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Abstract This work introduces a unified framework

for mono-, cross- and multi-modal person recognition

in multimedia data. Dubbed Person Instance Graph, it

models the person recognition task as a graph mining

problem: i.e. finding the best mapping between person

instance vertices and identity vertices. Practically, we

describe how the approach can be applied to speaker

identification in TV broadcast.

Then, a solution to the above-mentioned mapping

problem is proposed. It relies on Integer Linear Pro-

gramming to model the problem of clustering person

instances based on their identity. We provide an in-

depth theoretical definition of the optimization prob-

lem. Moreover, we improve two fundamental aspects of

our previous related work: the problem constraints and

the optimized objective function.

Finally, a thorough experimental evaluation of the

proposed framework is performed on a publicly avail-

able benchmark database. Depending on the graph con-

figuration (i.e. the choice of its vertices and edges), we

show that multiple tasks can be addressed interchange-

ably (e.g. speaker diarization, supervised or unsuper-

vised speaker identification), significantly outperform-

ing state-of-the-art mono-modal approaches.
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1 Introduction

Multi-modal and cross-modal information processing is

an essential human faculty which we depend on quite

often. For example, when visiting a new place, we match

lexical information in terms of place names on a map

to visual scenes of the actual places we are in, or to

acoustic or speech information in the form of directions

provided by passersby. This is part of a constant learn-

ing process where not only do we simultaneously anal-

yse information from multiple modalities (multi-modal

processing), but also use one modality to help under-

stand another one (cross-modal processing).

To some extent, modern information processing sys-

tems already emulate this multi- or cross-modal pro-

cessing capability. This includes systems which deal with

automatic content-based segmentation, annotation, sum-

marization and retrieval of multimodal content in the

form of audio, video and text [10,39,25,31,32,42].

In this paper, we study automatic annotation and

retrieval of multimedia data, specifically in the con-

text of automatic person identification in TV broadcast.

Multiple sources of information can be combined to

achieve automatic person identification, including the

visual stream (e.g. face recognition and overlaid name

detection), the audio stream (e.g. speaker identification

and speech transcription) and textual metadata (e.g.

electronic program guide and cast list). Automatically

recognized person identities can be very useful in many

higher level multimedia analysis tasks, such as seman-
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tic indexing and retrieval, interaction analysis and video

summarization.

Existing studies on person identification using cross-

modal analysis typically involve person names extracted

from the output of automatic speech recognition (ASR) [7,

41,28,13,24], from overlaid text in videos [36,6,37], or

from subtitles and transcripts aligned with automati-

cally detected face tracks [9,2].

Identifying speakers using pronounced names ex-

tracted from the ASR output was first proposed in [7].

Names were manually classified based on their lexical

context to indicate whether they refer to the speaker,

the addressee or someone else. Tranter et al. [41] auto-

matically learn these patterns from n-gram sequences,

while Mauclair et al. [28] used a semantic classifica-

tion tree to match names with speaker turns. Estève et

al. [13] and Jousse et al. [24] further developed and

analysed this approach. These approaches differ from

our work in that they only rely on the audio stream

to identify speakers (while our work seamlessly extends

from audio-only to audio-visual processing). Hence, they

are very dependent on the quality of the ASR output

as they cannot rely on the visual stream to address this

limitations. For instance, [24] reports that error rates

increase from 17% up to 75% when switching from man-

ual to automatic speech transcription.

More recently, three cross-modal methods were pro-

posed by Poignant et al. [37] to automatically propa-

gate written names (obtained from overlaid text using

video optical character recognition) to speaker clusters.

These cross-modal unsupervised methods achieved bet-

ter performance than a mono-modal supervised speaker

identification solution. However, the performance of name
propagation is very dependent on the quality of the ini-

tial speaker diarization step – while our proposed frame-

work achieves (and improves both) speaker diarization

and name propagation at the same time. Hence, [37]

reports that error rates increase from 23% up to 33%

when switching from manual to automatic speaker di-

arization.

Apart from naming speakers from spoken or writ-

ten names, another approach is to align TV series tran-

scripts with face tracks, and use this alignment to train

character models in a weakly supervised learning sce-

nario [2,9]. Contrary to our proposed framework that

can achieve fully unsupervised speaker identification,

these approaches do rely on manual (and potentially

ambiguous) labels to train face models later used for

supervised identification.

To our knowledge, none of the existing works pro-

poses a unified framework for mono-, cross- or multi-

modal person identification in multimedia data. In this

context, the main contribution of this paper is the in-

Speaker identification
I universal set of person identities
ID maps each vertex to its true identity
λi acoustic speaker model of person i

Person instance graph
G graph

V set of vertices v ∈ V
T set of speech turns t ∈ T
W set of written names w ∈ W
S set of spoken names s ∈ S
T (t) temporal support of speech turn t
|T (t)| duration of speech turn t

IW
set of written names identities

iw ∈ IWIW = {ID(w) | w ∈ W}

IS
set of spoken names identities

is ∈ ISIS = {ID(s) | s ∈ S}

I∗ set of identities for which a
i∗ ∈ I∗

speaker model λ is available

E set of edges (v, v′) ∈ E

pvv′
probability that v and v′ are the same person
pvv′ = p(ID(v) = ID(v′) | v, v′)

Optimization
∆V set of clustering functions δ ∈ ∆V
L objective function
α, β hyper-parameters

Evaluation
r, h reference and hypothesis
DER Diarization Error Rate
IER Identification Error Rate

Table 1 Notations

troduction of a generic structure called Person Instance

Graph. Depending on its configuration (i.e. the choice of

its vertices and edges), it can be used to model and out-

perform both existing mono- or cross-modal approaches,

as well as supervised or unsupervised person recogni-

tion algorithms. Most of all, it has the potential to

seamlessly combine all these variants into a universal

multi-modal one. Section 2 details the graphical struc-

ture of the proposed framework and describes how it

can be setup in practice for speaker identification in

TV broadcast. For reference purposes, notations intro-

duced in this section and used in the rest of the paper

are gathered in Table 1.

