′′) ≤ E(s) then

6: Output s′′ as the new schedule to be considered at iteration k + 1.

7: else if E(s′′) > E(s) and pb < pa then

8: Output s′′ as the new schedule to be considered at iteration k + 1.

9: else

10: Keep s as the new schedule to be considered at iteration k + 1.

5. Computational experiments

In this section, we compare the performance of the different methods we proposed in Sections 3.1, 3.2 and 4. To be specific,

we compare the performance of the MILP model, Algorithm JR, Algorithm DP11, Algorithm EDP and Algorithm ILS. To

perform these experiments, we used ILOG CPLEX 12.5 to solve the MILP model on a computer with a 2.3 GHz Intel Core

i7 processor and 16 GB of RAM running the OSX 10.9 operating system.

5.1 Data generation

Through some examination, we find that the computational performance of the above methods are mainly influenced by the

following parameters: (i) the number of periods T . (ii) the electricity prices ct ; (iii) the energy consumption rates of machines,

i.e. the values of bi and di . To study the impact of these parameters, we consider the following parameter settings.

• Number of periods

We first generate the processing time of jobs pi j randomly from the uniform distribution on {1, 2, . . . , 10}. Let

T = ⌈λ ×
∑2

i=1

∑

j∈J pi j⌉. To reflect the flexibility of processing these jobs, we consider two λ levels of 0.8 and

1.2 to determine the number of periods. The higher the value of λ, the more flexibility the jobs can be processed

since we have more choices of feasible schedules.

• Fluctuation of electricity prices

The fluctuating electricity prices can significantly affect the performance of our proposed methods. Two θ =

max{ct }/ min{ct } levels of 3 and 6 are tested, which denote the stable and unstable electricity markets. Under

different levels of θ , we generate the electricity prices at each period randomly from the uniform distribution on

{1, . . . , θ}.

• Deviation of energy consumption rates

9



Table 1. Comparison of running time and number of optimal solutions solved between the MILP model and Algorithm EDP.

λ θ R n
the MILP model Algorithm EDP

Max time Ave time #OPT Max time Ave time #OPT

0.8 3 R1 6 37.6 6.8 30 0.2 0.1 30

0.8 3 R1 8 59.6 13.9 30 33.9 13.7 30

1.2 3 R1 6 13.4 5.7 30 4.8 1.7 30

1.2 3 R1 8 759 41.9 30 830 386 30

0.8 6 R1 6 78.6 9.7 30 0.1 0.1 30

0.8 6 R1 8 1800 221 27 23.7 9.8 30

1.2 6 R1 6 36.4 9.2 30 3.8 1.6 30

1.2 6 R1 8 977 83.4 30 582 328 30

0.8 3 R2 6 162 21.7 30 0.1 0.1 30

0.8 3 R2 8 1800 443 27 26.0 12.7 30

1.2 3 R2 6 102 16.0 30 3.8 1.5 30

1.2 3 R2 8 1800 280 27 1012 399 30

0.8 6 R2 6 573 47.1 30 0.1 0.1 30

0.8 6 R2 8 1800 754 22 32.8 14.9 30

1.2 6 R2 6 1800 148 29 4.7 2.3 30

1.2 6 R2 8 1800 813 21 1340 489 30

0.8 3 R3 6 45.9 14.0 30 0.1 0.1 30

0.8 3 R3 8 1301 141 30 19.3 12.2 30

1.2 3 R3 6 191 21.8 30 3.8 1.5 30

1.2 3 R3 8 1800 372 26 835 391 30

0.8 6 R3 6 171 22.6 30 0.1 0.1 30

0.8 6 R3 8 1800 604 24 29.3 11.9 30

1.2 6 R3 6 873 77.1 30 4.5 1.7 30

1.2 6 R3 8 1800 784 22 1001 411 30

We consider the following three scenarios of energy consumption rates on machines: (i) R1: b1 = 2, d1 = 1, b2 =

2, d2 = 1, that is, two machines are identical; (ii) R2: b1 = 2, d1 = 1, b2 = 6, d2 = 2, that is, machine 2 is more

energy-intensive; (iii) R3: b1 = 6, d1 = 2, b2 = 2, d2 = 1, that is, machine 1 is more energy-intensive.

We consider the following combinations of the above parameters:

{

(λ, θ, R, n) : λ ∈ {0.8, 1.2}, θ ∈ {3, 6}, R ∈ {R1, R2, R3}, n ∈ {6, 8, 20, 30, 40, 50} .

