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, this paper extends the problem from 1D to 2D with the simplicity of application preserves. The new scheme is implemented into the code TELEMAC-2D [tel2d, 2014] and several tests are made to verify the scheme ability under an equilibrium state at rest and different types of flow regime (i.e., fluvial regime, transcritical flow from fluvial to torrential regime, transcritical flow with a hydraulic jump). The sensitivity analysis is conducted to exam the scheme convergence.

Introduction

The SWEs have been proposed by [START_REF] Saint-Venant | Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l'introduction de marees dans leurs lits[END_REF] to model flows in a channel.

Nowadays, they are used to model flows in a wide variety of physical phenomena, such as: overland flow, flooding, dam breaks, tsunami (e.g. [START_REF] Esteves | Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values[END_REF][START_REF] Caleffi | Finite volume method for simulating extreme flood events in natural channels[END_REF][START_REF] Valiani | Case study: Malpasset dam-break simulation using a two-dimensional finite volume method[END_REF][START_REF] Kim | Propagation and run-up of nearshore tsunamis with HLLC approximate Riemann solver[END_REF]). These equations are a time-dependent twodimensional system of non-linear partial differential equations of hyperbolic type.

In real situations (realistic geometry, sharp spatial), there is little hope to solve explicitly the SWEs, i.e. to produce analytic formula for the solutions. Therefore, it is necessary to develop specific numerical methods to compute approximate solutions of SWEs (e.g. [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF][START_REF] Bouchut | Nonlinear stability of finite Volume Methods for hyperbolic conservation laws: And Well-Balanced schemes for sources[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. Implementation of any of such methods raises the question of the validation of the code.

Validation is a necessary step to check if a model (the numerical methods) suitably describes the considered phenomena. There exists at least three complementary types of numerical tests to ensure a numerical code is relevant for the considered systems of equations. First, one can produce convergence or stability results (e.g. by refining the mesh). This validates only the numerical method and its implementation. Second, approximate solutions can be matched to analytic solutions available for some simplified or specific cases. Finally, numerical results can be compared with experimental data, produced indoor or outdoor. This step should be done after the previous two; it is the most difficult one and must be validated by a specialist of the domain. This paper focuses on the first two steps.

A simply implementary scheme for 1D SWEs is provided in [START_REF] Audusse | A simple well-balanced and positive numerical scheme for the shallow-water system[END_REF], and this scheme is proved to be accurate and robust on several typical test cases. Enlightened by [START_REF] Audusse | A simple well-balanced and positive numerical scheme for the shallow-water system[END_REF]'s work, the present paper describes a numerical scheme for the 2D SWEs to study the free surface shallow flows.

The paper is organized as follows: the general mathematical model is described in section 2.

In section 3, the property of rotational invariance of SWEs is applied to split the governing equations into x direction, thus simplifying the problem. The classic Riemann solver is reviewed in section 4 and a Godunov-type finite volume scheme is derived for the augmented 1D SWEs. A simple treatment of the source term is adopted from [START_REF] Audusse | A simple well-balanced and positive numerical scheme for the shallow-water system[END_REF], in section 5. Several test cases are conducted to exam the ability of the new scheme under the equilibrium state and several types of flow regime, in section 6.

Mathematical model

The SWEs can be deduced from Navier-Stokes equations for an incompressible fluid by making the hypothesis of hydrostatic pressure, uniform velocities along the vertical direction.

For inviscid flow, the model can be written in its conservative form as follows 

Rotational invariance

We first consider the homogeneous (no source terms) time-dependent two-dimensional SWEs.