Section 3 details the proposed Integer Linear Pro-

gramming solution that is used to mine person identity

information from Person Instance Graphs. Although it

is based on our previous work reported in [6], the cur-

rent work brings several major contributions with re-

spect to that work. First, theoretical aspects are much

more detailed than it was in [6]. Then, a weighted ex-

tension of the objective function is introduced in para-

graph 3.2. Finally, paragraph 3.4 describes how (previ-
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Fig. 1 A TV sequence and the corresponding person instance
graph: it contains two identity vertices and four instance ver-
tices (a speech turn, a face track, a written name and a spoken
name).

ously strict) transitivity constraints can be relaxed in

order to achieve better person identification results.

Section 4 provides a detailed description of the ex-

perimental protocol, including the REPERE benchmark

database [19] and an in-depth definition of the eval-

uation metrics. Finally, in Section 5, a thorough ex-

perimental evaluation of the proposed framework is re-

ported on this benchmark database. Multiple modali-

ties are combined towards speaker identification – in-

cluding speech turns extracted from the acoustic signal,

spoken names obtained from speech transcription, and

written names given by video optical character recogni-

tion). Two learning scenarios (unsupervised and super-

vised) and two applications (speaker identification and

diarization) are studied.

Section 6 concludes this paper and highlights how

the proposed framework could be extended to various

applications of interest.

2 Building Person Instance Graphs

A Person Instance Graph is a weighted undirected graph

G = (V, E , p) where V is the set of vertices, E ⊂ V × V
is the set of edges, and p ∈ [0, 1]

E
associates a weight

to every edge.

Vertices V. Each vertex v ∈ V represents either a per-

son (identity vertex) or an instantiation of a person (in-

stance vertex). For example, the person instance graph

describing the video sequence in Figure 1 would contain

two identity vertices (one for Nicolas SARKOZY and one

for Barack OBAMA) and four instance vertices: a face in-

stance, a speech turn instance and a written name in-

stance of the former, and a spoken name instance of the

latter.

As illustrated in Figure 2, instance vertices are lo-

calized in time (with start and end times). An in-depth

description of instance vertices is provided in Section 2.1.

On the other hand, identity vertices are meta-vertices

representing one person each. They are described in

Section 2.2.

Edges E ⊂ V × V. Every edge (v, v′) ∈ E connects two

vertices in the graph. A person instance graph does

not contain any self-loop: ∀v ∈ V, (v, v) /∈ E . More-

over, it may be incomplete: ∃(v, v′) ∈ V × V s.t. v 6=
v′ and (v, v′) /∈ E .

Weights p ∈ [0, 1]
E

. Every edge (v, v′) ∈ E is weighted

by the probability pvv′ that vertices v and v′ correspond

to the same identity. In other words, pvv′ = p(ID(v) =

ID(v′)) where the function ID : V → I maps each ver-

tex v to its identity among the universal set of person

identities I. Note how weights pvv′ are therefore sym-

metrical (i.e. pvv′ = pv′v), thus making the graph G
undirected. Section 2.3 describes how these weights are

obtained in practice.

2.1 Instance vertices

While four different types of instance vertices can be

added to a person instance graph, we only integrate

three of them (speech turns in paragraph 2.1.1, written

names in paragraph 2.1.2 and spoken names in para-

graph 2.1.3).

The proposed framework can be extended at no ex-

tra cost to the face modality and we do plan to try

and integrate face tracks in the future. The only reason

why we did not integrate the face modality is because

we did not have access to face detection, clustering and

recognition technologies at the time.

2.1.1 Speech turns T

The first set of instance vertices added to the graph are

speech turns t ∈ T . They are automatically extracted

from the audio stream of the TV broadcast following

the initial steps of LIMSI multi-stage speaker diariza-

tion system described in [1].

First, 12 Mel Frequency Cepstral Coefficients (MFCC)

and log-energy are extracted from the audio signal ev-

ery 10ms using a 30ms Hamming window on the 0-

8kHz bandwidth [22]. Then, speech activity detection

is performed with a Viterbi decoding using one 64-

Gaussians Mixture Model (GMM) per class: speech,

noisy speech, speech over music, pure music, and silence

or noise. These GMMs were trained on approximately

one hour of matching data selected from radio broad-

cast news [16]. This approach reaches nearly perfect
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Fig. 2 A person instance graph (left) and the expected output of clustering (right).

0s 5s 10s 15s 20s 25s |T(t)|

Fig. 3 Distribution of speech turn durations on the test set.

(96% accuracy) speech vs. non-speech classification on

the corpus used in our experiments, i.e. TV broadcast

where speech is usually prepared (as opposed to spon-

taneous) and recorded in a controlled environment.

Speech segments are further segmented into smaller

homogeneous segments by detecting speaker changes [8].