We randomly generate 30 instances for each combination (λ, θ, R, n), for a total of 2 × 2 × 3 × 6 × 30 = 2160 instances. In

particular, for small size instances, i.e. n = 6, 8, we compare the computational performance of all the proposed methods. For

those medium and large size instances, we only compare the computational performance of Algorithm DP11 and Algorithm

ILS, due to the computational intractability of the TMPFSEC problem. In addition, we set a 30 mintime limit on each instance.

5.2 ILS parameter tuning

As we know, there are two important parameters need to be prefixed in the ILS algorithm: the number of iterations (i.e. the

value of K in Algorithm 4.1) and the population size (i.e. the value of Z in Algorithm 4.2). Different values of K and Z may

lead to significant differences on the computation performance of our proposed algorithms. To determine the appropriate

values of K and Z , we carried out a series of experiments on the following combinations:

{

(K , Z) : K ∈ {100, 200, 300, 400, 500}, Z ∈ {100, 200, 500} ,

which results in 5 × 3 = 15 combinations of parameter settings in total.

To calibrate the parameter values, we randomly generate 30 instances for each combination of {λ, θ, R, n} as mentioned in

Section 5.1, where only n ∈ {8, 20, 30} are considered. For each instance, we test the performance of our ILS algorithm with

10



Table 2. Comparison of optimality gap between Algorithm JR and Algorithm ILS.

λ θ R n
Algorithm JR Algorithm ILS

Max gap (%) Ave gap (%) Max gap (%) Ave gap (%)

0.8 3 R1 6 4.50 1.74 2.93 1.05

0.8 3 R1 8 4.53 1.58 3.31 1.19

1.2 3 R1 6 4.51 1.15 4.30 1.28

1.2 3 R1 8 4.55 1.92 3.02 1.21

0.8 6 R1 6 4.08 1.92 3.60 1.59

0.8 6 R1 8 4.08 1.63 3.82 1.62

1.2 6 R1 6 5.65 2.01 4.20 1.57

1.2 6 R1 8 3.69 1.61 5.18 1.72

Ave(R1) 4.449 1.695 3.795 1.404

0.8 3 R2 6 10.40 2.54 4.62 1.16

0.8 3 R2 8 7.69 2.60 3.50 1.61

1.2 3 R2 6 7.59 1.99 1.83 0.78

1.2 3 R2 8 6.52 2.91 4.97 1.75

0.8 6 R2 6 8.27 4.94 5.07 1.97

0.8 6 R2 8 8.91 3.88 3.49 2.38

1.2 6 R2 6 13.95 4.05 4.49 1.58

1.2 6 R2 8 8.50 4.01 5.95 2.44

Ave(R2) 8.979 3.365 4.24 1.709

0.8 3 R3 6 5.99 1.60 5.63 1.56

0.8 3 R3 8 3.58 1.34 4.32 1.80

1.2 3 R3 6 4.97 1.74 4.30 1.99

1.2 3 R3 8 4.52 1.65 3.94 1.77

0.8 6 R3 6 5.71 2.31 4.42 2.00

0.8 6 R3 8 5.54 2.73 5.97 2.87

1.2 6 R3 6 5.51 2.19 5.04 1.94

1.2 6 R3 8 5.64 2.61 6.02 2.99

Ave(R3) 5.183 2.021 4.955 2.115

each combination (K , Z) of the parameter settings. The mean objective value of the 30 instances for each combination (K , Z)

is recorded, and we choose the best combination as our parameter setting in Algorithm ILS. According to our computational

results, we set K = 400 and Z = 500.

5.3 Computational results

We first focus on small size instances, i.e. n = 6, 8, to compare the performance of our proposed algorithms. As we know,

solving the MILP model with ILOG CPLEX and using Algorithm EDP can both obtain the exact optimal schedule of the

TMPFSEC problem. Thus, we first compare the performance of these two methods. Table 1 shows the CPU running time

and number of optimal solutions obtained by these two methods within the time limit.

From Table 1, we obtain the following observations:

• The higher the value of λ, the more the CPU running time on solving the TMPFSEC problem, especially for

Algorithm EDP. This is to be expected, since the value of T increases as λ increases, which as a result enlarges the

search space to be explored in dynamic programming.

• The higher the value of θ , the higher the CPU running time, and the smaller the number of optimal solutions can be

obtained by the MILP model. This reveals that when the electricity price market is unstable, it will be more difficulty

for the manufacturing enterprises to make optimal decisions.
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Table 3. Comparison of computational performance of Algorithms ILS, DP11 and ILSDP.