𝑼 𝑡 + 𝐹(𝑼) 𝑥 + 𝐺(𝑼) 𝑦 = 𝟎 Eq. 2

where 𝑼 𝑡 is 

The Riemann Problem and the Godunov Flux

Our concern is about solving numerically the general initial-boundary value problem (IBVP)

for the augmented one-dimension SWEs in section 3. Utilising Godunov-type methods based on the explicit conservative formula

𝑼 𝑖 𝑛+1 = 𝑼 𝑖 𝑛 - 𝛥𝑡 𝛥𝑥 [𝐹 𝒊+ 1 2 -𝐹 𝒊-1 2 ] , ∀ 𝑖 ∈ 𝕫 Eq. 5
where 4.1 The HLLC Riemann solver [START_REF] Harten | On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[END_REF] suggested a way of solving the Riemann problem approximately by finding an approximation to the numeral flux 𝐹 𝒊+ 1 2 (flux through the interface). The mathematical bases of the approach are given in [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]. Assuming all wave speed estimates are available, the HLLC numerical flux is shown as follows

𝑼
𝐹 𝑖+ 1 2 ℎ𝑙𝑙𝑐 = { 𝐹 𝐿 , 𝑖𝑓 0 ≤ 𝑆 𝐿 , 𝐹 𝐿 * , 𝑖𝑓 𝑆 𝐿 ≤ 0 ≤ 𝑆 * , 𝐹 𝑅 * , 𝑖𝑓 𝑆 * ≤ 0 ≤ 𝑆 𝑅 , 𝐹 𝑅 , 𝑖𝑓 0 ≥ 𝑆 𝑅 Eq. 6
where

𝐹 𝐿 * = 𝐹 𝐿 + 𝑆 𝐿 (𝑈 𝐿 * -𝑈 𝐿 ) & 𝐹 𝑅 * = 𝐹 𝑅 + 𝑆 𝑅 (𝑈 𝑅 * -𝑈 𝑅 )
Eq. 7

The states 𝑈 𝐿 * , 𝑈 𝑅 * are given by

𝑈 𝐾 * = ℎ 𝐾 ( 𝑆 𝐾 -𝑢 𝐾 𝑆 𝐾 -𝑆 * ) [ 1 𝑆 * 𝑣 𝐾
], (𝐾 = 𝐿, 𝑅) Eq. 8

For determining the numerical flux, the three approximate wave speeds 𝑆 𝐿 , 𝑆 𝑅 and 𝑆 * should a priori be known.

4.1.1 Estimation of speeds 𝑆 𝐿 , 𝑆 𝑅 and 𝑆 *

The determination of numerical flux in Eq. 6 requires the pre-known estimated wave speeds. [START_REF] Toro | Shock-Capturing Methods for Free-Surface Shallow Flows[END_REF] suggests the following choice of wave speeds that can lead to accurate and robust scheme:

𝑆 𝐿(𝑅) = 𝑢 𝐿(𝑅) -𝑎 𝐿(𝑅) 𝑞 𝐿(𝑅)
Eq. 9

where 𝑎 𝐾 = √𝑔ℎ 𝐾 and 𝑞 𝐾 (𝐾 = 𝐿, 𝑅) is given by

𝑞 𝐾 = { √ 1 2 [ (ℎ * +ℎ 𝐾 )ℎ * ℎ 𝐾 2 ] 𝑖𝑓 ℎ * > ℎ 𝐾 1 𝑖𝑓 ℎ * ≤ ℎ 𝐾
Eq. 10 here ℎ * is an estimate for the exact solution for ℎ in the intermediate region. Similar choices can also be found in [START_REF] Bello | A HLLC Riemann solver to compute shallow water equations with topography and friction[END_REF]. This new solver has a simple form. It can deal very well with situations involving very shallow water and is found to be very robust in dealing with shock waves [START_REF] Toro | Direct Riemann solvers for the time-dependent Euler equations[END_REF].

Including of the topography

The previous section (4.1) elaborates the HLLC scheme for the homogeneous SWEs. In this section, our scheme is extended to include the topography term. And Eq. 4 becomes SWEs with uphill topography. There are four approximate waves with speeds 𝑆 𝐿 , 0, 𝑆 * and 𝑆 𝑅 , while 0 is induced by the effect of topography.