This is achieved by looking for maxima of the local

Gaussian divergence G(wL, wR) between two adjacent

sliding windows wL (left) and wR (right) of 5 seconds.

The Gaussian divergence is defined as follows:

G(wL, wR) = (µR−µL)T ·Σ−1/2L ·Σ−1/2R ·(µR−µL) (1)

where the MFCC coefficients extracted from each win-

dow are modeled as Gaussian with diagonal covariance

matrixN (µ,Σ). Each maximum is compared to a thresh-

old θ to decide whether the corresponding timestamp

is a speaker change. θ is optimized on a development

set so that the resulting speech turns t are almost pure

(i.e. contains speech from one speaker only).

Figure 3 shows the distribution of the duration |T (t)|
of the speech turns t on the test set described in Sec-

tion 4.1: 90% are shorter than 10 seconds. On average,

speech turns t are pure at 96.4% (a proper definition of

purity will be given in Section 4.2).

2.1.2 Written names W

As shown in Figure 4, reporters in TV news (or guests

in talk-shows) are often introduced visually by a title

One name: ptw = 0.956 Two names: ptw = 0.996

Fig. 4 Cross-modal probabilities ptw depend on the number
of simultaneous written names w.

block containing their name. Similarly to what we did

in our previous work [6], we automatically extract every

occurrence of these names and add them to the graph

as written name instance vertices w ∈ W ⊂ V. Figure 2

underlines the fact that they are localized in time, and

that the name of the same person can appear several

times over the duration of a TV show.

In practice, we rely on the video Optical Charac-

ter Recognition (OCR) system proposed by Poignant

et al. in [36] to automatically extract this information.

First, overlaid text boxes are detected using a coarse-to-

fine approach with temporal tracking. Then, the open-

source Tesseract toolkit [40] provides one transcrip-

tion every tenth frame. These transcriptions are finally

merged to produce a unique transcription for each text

box. [36] reports precision of 97% on a TV broadcast

corpus similar to the one used in our experiments (i.e.

overlaid text with clean flat background and, by design,

easily readable fonts).

An additional filtering step is needed because, de-

pending on the TV channel, not every detected box is

used to introduce a person. In Figure 4, for instance, a

few text boxes are used to provide news flash (left) or

the name of the TV show (right). However, TV channels

tend to always use the same visual layout. Therefore, in

order to remove those unwanted text boxes, the train-

ing set described in Section 4.1 is used in combination

with a large list of person names from Wikipedia to au-
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tomatically learn the spatial positions of text boxes the

most likely to contain introductory names. Text boxes

located at other spatial positions are filtered out.

2.1.3 Spoken names S

Not only are person names displayed on screen, they

are also frequently pronounced, either by the anchor to

introduce a guest or an interviewee, or by a reporter

as part of a TV news report. Similarly, they can be

added to the graph as spoken name instance vertices

s ∈ S ⊂ V.

In practice, the automatic extraction of spoken names

is a two-step process. First, automatic speech recogni-

tion (or speech-to-text) provides the textual transcrip-

tion of the spoken words. Then, named-entity recogni-

tion aims at extracting person names from the resulting

textual document.

However, though our automatic speech-to-text sys-

tem [17] performs relatively well (Word Error Rate =

16.9%) on the REPERE corpus, we were not able to ob-

tain reasonably good person name detection results us-

ing the named-entity detection system described in [11]:

Slot Error Rate = 60%. Therefore, in the rest of the pa-

per, all experiments involving spoken name instances S
are based on manual speech transcription and manual

person name detection.

2.2 Identity vertices I

While there can be multiple instance vertices of the

same person in a graph (e.g. one for every speech turn,

one written name instance for every time it appears on

screen, etc.), there cannot be more than one identity

vertex i ∈ I per person. To ensure unicity, a unique

standardized identifier is given to each person, using the

following naming convention: First-Name_LASTNAME. For

instance, the identifiers for the first and third authors

of this paper are Herve_BREDIN and Viet-Bac_LE.

Identity vertices can be obtained in three different

manners: I = IW ∪ IS ∪ I∗. First, IW = {ID(w) |
w ∈ W} is the set of identity vertices provided by

the video OCR system described in Section 2.1.2. Sim-

ilarly, IS = {ID(s) | s ∈ S} is derived from the out-

put of the spoken name detection described in Sec-

tion 2.1.3. Simple heuristics are used to derive the stan-

dardized identifiers from the original textual output of

both approaches. Finally, an additional set of identity

vertices I∗ is provided by the acoustic-based speaker

identification system described in Section 2.3.2. I∗ con-

tains one identity vertex per speaker for which a voice

model is available.

2.3 Weighted edges (E , p)

Once vertices V are added to the person instance graph,

edges E ⊂ V × V are added between selected pairs of

vertices. The objective of this section is two-fold: de-

scribe which edges are added, and how the weighting

function p is practically estimated:

p : E → [0, 1]

(v, v′) 7→ pvv′ = p(ID(v) = ID(v′) | v, v′) (2)

2.3.1 Speech turn similarity ptt

As illustrated in the upper timeline of Figure 2, the

first set of edges is T × T ⊂ E . Every pair of speech

turns (t, t′) is connected by an edge – hence, making

the speech turn subgraph GT = (T , T ×T , p) complete.

