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Abstract. The tree-cut width of a graph is a graph parameter defined
by Wollan [J. Comb. Theory, Ser. B, 110:47–66, 2015] with the help
of tree-cut decompositions. In certain cases, tree-cut width appears to
be more adequate than treewidth as an invariant that, when bounded,
can accelerate the resolution of intractable problems. While designing
algorithms for problems with bounded tree-cut width, it is important to
have a parametrically tractable way to compute the exact value of this
parameter or, at least, some constant approximation of it. In this paper
we give a parameterized 2-approximation algorithm for the computation
of tree-cut width; for an input n-vertex graph G and an integer w, our
algorithm either confirms that the tree-cut width of G is more than
w or returns a tree-cut decomposition of G certifying that its tree-cut

width is at most 2w, in time 2O(w2 logw) · n2. Prior to this work, no
constructive parameterized algorithms, even approximated ones, existed
for computing the tree-cut width of a graph. As a consequence of the
Graph Minors series by Robertson and Seymour, only the existence of a
decision algorithm was known.
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1 Introduction

One of the most popular ways to decompose a graph into smaller pieces is given
by the notion of a tree decomposition. Intuitively, a graph G has a tree decom-
position of small width if it can be decomposed into small (possibly overlapping)
pieces that are altogether arranged in a tree-like structure. The width of such a
decomposition is defined as the minimum size of these pieces. The graph invari-
ant of treewidth corresponds to the minimum width of all possible tree decom-
positions and, that way, serves as a measure of the topological resemblance of
a graph to the structure of a tree. The importance of tree decompositions and
treewidth in graph algorithms resides in the fact that a wide family of NP-hard
graph problems admits FPT-algorithms, i.e., algorithms that run in f(w) ·nO(1)

steps, when parameterized by the treewidth w of their input graph. According to
the celebrated theorem of Courcelle, for every problem that can be expressed in
Monadic Second Order Logic (MSOL) [5] it is possible to design an f(w) ·n-step
algorithm on graphs of treewidth at most w. Moreover, towards improving the
parametric dependence, i.e., the function f , of this algorithm for specific prob-
lems, it is possible to design tailor-made dynamic programming algorithms on
the corresponding tree decompositions. Treewidth has also been important from
the combinatorial point of view. This is mostly due to the celebrated “planar
graph exclusion theorem” [18,19]. This theorem asserts that:

(*) Every graph that does not contain some fixed wall1 as a topological
minor2 has bounded treewidth.

The above result had a considerable algorithmic impact as every problem
for which a negative (or positive) answer can be certified by the existence of
some sufficiently big wall in its input, is reduced to its resolution on graphs of
bounded treewidth [6, 9, 10]. This induced a lot of research on the derivation of
fast parameterized algorithms that can construct (optimally or approximately)
these decompositions. For instance, according to [1], treewidth can be computed

in 2O(OPT 3) · n steps while, more recently, a 5-approximation for treewidth was
given in [2] that runs in 2O(OPT ) · n steps.

Unfortunately, the aforementioned success stories about treewidth have some
natural limitations. In fact, it is not always possible to use treewidth for improv-
ing the tractability of NP-hard problems. In particular, there are interesting
cases of problems where no such an FPT-algorithm is expected to exist [7,8,13].
Therefore, it is a natural question whether there are alternative, but still general,
graph invariants that can provide tractable parameterizations for such problems.

A promising candidate in this direction is the graph invariant of tree-cut
width that was recently introduced by Wollan in [27]. Tree-cut width can be

1 We avoid the formal definition of a wall here. Instead, we provide the following image

that, we believe, provides the necessary intuition.
2 A graph H is a topological minor of a graph G if a subdivision of H is a subgraph

of G.
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seen as an “edge” analogue of treewidth. It is defined using a different type
of decompositions, namely, tree-cut decompositions that are roughly tree-like
partitions of a graph into mutually disjoint pieces such that both the size of
some “essential” extension of these pieces and the number of edges crossing two
neighboring pieces are bounded (see Section 2 for the formal definition). Our
first result is that it is NP-hard to decide, given a graph G and an integer w,
whether the input graph G has tree-cut width at most w. This follows from a
reduction from the Min Bisection problem that is presented in Subsection 2.2.
This encourages us to consider a parameterized algorithm for this problem.

bounded ∆ and tcw ≡ bounded carving-width

bounded tcw

bounded tw

Fig. 1. The relations between classes with bounded treewidth (tw) and tree-cut
width (tcw).

Another tree-like parameter that can be seen as an edge-counterpart of tree-
width is carving-width, defined in [22]. It is known that a graph has bounded
carving-width if and only if both its treewidth and its maximum degree are
bounded. We stress that this is not the case for tree-cut width, which can also
capture graphs with unbounded maximum degree and, thus, is more general
than carving-width. There are two reasons why tree-cut width might be a good
alternative for treewidth. We expose them below.

(1) Tree-cut width as a parameter. From now on we denote by tcw(G)
(resp. tw(G)) the tree-cut width (resp. treewidth) of a graph G. As it is shown
in [27] tcw(G) = O(tw(G) · ∆(G)). Moreover, in [11], it was proven that
tw(G) = O((tcw(G))2) and in Subsection 2.3, we prove that the latter up-
per bound is asymptotically tight. The graph class inclusions generated by the
aforementioned relations are depicted in Fig. 1. As tree-cut width is a “larger”
parameter than treewidth, one may expect that some problems that are in-
tractable when parameterized by treewidth (known to be W[1]-hard or open)
become tractable when parameterized by tree-cut width. Indeed, some recent
progress on the development of a dynamic programming framework for tree-
cut width (see [11]) confirms that assumption. According to [11], such prob-
lems include Capacitated Dominating Set problem, Capacitated Vertex
Cover [7], and Balanced Vertex-Ordering problem. We expect that more
problems will fall into this category.

(2) Combinatorics of tree-cut width. In [27] Wollan proved the following
counterpart of (*):
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(**) Every graph that does not contain some fixed wall as an immersion3

has bounded tree-cut width.

Notice that (*) yields (**) if we replace “topological minor” by “immersion” and
“treewidth” by “tree-cut width”. This implies that tree-cut width has combina-
torial properties analogous to those of treewidth. It follows that every problem
where a negative (or positive) answer can be certified by the existence of a wall as
an immersion, can be reduced to the design of a suitable dynamic programming
algorithm for this problem on graphs of bounded tree-cut width.

Computing tree-cut width. It follows that designing dynamic programming
algorithms on tree-cut decompositions might be a promising task when this
is not possible (or promising) on tree decompositions. Clearly, this makes it
imperative to have an efficient algorithm that, given a graph G and an integer
w, constructs tree-cut decompositions of width at most w or reports that this is
not possible. Interestingly, an f(w) · n3-time algorithm for the decision version
of the problem is known to exist but this is not done in a constructive way.
Indeed, for every fixed w, the class of graphs with tree-cut width at most w
is closed under immersions [27]. By the fact that graphs are well-quasi-ordered
under immersions [20], for every w, there exists a finite set Rw of graphs such
that G has tree-cut width at most w if and only if it does not contain any of
the graphs in Rw as an immersion. From [14], checking whether an h-vertex
graph H is contained as an immersion in some n-vertex graph G can be done in
f(w) · n3 steps. It follows that there exists an FPT-algorithm checking whether
the tree-cut width of a graph is at most w, where w is the parameter.