λ θ R n
I LS I LSDP DP11 ILS v.s. DP11 ILSDP v.s. DP11

Ave time (s) Ave time (s) Ave time (s) Ave Dev(ILS) (%) Ave Dev(ILSDP) (%)

0.8 3 R1 20 0.1 0.2 0.2 2.68 –0.06

0.8 3 R1 30 0.1 0.3 0.9 3.09 –0.07

0.8 3 R1 40 0.4 1.1 4.1 3.63 –0.12

0.8 3 R1 50 0.8 2.2 15.7 3.74 –0.47

1.2 3 R1 20 0.1 0.8 4.9 2.01 –0.32

1.2 3 R1 30 0.3 2.6 24.4 2.97 –0.02

1.2 3 R1 40 1.8 14.8 128.6 0.78 –0.03

1.2 3 R1 50 8.7 54.4 435.4 0.65 –0.02

0.8 6 R1 20 0.1 0.1 0.2 2.42 –0.07

0.8 6 R1 30 0.2 0.3 1.4 2.88 –0.06

0.8 6 R1 40 0.8 1.9 11.1 1.43 –0.1

0.8 6 R1 50 6.7 12.5 37.5 1.43 –0.1

1.2 6 R1 20 0.1 0.7 3.7 2.74 –0.21

1.2 6 R1 30 0.4 2.57 17.6 3.06 –0.28

1.2 6 R1 40 0.8 10.6 104.4 2.19 –0.55

1.2 6 R1 50 1.6 33.2 366.9 2.13 –0.71

0.8 3 R2 20 0.3 0.4 1.4 2.45 –0.14

0.8 3 R2 30 0.3 1.6 6.8 2.01 –0.17

0.8 3 R2 40 0.7 4.6 32.5 2.57 –0.51

0.8 3 R2 50 1.4 11.8 95.2 4.12 0.15

1.2 3 R2 20 0.3 3.6 34.2 2.61 –0.27

1.2 3 R2 30 0.7 21.9 240.3 1.92 –0.95

1.2 3 R2 40 1.9 69.3 721.1 2.58 –0.59

1.2 3 R2 50 15.3 135.8 1231.2 1.34 –0.31

0.8 6 R2 20 0.1 0.2 0.8 1.36 –1.01

0.8 6 R2 30 0.8 1.3 6.3 2.24 –0.07

0.8 6 R2 40 0.9 3.8 123.6 2.45 –0.66

0.8 6 R2 50 1.6 7.3 154.3 3.50 –0.51

1.2 6 R2 20 0.1 0.5 3.5 2.02 –1.33

1.2 6 R2 30 0.3 3.5 27.8 2.14 –0.84

1.2 6 R2 40 1.1 11.4 113.3 3.01 –0.64

1.2 6 R2 50 1.5 30.4 320.8 3.52 –0.51

0.8 3 R3 20 0.1 0.1 0.2 0.05 –0.71

0.8 3 R3 30 0.2 0.4 1.2 0.88 –0.09

0.8 3 R3 40 0.4 0.7 2.8 2.19 0.003

0.8 3 R3 50 0.7 1.7 9.5 0.97 –0.16

1.2 3 R3 20 0.1 0.6 5.6 1.83 –0.11

1.2 3 R3 30 0.4 4.1 34.8 1.93 –0.05

1.2 3 R3 40 1.8 61.3 467.2 1.09 –0.42

1.2 3 R3 50 9.3 101.5 821.0 1.21 –0.31

0.8 6 R3 20 0.1 0.1 0.2 0.97 –0.75

0.8 6 R3 30 0.2 0.4 2.1 0.84 –0.43

0.8 6 R3 40 0.7 1.8 5.6 1.71 –0.28

0.8 6 R3 50 1.4 6.5 16.8 0.43 –0.13

1.2 6 R3 20 0.1 0.3 4.9 0.39 –0.37

1.2 6 R3 30 0.3 4.9 33.8 0.35 –0.41

1.2 6 R3 40 0.8 11.3 125.9 0.41 –0.22

1.2 6 R3 50 1.5 24.5 260.7 1.12 –0.08
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• It seems that using Algorithm EDP to search optimal solutions outperforms solving the MILP model, especially

when λ is small. This observation comes from two folds: first, within the time limit, all of these small size instances

can be solved by Algorithm EDP, while some of them cannot be solved by the MILP model; and second, the average

CPU running time for solving the same instance by Algorithm EDP is comparatively smaller than the one by the

MILP model.