The weights ptt′ are then estimated as follows. First,

each speech turn t ∈ T is modeled with one Gaussian

with full covariance matrix Σt trained on the D = 12-

dimensional MFCC and energy. Then, the similarity

dtt′ between two speech turns t and t′ is defined as the

Bayesian Information Criterion ∆BIC(t, t′) [8]:

dtt′ = (nt + nt′) log |Σt+t′ |
−nt log |Σt| − nt′ log |Σt′ | (3)

− 1

2
· λ ·

(
D +

1

2
D (D + 1)

)
log (nt + nt′)

where nt is the number of MFCC samples in speech

turn t and λ a penalty weighting coefficient. Finally, we

apply Bayes’ theorem to obtain the posterior probabil-

ity ptt′ :

ptt′ = p(ID(t) = ID(t′) | dtt′)

=
1

1 +
π 6=
π=
· p(dtt

′ | ID(t) 6= ID(t′))

p(dtt′ | ID(t) = ID(t′))

(4)

where the prior probabilities are assumed equal (π= =

π 6=) and the likelihood ratio is estimated on the training

set described in Section 4.1. This estimation process

is illustrated in Figure 5 and is achieved using linear

regression by minimization of the sum of squared error

in the logarithmic space.

2.3.2 Similarity to speaker model pti

Though those edges are not shown in Figure 2, one can

directly connect speech turn instance vertices t ∈ T to

identity vertices i ∈ I∗, by means of an acoustic-based

speaker identification system.

In this work, we rely on a standard Gaussian Mix-

ture Model (GMM) system based on adapted Univer-

sal Background Model (UBM) [26]. It has proved to
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Fig. 5 Estimation of the log-likelihood ratio on the train-
ing set. Top: likelihood under hypothesis H ≡ ID(t) = ID(t′)
(rightmost distribution, green) and H ≡ ID(t) 6= ID(t′) (left-
most distribution, red). Bottom: estimated log-likelihood ra-
tio (•) and linear regression.

be very successful for text-independent speaker recog-

nition, since it allows for robust estimation of speaker

models λi even with a limited amount of enrollment

data [38].

Acoustic features x are extracted from the speech

signal on the 0-8kHz bandwidth every 10ms using a

30ms Hamming window. Feature vectors x consist of 15

PLP-like cepstrum coefficients [22] plus 15 delta coeffi-

cients and delta energy, for a total of 31 features. Fea-

ture warping normalization is performed using a sliding

window of 3 seconds in order to reduce the effect of the

acoustic environment [33].

First, a gender-independent multilingual UBM with

a mixture of 256 diagonal Gaussians was trained on a

multilingual broadcast corpus [38]. Then, three anno-

tated data sources were used to train one model λi
per speaker i ∈ I∗: the REPERE training [19], the

ETAPE training and development data [20] and addi-

tional French politicians data extracted from French ra-

dio broadcast. Only speakers with more than 30 seconds

training data were kept, resulting in |I∗| = 611 speaker

identity vertices. For each speaker i ∈ I∗, a speaker-

specific GMM λi is trained by MAP adaptation of the

means of the UBM [18].

Given a speech turn t and a target identity i ∈ I∗,
the speaker identification score dti is defined as the fol-

lowing log-likelihood ratio:

dti =
1

nt

[
log

∏
x∈Xt

f (x|λi)− log
∏
x∈Xt

f (x|λΩ)

]
(5)

where Xt is the set of nt feature vectors extracted from

speech turn t, f (x|λi) is the likelihood of feature vec-

tor x for speaker model λi and f (x|λΩ) its likelihood

for the UBM.

Identification scores dti are then calibrated into prob-

abilities pti following the open-set speaker identification

paradigm:

pti = p(ID(t) = i | dti)

=

πi ·
p(dti | ID(t) = i)

p(dti | ID(t) 6= i)

π ? +
∑
i′∈I∗

πi′ ·
p(dti′ | ID(t) = i′)

p(dti′ | ID(t) 6= i′)

(6)

where π ? is the prior probability that speaker is un-

known (i.e. i /∈ I∗) and p(dti | ID(t) 6= i) is an approx-

imation of p(dti | ID(t) = ? ). Prior probabilities πi are

assumed to be equal (i.e. πi = (1− π ? )/|I∗|). In prac-

tice, likelihood ratios are estimated like in Section 2.3.1.

2.3.3 Written names propagation ptw

As already discussed in Section 2.1.2, written names

w ∈ W are usually overlaid on screen in order to intro-

duce the speaker of the current speech turn t ∈ T . In

other words, a cross-modal edge (t, w) should be added

to the graph as soon as t u w 6= ∅ where the u opera-

tor returns the temporal intersection. This is illustrated

in Figure 2 with thick dotted vertical edges between

speech turns and written names.

Though the corresponding probability ptw is very

high, it is strictly smaller than 1 for various reasons. In

TV news reports, for instance, the speech of a foreign

speaker is usually replaced by the voice of the trans-

lator. In talk shows, the speech of the current speaker

(whose name is overlaid) can be interspersed with in-

terruption from another guest.

In practice, ptw is estimated by a simple frequency

count on the training set. As illustrated in the header

of Figure 4, its value depends on the number of cooc-
curring written names: ptw ≈ 0.95 in case there is ex-

actly one written name, and ptw ≈ 0.99 when there are

two names. In this latter case, the identity unicity con-

straints defined later in Section 3.1 will make sure at

most one written name is associated to the speech turn.