In fact, an f(w) · n-time algorithm for tree-cut width can be obtained in
the following way: it is known that if the tree-cut width is at most w, then the
treewidth is at most 2w2 + 3w (see Proposition 1). Then, using the algorithm
of [2], one can build a tree decomposition of width at most O(w2) in time g(w)·n,
or correctly decide that the tree-cut width is larger than w (see Proposition 2).
Since deciding whether G contains a fixed graph H as an immersion can be
expressed as an Monadic Second Order Logic formula, in time (f(w) · n) one
can verify whether G contains any graph in the set Rw as an immersion by the
result of [5].

The construction of the aforementioned algorithms requires the explicit knowl-
edge of the set Rw for every w, which is not provided by the results in [20]. Even
if we knew Rw, it is not clear how to construct a tree-cut decomposition of width
at most w, if one exists.

In this paper we make a first step towards a constructive FPT-algorithm for
tree-cut width by giving an FPT 2-approximation for it. Given a graph G and an
integer w, our algorithm either reports that G has tree-cut width more than w
or outputs a tree-cut decomposition of width at most 2w in 2O(w2 logw)n2 steps.
The algorithm is presented in Section 3.

3 A graph H is an immersion of a graph G if H can be obtained from some subgraph
of G after replacing edge-disjoint paths with edges.
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2 Problem definition and preliminary results

Unless specified otherwise, every graph in this paper is undirected and loopless
and may have multiple edges. By V (G) and E(G) we denote the vertex set
and the edge set, respectively, of a graph G. Given a vertex x ∈ V (G), the
neighborhood of x is N(x) = {y ∈ V (G) | xy ∈ E(G)}. Given two disjoint sets
X and Y of V (G), we denote δG(X,Y ) = {xy ∈ E(G) | x ∈ X, y ∈ Y }. For a
subset X of V (G), we define ∂G(X) = {x ∈ X | N(x) \X 6= ∅}. We may drop
the lower index G when it is clear from the context.

The set of all (positive, respectively) natural numbers is denoted as N (N+

respectively).

2.1 Tree-cut width and treewidth

Tree-cut width. A tree-cut decomposition of G is a pair (T,X ) where T is a
tree and X = {Xt ⊆ V (G) | t ∈ V (T )} such that

• Xt ∩Xt′ = ∅ for all distinct t and t′ in V (T ),
•
⋃
t∈V (T )Xt = V (G).

From now on we refer to the vertices of T as nodes. The sets in X are called the
bags of the tree-cut decomposition. Observe that the conditions above allow to
assign an empty bag for some node of T .

Let L(T ) be the set of leaf nodes of T . For every tree-edge e = {u, v} of E(T ),
we let T eu and T ev be the subtrees of T \ e which contain u and v, respectively.
We drop the upper index e when the relevant edge e is clear from the context.

We define the adhesion of a tree-edge e = {u, v} of T as follows:

δT (e) = δG(
⋃

t∈V (Tu)

Xt,
⋃

t∈V (Tv)

Xt).

Dissolving a vertex x of degree two with exactly two neighbors y and z is
the operation of removing x and adding the edge {y, z}. In case the edge {y, z}
already exists, its multiplicity is increased by one. For a graph G and a set
X ⊆ V (G), the 3-center of (G,X) is the graph obtained from G by repeatedly
applying the following operations: for a vertex v ∈ V (G) \ X, we dissolve v if
it has two neighbors and degree 2, and remove v if it has degree at most 2 and
one neighbor. It is shown in [27] that repeatedly applying these operations lead
to a unique graph regardless of the order of the operations, thus the 3-center of
(G,X) is well-defined.

Given a tree-cut decomposition (T,X ) of G and node t ∈ V (T ), let T1, . . . , T`
be the connected components of T \ t. The torso of G at t, denoted by Ht, is
the graph obtained from G by identifying each non-empty vertex set Zi :=⋃
b∈V (Ti)

Xb into a single vertex zi (in this process, parallel edges are kept). We

denote by H̄t the 3-center of (Ht, Xt). Then the width of (T,X ) equals

max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T )}).
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The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X )
over all tree-cut decompositions (T,X ) of G.

The following definitions will be used in the approximation algorithm. Let
(T,X ) be a tree-cut decomposition of G. It is non-trivial if it contains at least
two non-empty bags, and trivial otherwise. We will assume that every leaf of a
tree-cut decomposition has a non-empty bag. The internal-width of a non-trivial
tree-cut decomposition (T,X ) is

in-tcw(T,X ) = max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T ) \ L(T )}).

If (T,X ) is trivial, then we set in-tcw(T,X ) = 0.

Our decision problem corresponding to tree-cut width is the following:

Tree-cut Width
Input: a graph G and a non-negative integer k.
Question: tcw(G) 6 k?

Treewidth. A tree decomposition of a graph G is a pair (T,Y), where T is a
tree and Y = {Yx : x ∈ V (T )}) is a collection of subsets of V (G), such that

•
⋃
x∈V (T ) Yx = V (G);

• for every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that u, v ∈ Yx; and
• for every vertex u ∈ V (G) the set of nodes {x ∈ V (T ) : u ∈ Yx} induces a

subtree of T .

The vertices of T are called nodes of (T,Y) and the sets Yx are called bags.
The width of a tree decomposition is the size of the largest bag minus one.
The treewidth of a graph, denoted by tw(G), is the smallest width of a tree
decomposition of G.

2.2 Computing tree-cut width is NP-complete

We prove that Tree-cut Width is NP-hard by a polynomial-time reduction
from Min Bisection, which is known to be NP-hard [12]. The input of Min
Bisection is a graphG and a non-negative integer k, and the question is whether
there exists a bipartition (V1, V2) of V (G) such that |V1| = |V2| and |δG(V1, V2)| 6
k.

Theorem 1. Tree-cut Width is NP-complete.

Proof: It is easy to see that Tree-cut Width is in NP. We present a reduc-
tion from Min Bisection to Tree-cut Width (see Fig. 2). Let (G, k) be an
instance of Min Bisection, where G is a simple graph on n vertices and n is
even. We may assume that k 6 n2 since otherwise, the instance is trivially Yes.

Also we assume that n > 2. We create an instance (G′, w) with w = n3

2 + k as
follows. The vertex set V (G′) consists of a set V (G) of size n, a set Q of size
w− 2, and the set Cx,y of size w+ 1 for every pair x, y ∈ Q. Edges are added so
that:
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x y u v
Q

Cxy Cuv

V

n2 n2 n2 n2

Fig. 2. The graph G′ in the transformation of the instances of Min Bisection
to equivalent instances of Tree-cut Width.