𝑼 𝑡 + 𝐹(𝑼) 𝑥 = ( 0 -𝑔ℎ𝜕 𝑥 𝑏 0 ) Eq.
Integrating Eq. 12 on volume [𝑥 𝑙 , 𝑥 𝑟 ]x[0, 𝑡] and deploy the first two components (as flux is along x-axis, no impact on third component), we can have:

ℎ 𝑅 𝑢 𝑅 -ℎ 𝐿 𝑢 𝐿 = 𝑆 𝐿 (ℎ 1 -ℎ 𝐿 ) + 𝑆 * (ℎ 3 -ℎ 2 ) + 𝑆 𝑅 (ℎ 𝑅 -ℎ 3 ) Eq. 13

(ℎ 𝑅 𝑢 𝑅 2 + 𝑔ℎ 𝑅 2 2 ) -(ℎ 𝐿 𝑢 𝐿 2 + 𝑔ℎ 𝐿 2 2 ) + 𝑔∆𝑥{ℎ𝜕 𝑥 𝑏} = 𝑆 𝐿 (ℎ 1 𝑢 1 -ℎ 𝐿 𝑢 𝐿 ) + 𝑆 * (ℎ 3 𝑢 3 -ℎ 2 𝑢 2 ) + 𝑆 𝑅 (ℎ 𝑅 𝑢 𝑅 -ℎ 3 𝑢 3 )
Eq. 14

where {ℎ𝜕 𝑥 𝑏} stands for a consistent approximation of the source term ℎ𝜕 𝑥 𝑏 which will be precised later on. In order to close this system, two relations are missing and we suggest to impose:

 Hydraulic balance between states 𝑈 1 and 𝑈 2 . Eq. 20

{ ℎ 1 𝑢 1 = 𝑞 1 = ℎ 1 𝑢 1 = 𝑞 2 = 𝑞 * ℎ 1 + 𝑏 1 = ℎ 2 +
where 𝐹 𝐿 * is the HLLC flux in Eq. 6.

Hence, the numerical flux for SWEs with uphill bottom is: 

𝐹 𝑖+ 1 2 ℎ𝑙𝑙𝑐 (𝑼 𝐿 , 𝑼 𝑅 ) = { 𝐹 𝑖 , 𝑖𝑓 0 ≤ 𝑆 𝐿 ,

Eq.21

It should note that similar expression can also be found in [START_REF] Audusse | A simple well-balanced and positive numerical scheme for the shallow-water system[END_REF].

An downhill bottom 𝜕 𝑥 𝑏 > 0

Analogous with 4.2.1, for the topography with the left bottom height 𝑏 1 higher than the right bottom height 𝑏 2 , it can be deduced that 𝑆 * is negative, it has been found that the numerical flux for SWEs with downhill bottom has the same expressions as in Eq. 21 except the HLLC flux 𝐹 𝐿 * is replaced by 𝐹 𝑅 * in Eq. 6.

5 Treatment of the source term {𝒉𝝏 𝒙 𝒃} An adopted method is from [START_REF] Audusse | A simple well-balanced and positive numerical scheme for the shallow-water system[END_REF] to discrete source term as follows

{ℎ𝜕 𝑥 𝑏} = { ℎ 𝐿 +ℎ 𝑅 2∆𝑥 𝑚𝑖 𝑛(ℎ 𝐿 , ∆𝑏) , 𝑖𝑓 ∆𝑏 ≥ 0, ℎ 𝐿 +ℎ 𝑅 2∆𝑥 max (-ℎ 𝑅 , ∆𝑏), 𝑖𝑓 ∆𝑏 < 0, Eq. 22
This treatment can preserve the lake at rest in the case of a wet-dry transition or the case of a dry-wet transition.

Numerical results

The convergence of the new numerical scheme is first examined on two flow regimes (a fluvial flow and a transcritial flow). This validates the numerical method and its implementation. The behaviour of our new scheme is then examined on several test cases to check if the approximate solutions are accurate. These test cases include: an equilibrium state with a bump bottom, a steady flow over this bump in two regimes (fluvial and transcritical).