2.3.4 Spoken names propagation pts

While written names w ∈ W are often used to introduce

the current speaker, speakers seldom pronounce their

own name. Instead, spoken names s ∈ S are used either

to address another particular speaker or to talk about

someone else.

Given a spoken name s pronounced a time τs, Fig-

ure 6 shows the probability f(∆τ) that a potential

speaker at time τs +∆τ is the person whose name was

pronounced at time τs. It was estimated using the train-

ing set described in Section 4.1.

The maximum at ∆τ = 15 seconds corresponds to

the fact that a speaker is typically named just before



Person Instance Graphs for Mono-, Cross- and Multi-Modal Person Recognition in Multimedia Data 7

-60s -30s 0s +30s ∆τ

0.1

0.2

0.3

f(∆τ)

Fig. 6 Probability f(∆τ) that a spoken name s at time τs
is the name of a potential speaker at time τs +∆τ .

(s)he starts speaking. f(∆τ = 0) = 0.04 indicates that

speakers rarely name themselves in TV broadcast. We

also observe that values of f are lower in general for

negative values of ∆τ than positive ones. This shows

that speakers are named less frequently after they spoke

(e.g. for thanking them) than before they speak (e.g. for

introducing them).

We rely on function f to add edges between each

pair of spoken name s ∈ S and speech turn t ∈ T as

long as they are less than 60 seconds apart:

pts = p(ID(t) = ID(s) | t, s)

=
1

|T (t)|

∫
τ∈T (t)

f(τ − τs) dτ (7)

where T (t) is the temporal support of speech turn t.

2.3.5 Hard edges (pwiw = psis = 1)

Finally, every written name w (resp. spoken name s)

is connected with probability 1 to the corresponding

identity vertex iw = ID(w) ∈ IW (resp. is = ID(s) ∈
IS) introduced in Section 2.2.

These edges are denoted w ⇔ iw and s⇔ is in the

rest of this article (as opposed to regular edges t ↔ t′

or t ↔ i, for instance) to highlight the fact that they

are weighted with probability 1.

3 Mining Person Instance Graphs

Figure 2 contains a simple person instance graph in-

volving three persons (whose respective instance and

identity vertices are colored in red, green and blue). It

contains five speech turn vertices T = {t1, t2, t3, t4, t5},
three written name vertices w ∈ W providing only two

identity vertices IW = {ID1, ID2}. Mining this graph

for speaker identification consists in automatically as-

signing the correct identity vertex to each speech turn:

t1 → ID1, t2 → ID1, t3 → ? , t4 → ID2 and t5 → ID2.

Notice how the graph does not contain the actual iden-

tity of speech turn t3: speech turn t3 therefore remains

anonymous ( ? ).

More generally, given a person instance graph G =

(V, E , p) with identity vertices I ⊂ V, we aim at finding

the optimal identification function ID defined as follows:

ID : V → I ∪ { ? } (8)

v 7→


v if v ∈ I (i.e. v is an identity vertex);

i if ∃ i ∈ I s.t. v is an instance of i;

? otherwise.

This can also be seen as a clustering problem where all

instances of a given identity must be grouped together

(alongside the actual identity itself). The expected out-

put of such clustering is illustrated in the right part of

Figure 2.

Clustering has been addressed in numerous scientific

fields in the past: from graph mining and community

detection [30] to natural language processing and co-

reference resolution [14]. Classical clustering algorithms

include K-means and hierarchical (agglomerative or di-

visive) clustering [23]. However, they suffer from three

main limitations.

First, though heuristics were proposed to estimate it

automatically [34,29], K-means and its variants usually

rely on the assumption that the number of clusters K

is known a priori. Moreover, most approaches do not

guarantee global optimality. In hierarchical agglomer-

ative clustering approaches, two clusters are merged

because they are (locally) close to each other, inde-

pendently of how similar (or dissimilar) they are to

other clusters. Finally, state-of-the-art approaches usu-

ally rely on complete affinity matrices and cannot deal

with situations where the affinity matrices are incom-

plete (e.g. missing edges in person instance graphs).

Inspired by [14], we proposed in [6] to model cluster-

ing as an Integer Linear Programming (ILP) problem,

addressing all three shortcomings. Sections 3.1 to 3.3

provide a more detailed description of this previous

work. Two major improvements are proposed in Sec-

tions 3.2 (i.e. weighted objective function) and 3.4 (i.e.

transitivity constraints relaxation).

ILP has been used before by Dupuy et al. in the

framework of speaker diarization [12]. However, our ap-

proach differs from [12] both in the actual formulation

of the ILP problem (they rely on the assumption that

a few speech turns are cluster centroids, we do not),

and in the fact that their approach is purely mono-

modal and is limited to speaker diarization (ours is

multi-modal and can also be used for speaker identi-

fication).
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3.1 Clustering function

Any output of a valid clustering algorithm can be de-

scribed by a clustering function δ, as follows:

δ : V × V → {0, 1} (9)

(v, v′) 7→
{

1 if v and v′ are in the same cluster,

0 otherwise.