• G′[V ] = G.
• For every pair x, y ∈ Q, all vertices of Cx,y are adjacent with both x and y.
• Each x ∈ V is adjacent with n2 (arbitrarily chosen) vertices of Q.

We now proceed with the proof of the correctness of the above reduction. Suppose
that (G, k) is a Yes-instance to Min Bisection with a bipartition (V1, V2). We
construct a tree-cut decomposition (T,X ) in which V (T ) contains three nodes
t1, t2, q and some additional nodes as follows: the tree T forms a star with q as
the center and all other nodes as leaves. We have Xti = Vi for i = 1, 2, Xq = Q
and each vertex of

⋃
x,y∈Q Cx,y forms a singleton bag. It is not difficult to verify

that (T,X ) is a tree-cut decomposition of G′ whose width is w. In particular,
notice that |V (H̄q)| = |Q|+2 = w and |δT ({ti, q})| = n

2 ·n
2+k = w for i ∈ {1, 2}.

Conversely, suppose that G′ admits a tree-cut decomposition (T,X ) of width
at most w. Any two vertices x, y ∈ Q must be in the same bag since they are
connected by w + 1 disjoint paths via Cx,y. Hence, there exists a tree node, say
q, in T such that Q ⊆ Xq.

Consider the set C = {T1, . . . , T`} of the connected components of T \{q} and
let ei be the tree-edge between Ti and q. Since w > |V (H̄q)| > |Q| = w−2, there
are at most two tree-edges among e1, . . . , e` such that |δT (ei)| > 3: indeed, for
any tree-edge ei with |δT (ei)| > 3, the vertex corresponding to

⋃
b∈V (Ti)

Xb in

the torso of G at q is not eliminated when creating the 3-center H̄q of (Hq, Xq).
This implies that H̄q has at least w+1 vertices, a contradiction. This means that
there are at most two subtrees among T1, . . . , T` such that V ∩

⋃
t∈V (Ti)

Xt 6= ∅.
From the fact that |Xq| 6 |V (H̄q)| 6 w, Q ⊆ Xq and |Q| = w − 2, we have
|Xq \ Q| 6 2 and especially, at most two vertices of V can be contained in Xq.
Therefore, there exists at least one subtree Ti such that V ∩

⋃
t∈V (Ti)

Xt 6= ∅. If

there is i such that |V ∩
⋃
t∈V (Ti)

Xt| > n
2 + 1, then |δT (ei)| > (n2 + 1) · n2 > w,

a contradiction. Hence, we conclude that there are exactly two subtrees, say T1
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and T2, in C such that V ∩
⋃
t∈V (Ti)

Xt 6= ∅ for i ∈ {1, 2} and for 3 6 i 6 `,

we have V ∩
⋃
t∈V (Ti)

Xt = ∅. If any vertex of V is contained in Xq, then

H̄q contains |Xq| + 2 > w + 1 vertices, a contradiction. Therefore, the sets
V ∩

⋃
t∈V (T1)

Xt and V ∩
⋃
t∈V (T2)

Xt make a bipartition of V . Observe that

the two sets are of equal size due to |V ∩
⋃
t∈V (Ti)

Xt| 6 n
2 . Let us call this

bipartition {V1, V2}. Observe that δT (ei) ⊇ δG(Vi, Q) ∪ δG(V1, V2), thus δT (ei)
contains at least n

2 · n
2 + |δG(V1, V2)| edges for i = 1, 2. As |δT (e1)| 6 w, it

follows |δG(V1, V2)| 6 k. Therefore, (G, k) is Yes-instance to Min Bisection
which completes the proof. �

2.3 Tree-cut width vs treewidth

In this section we investigate the relation between treewidth and tree-cut width.
The following was proved in [11].

Proposition 1. For a graph of tree-cut width at most w, its treewidth is at most
2w2 + 3w.

In the rest of this subsection we prove that the bound of Proposition 1 is
asymptotically optimal. For this we need some definitions.

Let G be a graph. Two subgraphs X and Y of G touch each other if either
V (X) ∩ V (Y ) 6= ∅ or there is an edge e = {x, y} ∈ E(G) with x ∈ V (X) and
y ∈ V (Y ). A bramble B is a collection of connected subgraphs of G pairwise
touching each other. The order of a bramble B is the minimum size of a hitting
set S of B, that is a set S ⊆ V (G) such that for every B ∈ B, S ∩ V (B) 6= ∅.
In [21], it is shown that the treewidth of a graph equals the maximum order over
all brambles of G minus one. Therefore, a bramble of order k is a certificate that
the treewidth is at least k − 1.

We next define the family of graphs H = {Hw : w ∈ N>1} as follows. The
vertex set of Hw is a disjoint union of w cliques, Q1, . . . , Qw, each containing w
vertices. For each 1 6 i 6 w, the vertices of Qi are labeled as (i, j), 1 6 j 6 w.
Besides the edges lying inside the cliques Qi’s, we add an edge between (i, j) ∈ Qi
and (j, i) ∈ Qj for every 1 6 i < j 6 w. Notice that the vertex (i, i) does not
have a neighbor outside Qi. The graph H4 is depicted in Fig. 3.

Lemma 1. The tree-cut width of Hw is at most w + 1.

Proof: Consider the tree-cut decomposition (T,X ), in which T is a star with t
as the center and q1, . . . , qw as leaves. For the bags, we set Xt = ∅, and Xqi = Qi
for 1 6 i 6 w. It is straightforward to verify that the tree-cut width of (T,X ) is
w + 1. �

Lemma 2. For any positive integer w, the treewidth of Hw ∈ H is at least
1
16w

2 − 1.
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(1, 1)(1, 2)(1, 3)(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)(3, 2)(3, 3)(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Q1

Q2

Q3

Q4

Fig. 3. The graph H4.

Proof: For notational convenience, we assume that w is even. The argument
can be easily extended to the case when w is odd. For i ∈ [w] and a set Z ⊆ [w],
let B(i, Z) denote the set {(i, j), (j, i) : j ∈ Z}. We define Bw as

Bw = {G[B(i, Z)] : i ∈ [w], Z ⊆ [w] \ {i} and |Z| = w/2}.

It is easy to verify that each subgraph of Bw is connected. For any i ∈ [w]
and Z ⊆ [w]\{i} such that |Z| = 1

2w, the number of cliques Qi, 1 6 i 6 w, with
which B(i, Z) has non-empty intersection is at least 1

2w+1. This means any two
elements of Bw touch each other, and thus Bw is indeed a bramble. Henceforth,
we show that the order of Bw is at least 1

16w
2.

Suppose that there is a hitting set S of Bw with |S| < 1
16w

2. We define

FS = {i ∈ [w] | |{j ∈ [w] : (j, i) ∈ V (G) \ S}| > 3

4
w}.