Mesh sensitivity study

To ensure the convergence of our new scheme, three different meshes are built for a rectangular topography. This topography is discretized by N triangular elements, where N are 968, 1925 and 3839, respectively (see Fig 3). The free software Bluekenue is used for creating these meshes. And more information of the rectangular topography is in section 6.2.

The relative error norms are defined as following:

‖𝑒 1 (𝑁)‖= ∫ |𝐻 𝑁 (𝑥)-𝐻 𝑒𝑥𝑎𝑐𝑡 (𝑥)|𝑑𝑥 𝐿 0 𝐿 Eq. 23.1 ‖𝑒 2 (𝑁)‖= √ ∫ (𝐻 𝑁 (𝑥)-𝐻 𝑒𝑥𝑎𝑐𝑡 (𝑥)) 2 𝑑𝑥 𝐿 0 𝐿 Eq. 23.2
‖𝑒 1 (𝑁)‖=max (𝐻 𝑁 (𝑥) -𝐻 𝑒𝑥𝑎𝑐𝑡 (𝑥))

Eq. 23.3

with 𝐻 𝑁 (𝑥) the free surface (water depth h plus bottom elevation b) profile from the new scheme with N cell elements used and 𝐻 𝑒𝑥𝑎𝑐𝑡 (𝑥) is the free surface profile from exact solution as the reference result with the same cell elements. L is the total length of simulated domain and dx is the space step. The simulations are performed with different cell element numbers (i.e., 968, 1925, 3839) 

Equilibrium steady state at rest

The aim of this test is to verify the scheme for equilibrium steady state. The topography is flat at both left and right sides except there is a bump in the middle. The length of the topography is 20.5 m. And the topography is discretized by 968 elements (Fig 3). This geometry is adopted for all the following tests. The free surface is initially constant with a height 1.8 m which submerges all the topography. At the right side, we impose a 1.8 m water depth which is equal to the initial condition, and at the left side, a zero discharge is imposed. In this way, we can ensure the equilibrium state. The time step is 0.01 s, and the total number of time steps is 10000 which is long enough to ensure the steady state. After the simulation, the result of free surface is shown in Fig 6. noted that the free surface remains stable since the simulation starts. We can thus believe that our scheme can assure the equilibrium steady state at rest. Next, we exam our scheme in nonequilibrium steady states which consist of three types of situation: fluvial regime, transcritical flow from fluvial regime to torrential regime, transcritical flow with a hydraulic jump. The results calculated by our new scheme are compared quantitatively with exact solution.

Fluvial regime

The initial condition is the same as that in 6.2. A 1.8 m water depth is imposed at the right side and a discharge of 8.85889 m 3 /s is imposed at the left side. After the flow is at steady state, the free surface and discharge is depicted in Fig 6. 

Transcritcal flow from fluvial regime to torrential regime

The free surface is initially constant with a height 0.13 m which submerges all the topography.

Only a discharge of 0.6 m 3 /s is imposed at the left side. The time step is 0.01 s, and the total number of time steps 10000 which is long enough to ensure the steady state. The simulation result is depicted in Fig 7. 

Transcritical flow with a hydraulic jump

The initial condition is the same as that in 6.3. A discharge of 0.18 m 3 /s is imposed at the left side and a water depth with the height 0.13 m imposed at the right side. The time step is 0.01 s, and the total number of time steps 30000 which is long enough to ensure the steady state.

The simulation result is depicted in Fig 8. From Fig 6-8, the numerical result of our new scheme and analytic solution are in very good agreement. By looking carefully at the differences in free surface, it appears that the difference is extremely low. While for discharge, the maximum differences are 0.27%, 0.93% and 2.22%, respectively. The fluctuation in discharge from the new scheme is due to the numerical error which can be improved by densifying the computing mesh number. It is also clear that the fluctuation is tiny and the accuracy can be guaranteed.