However, reciprocally, a function δ ∈ {0, 1}V×V does

not always correspond to a clustering output. Addi-

tional constraints are needed in order to guarantee a

valid clustering: (a) reflexivity, (b) symmetry and (c)

transitivity. We define ∆V ⊂ {0, 1}V×V the subset of

functions verifying these constraints:

∆V =


δ ∈ {0, 1}V×V s.t. ∀ (v, v′, v′′) ∈ V3,

(a) δvv = 1

(b) δvv′ = δv′v
(c) δvv′ = 1 ∧ δv′v′′ = 1 =⇒ δvv′′ = 1

(10)

While it is trivial to integrate reflexivity (a) and sym-

metry (b) constraints in the ILP framework, the transi-

tivity constraints (c) need a little bit of work, summa-

rized in Equations (11):

∀ (v, v′, v′′) ∈ V3, δvv′ + δv′v′′ − δvv′′ ≤ 1

δv′v′′ + δv′′v − δv′v ≤ 1 (11)

δv′′v + δvv′ − δv′′v′ ≤ 1

Additionnally, each instance vertex can correspond to

at most one identity. Therefore, the following constraints

are added to the ILP problem:

∀v ∈ V,
∑
i∈I

δvi ≤ 1 (12)

In particular, when combined with reflexivity contraints

(δii = 1), Equation (12) implies that two identity ver-

tices cannot end up in the same cluster:

∀ (i, i′) ∈ I2, i 6= i′ =⇒ δii′ = 0 (13)

These implicit constraints are marked as red “forbid-

den” traffic signs in Figure 2. Finally, we explicitely

constrain written names w (resp. spoken names s) to

be in the same cluster as their corresponding identity

vertex iw (resp. is):

∀w ∈ W, δwiw = 1

∀s ∈ S, δsis = 1 (14)

These contraints are marked as blue traffic signs → in

Figure 2.

3.2 Objective function

Clustering is the task of grouping a set of objects in such

a way that objects in the same group (called cluster)

are more similar to each other than to those in other

groups (clusters).

In other words, when clustering a person instance

graph G = (V, E , p), we aim at finding the clustering

function δ ∈ ∆V with constraints (12) and (14) that

maximizes the intra-cluster similarity while minimizing

the inter-cluster similarity:

δ∗ = argmax
δ∈∆V

Lα(δ, E , p) (15)

where α ∈ [0, 1] is an hyper-parameter controlling the

size of the clusters, and the objective function Lα is

defined as follows:

Lα(δ, E , p) = |E|−1[α ·

intra-cluster
similarity︷ ︸︸ ︷∑

(v,v′)∈E

δvv′ · pvv′ (16)

+ (1− α) ·
∑

(v,v′)∈E

(1− δvv′) · (1− pvv′)︸ ︷︷ ︸
inter-cluster
dissimilarity

]

By design, a person instance graph usually con-

tains many more t↔ t′ edges (between any two speech

turns) than it does t↔ w edges (only between cooccur-

ring speech turn and written name). Therefore, Equa-

tion (16) implicitely gives more importance to the for-

mer, at the expense of the latter. To compensate for

this behavior, we extend the objective function in the

following way:

Lα
β (δ, E , p) =

∑
x∈{T ,W,S,I}
y∈{T ,W,S,I}

βxy ·Lαxy (δ, E ∩ (x× y) , p)

δ∗ = argmax
δ∈∆V

Lα
β (δ, E , p) (17)

with αxy ∈ [0, 1], βxy ∈ [0, 1] and
∑
x,y βxy = 1. In other

words, depending on the value of hyper-parameter β,

edges may be weighted differently depending on the

type of vertices they connect.

3.3 Solution

This optimization problem falls into the Mixed-Integer

Linear Programming (MILP) category. As such it can

be solved by the Gurobi Optimizer, available freely for

academic research purposes [21].
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The resulting optimal solution δ∗ can then be used

to associate a unique identity to each instance vertex:

IDδ∗ : V → I ∪ { ? }

v 7→
{
i if ∃ i ∈ I s.t. δ∗vi = 1,

? otherwise.
(18)

Note that constraints (12) make sure that each instance

vertex is connected to at most one identity vertex. More-

over, it might happen that an instance vertex v is not

connected to any identity vertex. Hence, it remains

anonymous: IDδ∗(v) = ? .

3.4 Transitivity constraints relaxation

As far as person identification is concerned, Equation (18)

shows that the only important objective is that every

instance vertex v is associated to its correct identity

vertex i ∈ I. In particular, there is no need for two

instance vertices v and v′ of the same person i to be

connected to each other (δvv′ = 1), as long as they

are correctly connected to the correct identity vertex

i (δvi = 1 and δv′i = 1). Therefore, strict transitivity

constraints defined in Equation (10.c) can be relaxed in

the following way:

∀ (v, v′, i) ∈ {V \ I}2 × I,
δvi = 1 ∧ δv′i = 1 6=⇒ δvv′ = 1 (19)

Formally, this is achieved by replacing the strict tran-

sitivity constraints defined in Equation (11) by the fol-

lowing loose transitivity constraints (20) and (21):

∀ (v, v′, v′′) ∈ {V \ I}3,
δvv′ + δv′v′′ − δvv′′ ≤ 1

δv′v′′ + δv′′v − δv′v ≤ 1

δv′′v + δvv′ − δv′′v′ ≤ 1

(20)

∀ (v, v′, i) ∈ {V \ I}2 × I, δvv′ + δvi − δv′i ≤ 1

δvv′ + δv′i − δvi ≤ 1
(21)

Relaxing transitivity constraints has two main prac-

tical implications. The first one is that the size of the

optimization problem is reduced and can therefore be

solved more quickly. But, most of all, the second benefit

of relaxing constraints is that it leads to better speaker

identification performance (as shown in Table 10 of Sec-

tion 5 devoted to experimental results).