Claim 1. |FS | > 3
4w.

Proof of the Claim: Suppose that the contrary holds. We use a counting
argument to derive a contradiction. The set V (G) \ S is partitioned into two
sets: {(j, i) : j ∈ [w], i ∈ FS} and {(j, i) : j ∈ [w], i ∈ [w] \ FS}. We have

|V (G) \ S| 6 w · |FS |+
3

4
w · (w − |FS |) 6

3

4
w2 +

3

16
w2 =

15

16
w2,

contradicting to the assumption that |S| < 1
16w

2. 3

Claim 2. There exists i∗ ∈ FS such that |{j ∈ [w] : (i∗, j) ∈ S}| < 1
4w.

Proof of the Claim: Suppose the contrary, i.e. we have |{j ∈ [w] : (i, j) ∈
V (G) \ S}| 6 3

4w for every i ∈ FS . Notice that the set V (G) \ S is partitioned
into {(i, j) : i ∈ FS , j ∈ [w]} and {(i, j) : i ∈ [w] \ FS , j ∈ [w]}. Then,

|V (G) \ S| 6 |FS | ·
3

4
w + (w − |FS |) · w 6 w2 − 1

4
w · |FS | <

13

16
w2,
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where the last inequality follows from Claim 1. This contradicts the assumption
that |S| < 1

16w
2. 3

Consider some i∗ ∈ FS satisfying the condition of Claim 2. We observe that
the set

Z = {j ∈ [w] : (j, i∗) ∈ V (G) \ S} \ ({i∗} ∪ {j ∈ [w] : (i∗, j) ∈ S})

contains at least 1
2w vertices by the definition of FS and Claim 2. Pick any subset

Z∗ of Z of size exactly 1
2w. To reach a contradiction, it suffices to show that

B(i∗, Z∗)∩S = ∅. Indeed, from the fact that Z∗ ⊆ {j ∈ [w] : (j, i∗) ∈ V (G)\S},
it follows that

∀j ∈ Z∗ (j, i∗) ∈ V (G) \ S. (1)

By the definition of Z it follows that Z∗ ∩ {j ∈ [w] : (i∗, j) ∈ S} = ∅, which,
implies that

∀j ∈ Z∗ (i∗, j) ∈ V (G) \ S. (2)

By (1) and (2), we conclude that B(i∗, Z∗)∩S = ∅. This completes the proof. �

From Lemmas 1 and 2, we conclude to the following.

Theorem 2. For every w ∈ N>1 there exists a graph Hw such that tw(Hw) =
Ω((tcw(Hw))2).

3 The 2-approximation algorithm

We present a 2-approximation of Tree-cut Width running in time 2O(w2 logw) ·
n2. As stated in Lemma 3 below, we first observe that computing the tree-cut
width of G reduces to computing the tree-cut width of 3-edge-connected graphs.
This property can be easily derived from [27, Lemmas 10–11].

Lemma 3. Given a connected graph G, let {V1, V2} be a partition of V (G) such
that δG(V1, V2) is a minimal cut of size at most two and let w > 2 be a positive
integer. For i = 1, 2, let Gi be the graph obtained from G by identifying the vertex
set V3−i into a single vertex v3−i. Then G has tree-cut width at most w if and
only if both G1 and G2 have tree-cut width at most w.

Proof: Recall that tcw(H) 6 tcw(G) if G admits an immersion of H by [27,
Lemma 11]. Hence, in order to prove the forward implication, it suffices to
prove that Gi is an immersion of G, for i ∈ {1, 2}. If |δ(V1, V2)| = 1, we can
delete all vertices of V3−i except for the single vertex in N(Vi) and obtain Gi. If
|δ(V1, V2)| = 2, let P be an arbitrary walk between vertices (possibly the same)
of N(V3−i) in G[V3−i ∪N(V3−i)] such that all internal vertices of P are in V3−i.
Such P exists since G[V3−i] is connected due to the minimality assumption on
δ(V1, V2). By lifting a sequence of edge pairs that share a common end vertices in
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V3−i along P until the obtained walk has exactly one vertex of V3−i, and deleting
all the vertices and edge of G[V3−i] that are not contained in the obtained walk,
we can obtain Gi. Here, lifting a pair of edges e1 = u1v and e2 = u2v with a
common end vertex v and u1 6= u2 is an operation of removing e1 and e2 and
adding a new edge u1u2.

Conversely, let (T i,X i) be a tree-cut decomposition of Gi of width at most
w for i = 1, 2, and consider the tree-cut decomposition (T,X ) such that X =
X1∪X2 and T is obtained by the disjoint union of T 1 and T 2 after adding an edge
between t1 ∈ V (T 1) and t2 ∈ V (T 2), where ti is the tree node of Ti containing
v3−i, i.e. the vertex obtained by contracting V3−i. We remove v1 and v2 from
the bags of T .

We claim that (T,X ) is a tree-cut decomposition of width at most w. Note
first that the adhesion of (T,X ) is at most w since |δT ({t1, t2})| 6 2 and the
adhesion of (T i,X i) is at most w for i = 1, 2. From |δT ({t1, t2})| 6 2, it follows
that for i = 1, 2, the 3-center of (Hti , Xti) of the tree decomposition (T,X ) is the
same as the 3-center of (Hti , Xti) of the tree decomposition (T i,X i). Therefore
the width of (T,X ) is at most w. �

The proof of the next lemma is easy and is omitted.

Lemma 4. Let G be a graph and let v be a vertex of G with degree 1 (resp. 2).
Let also G′ be the graph obtained from G after removing (resp. dissolving) v.
Then tcw(G) = tcw(G′).

From now on, based on Lemmas 3 and 4, we assume that the input graph is
3-edge-connected. In this special case, the following observation is not difficult
to verify. It allows us to work with a slightly simplified definition of the 3-centers
in a tree-cut decomposition.

Observation 1. Let G be a 3-edge-connected graph and let (T,X ) be a tree-
cut decomposition of G. Consider an arbitrary node t of V (T ) and let T be the
set of all connected components T ′ of T \ t such that

⋃
s∈V (T ′)Xs 6= ∅. Then

|V (H̄t)| = |Xt|+ |T |, that is |V (H̄t)| = |V (Ht)|.

Proof: Since G is 3-edge-connected, for every node t of V (T ) and every con-
nected component T ′ of T \ t such that

⋃
s∈V (T ′)Xs 6= ∅, the degree in the torso

Ht of the vertex z′ resulting from the identification of
⋃
s∈V (T ′)Xs is at least 3.

Therefore, when constructing the 3-center H̄t of (Ht, Xt), vertex z′ does not get
dissolved nor removed, yielding that |V (H̄t)| = |V (Ht)|. �

We observe that the proof of Lemma 3 provides a way to construct a de-
sired tree-cut decomposition for G from decompositions of smaller graphs. Given
an input graph G for Tree-cut Width, we find a minimal cut (V1, V2) with
|δ(V1, V2)| 6 2 and create a graph Gi as in Lemma 3, with the vertex v3−i marked
as distinguished. We recursively find such a minimal cut in the smaller graphs
created until either one becomes 3-edge-connected or has at most w vertices.