Conclusion

We have proposed a simple numerical scheme for the two dimensional Shallow-Water Equations (SWEs). This new scheme can ensure the well-balance condition and is proved to be accurate on several typical test cases: Fluvial regime, transcritical flow from fluvial regime to torrential regime and transcritical flow with a hydraulic jump.

  ) in Eq. 1. Following the rotational invariance property of the SWEs by Toro (2001), the two-dimensional problem can be reduced to augmented one-dimensional: 𝑼 𝑡 * + 𝐹(𝑼 * ) 𝑥 = 𝟎 Eq. 3 where 𝑼 * = [ℎ, ℎ𝑢 ̃, ℎ𝑣 ̃]𝑇 , 𝑢 ̃, 𝑣 ̃ are the velocity components after the angular rotational by The new velocities are related with the original ones by 𝑢 ̃= 𝑢𝑐𝑜𝑠𝜃 + 𝑣𝑠𝑖𝑛𝜃, 𝑣 ̃= -𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃. The tilde (. ) ̃ and (*) is dropped later for brevity.

  Fig 1 Structure of the approximate solution of the Riemann problem for the x-split homogenous twodimensional SWEs. There are three approximate wave families 𝑆 𝐿 , 𝑆 𝑅 and 𝑆 * associated with the proper eigenvalues of Eq. 4.

  uphill bottom 𝜕 𝑥 𝑏 < 0 If the topography is not flat and the left bottom height 𝑏 1 is less higher than the right bottom height 𝑏 2 , which means the left water depth ℎ 𝐿 is greater than the right water depth ℎ 𝑅 , if the free surface is at the same elevation. Then the first approximation of the height in intermediate region ℎ * is smaller than ℎ 𝐿 , but bigger than ℎ 𝑅 (ℎ 𝐿 > ℎ * > ℎ 𝑅 ). We deduce that 𝑆 * is positive. Left intermediate region 𝑈 𝐿 * in Fig. 1 is divided into two zones denoted as 𝑈 1 and 𝑈 2 due to the influence of the topography. This is equivalent to introduce a velocity whose value is zero at t-axis, shown in Fig 2.

Fig 2 .

 2 Fig 2. Structure of the approximate solution of the Riemann problem for the x-split two-dimensional

Fig 3 Fig 4

 34 Fig 3 Top view of the topography discretized by 968 triangular elements, the refined area is with more intensive elements, different colours represent different elevations of the topography.

Fig 6 A

 6 Fig 6 A front view of equilibrium steady state at rest over a bump

Fig 6

 6 Fig 6 Fluvial flow: Comparison of free surfaces h+b (left) and discharge q (right) resulting from the new scheme represented by asterisk and the exact solution represented by line for a bottom topography b.

Fig 7

 7 Fig 7 Transcritical flow: Comparison of free surfaces h+b (left) and discharge q (right) resulting from the new scheme represented by asterisk and the exact solution represented by line for a bottom topography b.

Fig 8

 8 Fig 8 Flow with hydraulic jump: Comparison of free surfaces h+b (left) and discharge q (right) resulting from the new scheme represented by asterisk and the exact solution represented by line for a bottom topography b.

  4.1.2 Estimation of water depth ℎ * and particle velocity 𝑢 * in the intermediate region The primitive variables in intermediate region are a prior needed to determine wave speeds in sub-section 4.1.1. In[START_REF] Toro | Shock-Capturing Methods for Free-Surface Shallow Flows[END_REF], a new scheme solver is given for ℎ * and 𝑢 * .

	ℎ * = 𝑢 * = 1 2 1 (ℎ 𝐿 + ℎ 𝑅 ) -2 (𝑢 𝐿 + 𝑢 𝑅 ) -(ℎ 𝑅 -ℎ 𝐿 )(𝑎 𝐿 + 𝑎 𝑅 )/(ℎ 𝐿 + ℎ 𝑅 ) 1 4 (𝑢 𝑅 -𝑢 𝐿 )(ℎ 𝐿 + ℎ 𝑅 )/(𝑎 𝐿 + 𝑎 𝑅 )	}	Eq. 11
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