3.5 Applications

Depending on the targeted application, a person in-

stance graph may contain only a subset of vertices and

edges. Table 2 provides a few possible configurations.

A B

G
F E D

C

TRAINING SET
24 hours DEVELOPMENT

3 hours

TEST
3 hours

A: BFM Story
B: LCP Info
C: Top Questions
D: Ça Vous Regarde
E: Planète Showbiz
F: Entre Les Lignes
G: Pile Et Face

Fig. 7 Training, development and test sets each contain 7
different types of shows (A to G).

Speaker diarization (configuration 5A in Table 2),

for instance, is the task of partitioning and labeling

an audio stream into homogeneous speech segments ac-

cording to the identity of the speaker. One does not

care about the actual identity of the speaker. This is

actually a speech turn clustering problem. The corre-

sponding graph only contains speech turn vertices t ∈ T
and speech turn to speech turn edges t↔ t′. It does not

contain any identity vertices.

Standard supervised speaker identification can also

be modeled as a person instance graph mining problem.

Thus, configuration 7A simply connects every speech

turn t ∈ T to a set of identity vertices I∗ for which

acoustic models were obtained using a manually anno-

tated training set.

Configurations 8A and 8C allow cross-modal speaker

identification. Basically, these configurations deal with

unsupervised speaker identification in the sense that

no acoustic model of the speakers is available a priori.

One must uncover the identity of the speaker from other

modalities: either names written on the screen (config-

uration 8A) or pronounced, or a combination of both

written and spoken names (configuration 8C).

4 Experimental protocol

4.1 Corpora

Figure 7 provides a graphical overview of the REPERE

video corpus used in our experiments [19] and to be re-

leased publicly by ELDA in 2014. It contains 188 videos

(30 hours) recorded from 7 different shows broadcast by

the French TV channels BFM TV and LCP. The au-

dio stream is manually annotated with labeled speech

turns (“who speaks when?”). In other words, a reference

function r is available for each video:

r : T → P(I ∪ { ? })
τ 7→ {i1, . . . , inτ } (22)

where T is the temporal support of the video, I is

the universal set of person identities introduced in Sec-

tion 2, P(A) = {A | A ⊆ A} is the set of all subsets
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Table 2 Various person instance graph configurations and corresponding applications. Possible sets of vertices include speech
turns T , written names W, spoken names S and identity vertices I∗, IW or IS . x↔ y stands for X ×Y edges, and x⇔ y for
hard constraints (δxy = 1). Column # refers to table and experiment identifiers used in Section 5.

# Targeted application
Instance Identity Edges
vertices vertices t↔ t′ t↔ i∗ t↔ w⇔ iw t↔ s⇔ is

5A Speaker diarization T t↔ t′

7A Mono-modal T I∗ t↔ i∗

7B speaker identification T I∗ t↔ t′ t↔ i∗

8A Cross-modal T W IW t↔ t′ t↔ w ⇔ iw
8C speaker identification T W S IW IS t↔ t′ t↔ w ⇔ iw t↔ s⇔ is

9 Multi-modal T W I∗ IW t↔ t′ t↔ i∗ t↔ w ⇔ iw
speaker identification T W S I∗ IW IS t↔ t′ t↔ i∗ t↔ w ⇔ iw t↔ s⇔ is

Table 3 Test set statistics.

Total T 02:56:55

Non-speech |r(τ)| = 0 00:07:45 (4.4%)
Overlapping speech |r(τ)| = 2 00:06:40 (3.8%)
Anonymous speaker ? ∈ r(τ) 00:02:00 (1.1%)

of A, and nτ is the number of simultaneous speakers at

time τ .

In practice, nτ ∈ {0, 1, 2}. nτ = 0 is used for non-

speech regions (i.e. r(τ) = ∅). nτ = 2 corresponds

to overlapping speech regions where two persons speak

simultaneously. In some rare cases (e.g. during street

interviews), ? ∈ r(τ) indicates that the corresponding

speaker could not be identified and therefore remains

anonymous. Table 3 aggregates the duration of these

special cases for the test set.

Manual speech transcription and person names en-

tity detection are also provided: they were already men-

tioned in Section 2.1.3 for the description of spoken

name vertices s ∈ S.

The video stream is also manually annotated, but

not as extensively as its audio counterpart. Only one

frame every 10 seconds is annotated with manual de-

tection and transcription of overlaid texts, and manual

detection and identification of faces. Note that these vi-

sual annotations are not used in this work (except in

Section 2.1.2 to automatically learn the usual spatial

positions of title blocks).

4.2 Evaluation metrics

For evaluation purposes, the manual reference r is com-

pared to the hypothesis h obtained automatically as

follows:

h : T → P(I ∪ { ? })
τ 7→ {IDδ∗(t) | t ∈ T , τ @ t} (23)

where optimal clustering function δ∗ is given by Equa-

tion (17), IDδ∗ is defined in Equation (18) and τ @ t

means that speech turn t overlaps time τ . Unless other-

wise stated, tables report values aggregated over the 28

videos of the test set (for a total duration of 3 hours).