12 E. J. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos

Therefore, a key feature of an algorithm for Tree-cut Width lies in how to
handle 3-edge-connected graphs. Our algorithm iteratively refines a tree-cut de-
composition (T,X ) of the input graph G and either guarantees that the following
invariant is satisfied or returns that tcw(G) > ω.

Invariant: (T,X ) is a tree-cut decomposition ofG where in-tcw(T,X ) 6 2·w.

Clearly the trivial tree-cut decomposition satisfies the Invariant. A leaf t of
T such that |Xt| > 2 · ω is called a large leaf. At each step, the algorithm picks
a large leaf and refines the current tree-cut decomposition by breaking this leaf
bag into smaller pieces. The process repeats until we finally obtain a tree-cut
decomposition of width at most 2w, or encounter a certificate that tcw(G) > w.

3.1 Refining a large leaf of a tree-cut decomposition

A large leaf will be further decomposed into a star. To that aim, we will solve
the following problem:

Constrained Star-Cut Decomposition
Input: An undirected graph G, an integer w ∈ N, and a weight function γ :
V (G)→ N.
Parameter: w.
Question: Determine whether G admits a non-trivial tree-cut decomposition
(T,X ) such that

1. T is a star with central node tc and with ` leaves for some ` ∈ N+,
2. in-tcw(T,X ) 6 w, and
3. |Xtc |+ ` 6 w and for every leaf node t, γ(Xt) :=

∑
v∈Xt

γ(v) 6 w,

and output such a tree-cut decomposition if one exists.

We notice that as the output (T,X ) of the algorithm is a non-trivial tree-
cut decomposition if the instance is Yes, T contains at least two nodes with
non-empty bags. Without loss of generality, we intend to find a tree-cut decom-
position in which every leaf node is non-empty.

Given a subset S ⊆ V (G), we define the instance of the Constrained Star-
Cut Decomposition problem I(S,G) = (G[S], w, γS) where for every x ∈ S,
γS(x) = |δG({x}, V (G) \ S)|. Notice that γS(x) > 0 only when x ∈ ∂G(S).

Lemma 5. Let G be a 3-edge-connected graph, w > 2 be an integer, and let
S ⊆ V (G) be a set of vertices such that |S| > w+ 1 and |δG(S, V (G) \S)| 6 2w.
If tcw(G) 6 w, then I(S,G) = (G[S], w, γS) is a Yes-instance of Constrained
Star-Cut Decomposition.

Proof: Let (T,X ) be a non-trivial tree-cut decomposition of G of width at
most w. We extend the weight function γS on S into γ′S on V (G) by setting
γ′S(v) = γS(v) for every v ∈ S and γ′S(v) = 0 otherwise. Also, given a subtree T ′

of T , we let γ′S(T ′) =
∑
t∈V (T ′)

∑
v∈Xt

γ′S(v). The idea is to identify a node tc
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of T that will serve as the central node of the star decomposition. The leaves of
the star decomposition will result from the contraction of the subtrees of T \ tc
containing bags that intersect the set S. To find the node tc, we orient the edges
of T using the following two rules. Given an edge e = {x, y} ∈ E(T ):

Rule 1: orient e from x to y if γ′S(Ty) > w.

Rule 2: orient e from x to y if S ∩
⋃
t∈V (Tx)

Xt = ∅.

Let T be the resulting orientation of T . Observe that Rule 1 and 2 may leave
some edges of T non-oriented.

Claim 3. For every edge e = {x, y} of T , e is oriented either in a single direction
or not oriented in T .

Proof of the Claim: Observe that if Rule 1 orients e from x to y, neither
Rule 1 nor Rule 2 may orient e in the opposite direction. The former is an im-
mediate consequence of the fact γ′S(Tx) + γ′S(Ty) = |δG(S, V (G) \ S)| 6 2w.
Rule 2 does not orient e from y to x either: if Rule 2 does so, we have
S ∩

⋃
t∈V (Ty)

Xt = ∅ and since the value γ′S(v) is non-zero only when v ∈ S,

we conclude that γ′S(Ty) = 0, a contradiction to the assumption that Rule 1
oriented e from x to y. Moreover, the edge e cannot be oriented in both directions
by Rule 2 since S is non-empty and thus at least one of the sets

⋃
t∈V (Tx)

Xt

and
⋃
t∈V (Ty)

Xt intersects with S. 3

By Claim 3, T contains at least one node, say tc, which is not incident to
an out-going edge in T . Let T1, . . . , T` be the connected components of T \ tc
containing a node t such that Xt ∩ S 6= ∅. Observe that as |S| > w + 1 and
tcw(T,X ) 6 w, S cannot be included in a single bag of (T,X ) and thereby
` > 1. Consider the following tree-cut decomposition (T ∗,X ∗) of G[S]:

• T ∗ is a star with central node tc and leaf nodes t1, . . . t`,
• the bag of node tc is X∗c = Xtc ∩ S,
• for every leaf node ti ∈ V (T ∗), we set X∗i =

⋃
t∈V (Ti)

Xt ∩ S.

Observe that (T ∗,X ∗) is a tree-cut decomposition of G[S] and since |S| > w+
1, it is non-trivial. By construction, as it is obtained from (T,X ) by contracting
subtrees and removing vertices from bags, we have that in-tcw(T ∗,X ∗) 6 w. It
remains to prove that |Xtc | + ` 6 w and that γS(Xt) 6 w for every leaf node
t. The former inequality directly follows from Observation 1 and the fact that
(T,X ) is an optimal tree-cut decomposition of G. The latter inequality follows
from the fact that t does not have an out-going edge in T , in particular, Rule
1 does not orient any edge incident with t outwardly from t. �

Given a 3-edge-connected graph, applying Lemma 5 on a large leaf of a tree-
cut decomposition that satisfies the Invariant, we obtain:

Corollary 1. Let G be a 3-edge-connected graph G such that tcw(G) 6 w, and
let t be a large leaf of a tree-cut decomposition (T,X ) satisfying the Invariant.
Then I(Xt, G) = (G[Xt], w, γXt

) is a Yes-instance of Constrained Star-Cut
Decomposition.
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The next lemma shows that if a large leaf bag Xt of a tree-cut decomposi-
tion (T,X ) satisfying the Invariant defines a Yes-instance of the Constrained
Tree-Cut Decomposition problem, then (T,X ) can be further refined.