We then compare the performance ofAlgorithm JR andAlgorithm ILS for solving small size instances. Note thatAlgorithm

EDP can solve all the small size instances optimally, so we do not need to consider Algorithm DP11 here. Table 2 shows the

average optimality gap for solving these instances by Algorithm JR and Algorithm ILS, where their optimality gap is defined

as (E(JR) − Eopt)/Eopt × 100% and (E(ILS) − Eopt)/Eopt × 100% respectively. The CPU running time for both Algorithm

JR and Algorithm ILS were minimal, i.e. each instance can be solved within 1 s, thus we do not report them on the table.

From Table 2, we have the following observations:

• In terms of the maximum optimality gap to the optimal solutions, Algorithm ILS outperforms Algorithm JR for

almost all of the small size instances.

• Unlike Algorithm EDP, the effect of λ is not obvious on the performance of these two methods. This is resonable,

since these two algorithms do not need to explore the whole solution space, which is usually done in Algorithm

EDP.

• The results show that the optimality gap for the instances with R1 is smaller than those with R2 and R3 (see the

values of Ave(Ri ) for i = 1, 2, 3 in Table 1). This means that Algorithm JR and Algorithm ILS work relatively better

on identical machines.

From our computational results, we notice that even when n = 8, some of the instances cannot be solved optimally

within the time limit, and the CPU running time increases rapidly when n increases. Thus, the MILP model and Algorithm

EDP will not be evaluated for the medium and large size instances. On the other hand, from Table 2, we know that Algorithm

ILS usually outperforms Algorithm JR, therefore, we only compare the performance of Algorithm ILS and Algorithm DP11

for medium and large size instances. Moreover, we also consider a new algorithm which implement Algorithm DP on the

final solution of Algorithm ILS. For simplicity, we call this new algorithm as Algorithm ILSDP, and the corresponding total

electricity cost as E(ILSDP).

To compare the performance ofAlgorithms ILS, DP11 and ILSDP, we define Dev(ILS) = E(ILS)−E(DP11)
)

/E(DP11)×

100% and Dev(ILSDP) = E(ILSDP) − E(DP11)
)

/E(DP11) × 100% as the performance deviation of Algorithms ILS and

ILSDP from Algorithm DP11, respectively. Table 3 shows the corresponding computational results.

From Table 3, we have the following observations:

• The CPU running time of Algorithm DP11 and ILSDP are highly affected by the values of λ, and increases much

faster than the one of Algorithms ILS as n increases. One reason may be due to the global search efforts of the

solution space in Algorithms DP11 and ILSDP.

• From the results of Dev(ILS), we see that Algorithm DP11 outperforms Algorithm ILS slightly. However, Algorithm

ILS has a great advantage on the CPU running time, which means that Algorithm ILS can be used to find feasible

solutions with acceptable solution quality for large size instances when the given time limit is very small.

• From the results of Dev(ILSDP), we see that Algorithm ILSDP outperforms Algorithm DP11 slightly. Moreover,

the CPU running time of Algorithm ILSDP is much smaller than the one of Algorithm DP11. Hence, it may be

promising to implement Algorithm ILSDP when the requirement of solution quality is high and the given time limit

is within a comparative small range.

6. Conclusions and future work

In this paper, we studied the problem of minimising total electricity cost on a two-machine permutation flow shop under

TOU tariffs (the TMPFSEC problem), in which each machine may have its own energy consumption rate. We proposed a

mixed integer linear program as the first key step to understand the structure of the problem. Then, two heuristic algorithms

based on Johnson’s rule and the dynamic programming method are proposed and analysed. As a by-product, we showed how

to obtain optimal schedules by dynamic programming when the job sequence is fixed. Furthermore, we proposed an iterated

local search method that incorporates problem-tailored procedures to solve the TMPFSEC problem. Finally, we empirically

tested the performance of these algorithms on randomly generated instances.

Several related topics might be considered as future work. First, the design and analysis of tight lower bounds remains

an open area. Second, more general scheduling environments can be further considered, such as multiple machine flow shop,

preemptive and non-permutation jobs, and so on. Third, an improved iterated local search method might be further analysed.

13



Last but not least, multi-objective optimisation problems might be considered and developed to balance the total electricity

cost and production efficiency criteria (e.g. total completion time, maximum lateness and other objectives related to job due

dates).
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