Lemma 6. Let G be a 3-edge-connected graph G and (T,X ) be a tree-cut decom-
position of G satisfying the Invariant. If (T ∗,X ∗) is a solution of Constrained
Star-Cut Decomposition on the instance I(Xt, G) = (G[Xt], w, γXt) where
t is a large leaf of (T,X ), then the pair (T̃ , X̃ ) where

• V (T̃ ) = (V (T ) \ {t}) ∪ V (T ∗),
• E(T̃ ) = (E(T )\{{t, t′}})∪E(T ∗)∪{{tc, t′}}, where t′ is the unique neighbor
of t in T and tc is the central node of T ∗,
• X̃ = (X \ {Xt}) ∪ X ∗

is a tree-cut decomposition of G satisfying the Invariant. Moreover the number
of non-empty bags is strictly larger in (T̃ , X̃ ) than in (T,X ).

Proof: By construction, (T̃ , X̃ ) is a tree-cut decomposition of G. The fact that
(T ∗,X ∗) is non-trivial implies that the number of non-empty bags is strictly
larger in (T̃ , X̃ ) than in (T,X ).

It remains to prove that in-tcw(T̃ , X̃ ) 6 2 · w. Since (T ∗,X ∗) is a solution
to I(Xt, G), we have |X∗tc |+ ` 6 w. As G is edge 3-connected, by Observation 1,

the torso size at tc in (T̃ , X̃ ) is at most w+ 1, which is at most 2w. Let us verify
that the adhesion of (T̃ , X̃ ) is at most 2w. For this, it suffices to bound the value

|δT̃ (e)| for the newly created edges e = {ti, tc}, for all i ∈ [`]. We have

|δT̃ ({ti, tc})| = |δG(X̃ti , V (G) \ X̃ti)|
= |δG(X̃ti , Xt \ X̃ti)|+ |δG(X̃ti , V (G) \Xt)| 6 2w.

The inequality follows from the fact that (T ∗,X ∗) is a solution to I(Xt, G). More
precisely, |δG(X̃ti , Xt \ X̃ti)| 6 w is implied by the fact that in-tcw(T ∗;X ) 6
w. And |δG(X̃ti , V (G) \ Xt)| 6 w is a consequence of γXt

(X∗ti) 6 w and the
construction of γXt in I(Xt, G). �

3.2 An FPT algorithm for Constrained Star-Cut Decomposition

Proposition 1 provides a quadratic bound on the treewidth of a graph in terms of
its tree-cut width. This allows us to develop a dynamic programming algorithm
for solving Constrained Star-Cut Decomposition on graphs of bounded
treewidth. To obtain a tree decomposition, we use the 5-approximation FPT-
algorithm of the following proposition.

Proposition 2 (see [2]). There exists an algorithm which, given a graph G
and an integer w, either correctly decides that tw(G) > w or outputs a tree
decomposition of width at most 5w + 4 in time 2O(w) · n.
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If tcw(G) 6 w, then by Proposition 1 tw(G) 6 2w2+3w. Using the algorithm
of Proposition 2, we can compute a tree decomposition of G of width at most
5(2w2 + 3w) + 4, or correctly conclude that G has tree-cut width larger than
w. In what follows, we present an exposition on how to solve Constrained
Star-Cut Decomposition in 2O(w2·logw) · n steps using a tree decomposition
of G of width O(w2).

A rooted tree decomposition (T,X , r) is a tree decomposition with a distin-
guished node r selected as the root. A nice tree decomposition (T,Y, r) (see [17])
is a rooted tree decomposition, in which every internal node of T has at most
two children and the following conditions hold: the bag at the root is ∅, for each
node x with two children y, z (called a join node) it holds Yx = Yy = Yz, and
for each node x with one child y it holds Yx = Yy ∪ {u} (introduce node) or
Yx = Yy \ {u} (forget node) for some u ∈ V (G). A node of T having no children
is called a leaf node. We need the following proposition.

Proposition 3 (see [1]). For any constant w > 1, given a tree decomposition
of a graph G of width 6 w and O(|V (G)|) nodes, there exists an algorithm that,
in O(|V (G)|) time, constructs a nice tree decomposition of G of width 6 w and
with at most 4|V (G)| nodes.

Lemma 7. Let (G,w, γ) be an input of Constrained Star-Cut Decompo-
sition and let tw(G) 6 q. There exists an algorithm that given (G,w, γ) outputs,
if one exists, a solution of (G,w, γ) in 2O((q+w) logw) ·n steps, or correctly reports
that (G,w, γ) is a No-instance.

Proof: From Propositions 2 and 3, we can obtain a nice tree decomposition
(T,Y, r) of G whose width is at most 5q + 4 in time 2O(q) · n. We present a
dynamic programming algorithm to compute a solution of (G,w, γ) on (T,Y, r).

For every 1 6 ` 6 w and a subset Z ⊆ V (G), we say that a collection
X = {X0, . . . , X`} of pairwise disjoint subsets (some Xi may be empty) of Z

with
⋃`
i=0Xi = Z is `-legitimate if |X0| + ` 6 w and for every i ∈ {1, . . . , `},

we have |δ(Xi, V (G) \ Xi)| 6 w and γ(Xi) 6 w. Observe that (G,w, γ) is a
Yes-instance if and only if V (G) admits an `-legitimate collection for some
1 6 ` 6 w: if X is an `-legitimate collection for some 1 6 ` 6 w, then (T,X ),
where T is a star whose center is labeled by 0 and leaves are bijectively labeled
by {1, . . . , `}, is a solution to the instance (G,w, γ). Conversely, for any solution
(T,X ) to (G,w, γ), we have 1 6 |V (T )| − 1 6 w, and the collection of bags X is
`-legitimate with ` = |V (T )| − 1.

Henceforth, we fix ` such that 1 6 ` 6 w. Let Zt be the vertex set
⋃
t′∈V (Tt)

Yt′ ,
where Tt is the subtree of T rooted at t. An entry of a table Dt at node t is
a quadruple (φ, a, α, β), where φ : Yt → [0, `], a ∈ N, α : [`] → [0, w] and
β : [`]→ [0, w]. We intend that for an `-legitimate collection X = {X0, . . . , X`}
of V (G), a quadruple (φ, a, α, β) with the following specification is stored in Dt:

(i) for every v ∈ Yt, φ(v) = i if v ∈ Xi,
(ii) a = |X0 ∩ Zt|,

(iii) for every i ∈ [`], α(i) = γ(Xi ∩ Zt),
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(iv) for every i ∈ [`], β(i) = |δ(Xi ∩ Zt, Zt \Xi)|.

For a property P , the bracket notation [P ] takes 1 if the property P holds,
and takes 0 otherwise. We present how to create the table Dt at each node t. In
all cases, a computed quadruple (φ, a, α, β) shall be discarded if a+` > w or, the
range of α or β is not included in [0, w]. As we present the update procedure at
each node type, we prove the following claim: Dt contains an entry (φ, a, α, β) if
and only if Zt admits an `-legitimate collection X = {X0, X1, . . . , X`} such that
v ∈ Xφ(v) for every v ∈ Yt, |X0| = a, and γ(Xi) = α(i), |δ(Xi, Zt \Xi)| = β(i)
for every i ∈ [`]. Below, all sums over pairs of vertices are taken over unordered
pairs.

Leaf node: For each mapping φ : Yt → [0, `], we set

a :=
∑
u∈Yt

[φ(u) = 0]

α(i) :=
∑
u∈Yt

γ(u) · [φ(u) = i] ∀i ∈ [`]

β(i) :=
∑
u,v∈Yt

|δ({u}, {v})| · [φ(u) = i ∧ φ(v) 6= i] ∀i ∈ [`].

If Dt contains an entry (φ, a, α, β), let Xi be the set of all vertices v ∈ Yt with
φ(v) = i for each i ∈ [0, `]. Then for X = {X0, X1, . . . , X`}, we have v ∈ Xφ(v) for
every v ∈ Yt, |X0| = a, γ(Xi) = α(i) and |δ(Xi, Zt \Xi)| = β(i). The collection
X is `-legitimate since (φ, a, α, β) has not been discarded. Conversely, for an
`-legitimate collection X = {X0, X1, . . . , X`}, let φ : Yt → [0, `] be a mapping
such that φ(v) = i if v ∈ Xi, which is well-defined. Notice that for φ, the update
procedure at a leaf node ensures that a = |X0|, and α(i) = γ(Xi), β(i) =
|δ(Xi, Zt \Xi)| for every i ∈ [`]. Since X is `-legitimate, the entry (φ, a, α, β) is
in Dt. Therefore, the claim holds when t is a leaf node.

Now we consider a non-leaf node t assuming that the claim holds for all
children t′ of t.

Forget node: Let Yt = Yt′ \ {u}, where t′ is a child of t. For each quadruple
(φ′, a′, α′, β′) ∈ Dt′ , we add the tuple (φ, a, α, β) = (φ′|Yt

, a′, α′, β′) to Dt.
If (φ, a, α, β) ∈ Dt, then there exists an entry (φ′, a, α, β) ∈ Dt′ such that

φ′|Yt
= φ. By induction hypothesis, Zt′ = Zt admits an `-legitimate collection

X such that v ∈ Xφ(v) for every v ∈ Yt ⊆ Yt′ , |X0| = a, and γ(Xi) = α(i),
|δ(Xi, Zt \Xi)| = β(i) for every i ∈ [`]. The converse implication can be similarly
verified.

Introduce node: Let Yt = {u}∪Yt′ , where t′ is a child of t. For each quadruple
(φ′, a′, α′, β′) ∈ Dt′ and for each j ∈ [0, `], we build a quadruple (φ, a, α, β) as
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follows:

φ := φ′ ∪ (u, j)

a := a′ + [φ(u) = 0]

α(i) := α′(i) + γ(u) · [φ(u) = i] ∀i ∈ [`]

β(i) := β′(i) +

{∑
v∈Yt′

|δ({u}, {v})| · [φ(v) 6= φ(u)] if i = φ(u)∑
v∈Yt′

|δ({u}, {v})| · [φ(v) = i] otherwise.

To see that the claim holds, suppose (φ, a, α, β) ∈ Dt. Then the update pro-
cedure ensures that (φ′, a′, α′, β′) ∈ Dt′ , where φ′ = φ|Yt′ and a, α′, β′ satisfy
the above equations. By induction hypothesis, Zt′ admits an `-legitimate collec-
tion X ′ = {X ′0, X ′1, . . . , X ′`} such that v ∈ X ′φ′(v) for every v ∈ Yt′ , |X ′0| = a′,

and γ(X ′i) = α′(i), |δ(X ′i, Zt′ \ X ′i)| = β′(i) for every i ∈ [`]. Consider the
collection X = {X0, X1, . . . , X`}, where Xφ(u) = X ′φ(u) ∪ {u} and Xi = X ′i
for every i 6= φ(u). Clearly, for every v ∈ Yt, we have v ∈ Xφ(v) and also
|X0| = |X ′0|+ [φ(u) = 0] = a′ + [φ(u) = 0] = a. Observe, for every i ∈ [`]

γ(Xi) = γ(X ′i) + γ(u) · [φ(u) = i] = α′(i) + γ(u) · [φ(u) = i] = α(i),

and from Zt \Xφ(u) = Zt′ \X ′φ(u) and δ({u}, Zt′ \X ′φ(u)) = δ({u}, Yt′ \X ′φ(u)),
we have

|δ(Xφ(u), Zt \Xφ(u))| = |δ(X ′φ(u), Zt \Xφ(u))|+ |δ({u}, Zt \Xφ(u))|
= |δ(X ′φ(u), Zt′ \X

′
φ(u))|+ |δ({u}, Yt′ \X

′
φ(u))|

= β′(φ(u)) +
∑
v∈Yt′

|δ({u}, {v})| · [φ(v) 6= φ(u)] = β(φ(u)).

For every i ∈ [`] \ φ(u), we have Xi = X ′i and δ(Xi, Zt \Xi) = δ(X ′i, Zt′ \X ′i) ]
δ(X ′i, {u}). It follows that

|δ(Xi, Zt \Xi)| = |δ(X ′i, Zt′ \X ′i)|+ |δ(X ′i, {u}))|

= β′(i) +
∑
v∈Yt′

|δ({u}, {v})| · [φ(v) 6= φ(u)] = β(φ(u)).

It follows that X is an `-legitimate collection satisfying the requirement. The
converse implication can be similarly verified.

Join node: Let t1 and t2 be the two children of t. For each pair of quadruples
(φ1, a1, α1, β1) ∈ Dt1 and (φ2, a2, α2, β2) ∈ Dt2 such that φ1 = φ2, we compute
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an entry (φ, a, α, β) as follows:

φ := φ1(= φ2)

a := a1 + a2 −
∑
v∈Yt

[φ(v) = 0]

α(i) := α1(i) + α2(i)−
∑
u∈Yt

γ(u) · [φ(u) = i] ∀i ∈ [`]

β(i) := β1(i) + β2(i)−
∑
u,v∈Yt

|δ({u}, {v})| · [φ(u) = i ∧ φ(v) 6= i] ∀i ∈ [`].

Suppose (φ, a, α, β) ∈ Dt. Then there are two entries (φ1, a1, α1, β1) ∈ Dt1
and (φ2, a2, α2, β2) ∈ Dt2 satisfying the above equations. Let X ′ = {X ′0, X ′1, . . . , X ′`}
and X ′′ = {X ′′0 , X ′′1 , . . . , X ′′` } be `-legitimate collections of Zt1 and Zt2 , respec-
tively, guaranteed by induction hypothesis. We define Xi = X ′i ∪ Xi for every

i ∈ [0, `] and X = {X0, X1, . . . , X`}. Observe that
⋃`
i=0Xi = Zt1 ∪Zt2 = Zt and

for any i 6= j, we have Xi ∩Xj = ∅ since Xi ∩Xj ⊆ Zt1 ∩Zt2 = Yt and φ1 = φ2.
Let us verify that X is a desired `-legitimate collection.

For every v ∈ Yt, we have v ∈ X ′φ1(v)
⊆ Xφ(v). From X0 = X ′0∪X ′′0 , it follows

|X0| = |X ′0| + |X ′′0 | − |X ′0 ∩ X ′′0 | = a1 + a2 −
∑
v∈Yt

[φ(v) = 0] = a. For every
i ∈ [`], observe that γ(Xi) = γ(X ′i) + γ(X ′′i ) − γ(X ′i ∩ X ′′i ) = α1(i) + α2(i) −∑
v∈Yt

γ(v) · [φ(v) = i] = α(i). From Zt = Zt1 ∪Zt2 , we observe the following for
every i ∈ [`],

δ(Xi, Zt \Xi) = δG[Zt1 ]
(Xi ∩ Zt1 , (Zt \Xi) ∩ Zt1)∪

δG[Zt2 ]
(Xi ∩ Zt2 , (Zt \Xi) ∩ Zt2)

= δ(X ′i, Zt1 \X ′i) ∪ δ(X ′′i , Zt2 \X ′′i ).

Notice that in the last equality, the edges between X ′i ∩ X ′′i = Xi ∩ Yt and
(Zt1 \X ′i)∩ (Zt2 \X ′′i ) contribute twice to the union and other edges contribute
exactly once. For the latter set, we have (Zt1 \X ′i) ∩ (Zt2 \X ′′i ) ⊆ (Zt1 ∩ Zt2) \
(X ′i ∪ X ′′i ) = Yt \ Xi. Furthermore, from Yt ⊆ Zt1 and Xi ⊇ X ′i, we have
Yt \ Xi ⊆ Zt1 \ X ′i. Likewise, Yt \ Xi ⊆ Zt2 \ X ′′i holds as well. Therefore,
(Zt1 \X ′i) ∩ (Zt2 \X ′′i ) = Yt \Xi. It follows that

|δ(Xi, Zt \Xi)| = β1(i) + β2(i)−
∑
u,v∈Yt

δ({u}, {v}) · [φ(u) = i, φ(v) 6= i]

= β(i).

This implies that X is `-legitimate with the desired property. The opposite di-
rection of the claim can be verified in a similar fashion.

Our claim especially implies that (G,w, γ) is Yes to Constrained Star-
Cut Decomposition if and only if Dr contains an entry (φ, a, α, β). By stan-
dard backtracking, one can construct a solution to (G,w, γ) if Dr is non-empty.

It remains to see the running time of the algorithm. There are at most (`+
1)|Yt| ·(w+1)·(w+1)2` = (w+1)O(q+w) entries in Dt at node t. Each entry can be
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computed in time |Yt|O(1). The running time for computing Dt is O(|Dt|·|Yt|O(1))
when t is a leaf, introduce, or forget node. For a join node t with children t1
and t2, the running time is O(|Dt1 | · |Dt2 | · |Yt|O(1)). As we perform dynamic
programming for ` = 1, . . . , w, the entire algorithm runs in time (w+ 1)O(q+w) ·
n = 2O((q+w) logw) · n as stated. �

3.3 Piecing everything together

We now present a 2-approximation algorithm for Tree-cut Width leading to
the following result.

Theorem 3. There exists an algorithm that, given a graph G and w ∈ N, either
outputs a tree-cut decomposition of G with width at most 2w or correctly reports
that G has tree-cut width larger than w in 2O(w2·logw) · n2 steps.

Proof: Recall that, by Lemmas 3 and 4, we can assume that G is 3-edge-
connected. If not, we iteratively decompose G into 3-edge-connected components
using the linear-time algorithm of [26]. A tree-cut decomposition of G can be
easily built from the tree-cut decomposition of its 3-edge-connected components
using Lemma 3. As mentioned earlier, the trivial tree-cut decomposition satisfies
the Invariant. Let (T,X ) be a tree-cut decomposition satisfying the Invariant.
As long as the current tree-cut decomposition (T,X ) contains a large leaf `, the
algorithm applies the following steps repeatedly:

1. Let X` ∈ X be the bag associated to a large leaf `. Compute a nice tree
decomposition of G[X`] of width at most O(w2) in 2O(w2) · n time. If such
a decomposition does not exist, as G[X`] is a subgraph of G, Proposition 1
implies tcw(G) > w and the algorithm stops.

2. Solve Constrained Star-Cut Decomposition on I(Xt, G) using the dy-

namic programming of Lemma 7 for q = O(w2) in time 2O(w2·logw) · n.

3. If I(Xt, G) is a No-instance, then by Corollary 1, the algorithm correctly
reports that tcw(G) > w.

4. Otherwise, by Lemma 6, (T,X ) can be refined into a new tree-cut decom-
position satisfying the Invariant.

The algorithm either stops when we can correctly report that tcw(G) > w
(step 1 or 3) or when the current tree-cut decomposition has no large leaf. In the
latter case, as (T,X ) satisfies (*), it holds that tcw(T,X ) 6 2 ·w. Observe that
each refinement step (step 4) strictly increases the number of non-empty bags
(see Lemma 6). It follows that the above steps are repeated at most n times,

implying that the running time of the 2-approximation algorithm is 2O(w2·logw) ·
n2. �
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4 Open problems

A follow-up question is to improve the running time or the approximation fac-
tor of our algorithm. Notice that the parameter dependence 2O(w2·logw) of the
presented algorithm is based on the fact that the tree-cut width is bounded by
a quadratic function of treewidth. As we proved in Theorem 2, there is no hope
of improving this upper bound. Therefore for any improvement of the paramet-
ric dependence, one should avoid using a dynamic programming algorithm on
tree decompositions or significantly improve the running time. Another issue is
whether we can improve the quadratic dependence on n to a linear one.

To design an exact FPT-algorithm for tree-cut width, that is constructive and
uniform, remains open. The f(w) ·n-time algorithm as observed in Section 1 de-
pends on the explicit description of the obstruction set for tree-width at most
w, thus is non-uniform. A related problem is to obtain an upper or lower bound
on the size of an obstruction for tree-cut width at most w. As far as we know,
no such bounds are known. Notice that an upper bound on the size of an ob-
struction for tree-width at most w, or alternatively an algorithm generating all
obstructions for tree-cut width at most w, turns the aforementioned machinery
into a uniform, constructive FPT-algorithm for tree-cut width. Another route
to an exact FPT-algorithm, presumably running in linear time in n, is to use
the “set of characteristic sequences” technique, as this was done for other width
parameters [3, 4, 15, 23–25]. It appears that both approaches to obtain an exact
FPT-algorithm would imply a high parametric dependence. It is an intriguing
challenge to design an exact FPT-algorithm for tree-cut width whose dependence
on n is linear while keeping the parametric dependence reasonably low.

Acknowledgement. The authors would like to thank the anonymous reviewers for
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