Identification Error Rate (IER) The Identification Er-

ror Rate (IER) is defined as the proportion (in dura-

tion) of the reference r incorrectly identified by the hy-

pothesis h:

IER(r, h) =

∫
τ∈T

ξhr (τ) dτ

∫
τ∈T

|r(τ)|dτ
(24)

where ξhr (τ) returns the number of errors in the hypoth-

esis h at a given time τ ∈ T :

ξhr : T → N

τ 7→ max(|r(τ)| , |h(τ)|)− |r(τ) ∩ h(τ)| (25)

As shown in Table 4, the IER evaluation metric takes

various types of error into account. In particular, incor-

rect speech vs. non-speech detection (or the lack of an

overlapping speech detection step) may result in false

alarms or missed detections.

Precision & recall Though the IER conveniently pro-

vides a unique value to compare two different approaches,

we also report the complementary values of precision
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Table 4 Identification error ξhr .

r(τ) h(τ) ξhr (τ) Error type

∅ ∅ 0
Correct (no error){i} {i} 0

{ ? } { ? } 0

∅ {i} 1 False alarm

{i} ∅ 1
Missed detection{i, i′} {i} 1

{i} {i′} 1
Confusion{i} { ? } 1

{i, i′} {i′′} 2 Confusion & Missed detection

and recall to help analyse their behavior:

Precision (r, h) =

∑
i′∈Ih\ ?

κ(i′, i′)

∑
i′∈Ih\ ?

( ∑
i∈Ir

κ(i, i′)

) (26)

Recall (r, h) =

∑
i∈Ir\ ?

κ(i, i)

∑
i∈Ir\ ?

( ∑
i′∈Ih

κ(i, i′)

) (27)

where κ(i, i′) is the total duration of cooccurrence be-

tween speaker i of reference r and speaker i′ of hypoth-

esis h:

κ : Ir × Ih → R+

(i, i′) 7→
∫
τ∈T

1 i∈r(τ)
i′∈h(τ)

(τ) dτ (28)

Diarization error rate (DER) While the ultimate goal

of the proposed approaches is to improve speaker identi-

fication, we also report some experiments around speaker

diarization. In this framework, the actual identity of

the speaker does not matter – we only aim at find-

ing the best speech turns clustering as possible. The

Diarization Error Rate (DER) was first introduced in

the framework of NIST Rich Transcription evaluation

campaigns [15].

Let us denote Ir the list of speakers in the refer-

ence r and Ih the list of speech turns clusters in the

hypothesis h. Without loss of generality, we can assume

that |Ir| = |Ih|. The mapping function m∗ ∈ IhIr is de-

fined as a bijection between Ir and Ih that maximizes

the total duration of cooccurrence:

m∗ = argmax
m∈IhIr

∑
i∈Ir

κ(i,m(i)) (29)

The Diarization Error Rate (DER) can then be defined

by:

DER (r, h) = IER (r,m∗(h)) (30)

where m∗(h) is an (abusive) shortcut to denote the hy-

pothesis h for which each speaker is mapped to the

corresponding speaker in reference r, using the optimal

mapping function m∗.

In case |Ir| < |Ih| (resp. |Ir| > |Ih|), one can arti-

ficially add dummy silent speakers i∅ in the reference

(resp. the hypothesis), such that κ(i∅, i) = 0 for all

i ∈ Ih (resp. κ(i, i∅) = 0 for all i ∈ Ir).

Purity & coverage In complement to the DER, we also

report the complementary values of purity and cover-

age:

Purity (r, h) =

∑
i′∈Ih

max
i∈Ir

κ(i, i′)

∑
i′∈Ih

( ∑
i∈Ir

κ(i, i′)

) (31)

Coverage (r, h) =

∑
i∈Ir

max
i′∈Ih

κ(i, i′)

∑
i∈Ir

( ∑
i′∈Ih

κ(i, i′)

) (32)

Purity measures the ratio between the duration of the

speech turns of the dominating speaker in a cluster and

the total duration of all speech turns in the cluster

(higher is better) [8]. Coverage is the dual measure,

and accounts for the dispersion of the speech turns of

a given speaker across clusters (higher is better) [16].

4.3 Setup

As illustrated in Figure 7, the REPERE corpus is di-

vided into three sub-corpora: training set, development

set and test set. The training set is used to estimate

ptt, pti, ptw and pts introduced in Section 2.3. The de-

velopment set is used to select the optimal value for

hyper-parameters α and β introduced in Section 3.2:

(α∗,β∗) = argmin
α,β

Edev [XER(r, h)] (33)

where XER ∈ {IER,DER} depending on the appli-

cation (speaker identification or diarization). Hyper-

parameter tuning is achieved using random search. In-

deed, Bergstra & Bengio showed that random search is

usually able to find models that are as good or better

than deterministic grid search within a small fraction

of the computation time [3]. Finally, the test set is used

for evaluation.
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Fig. 8 Influence of parameter α on the development set. The
best DER=18.5% is obtained for α = 0.25.

5 Results and discussion

5.1 Speaker diarization

Table 5 summarizes the first set of experiments focus-

ing on speaker diarization. The proposed approaches

(5A to 5D) are compared with a state-of-the-art BIC

clustering baseline (5E) based on the same input seg-

mentation into speech turns [1]. While the audio-only

approach (5A) is slightly worse than the baseline (21.1%

vs. 19.8%), it does yield much purer clusters (94.7% vs.

92.1%).

Figure 8 illustrates how the parameter α can be

used to find the right balance between cluster purity

and coverage. For instance, one can increase the purity

of clusters by reducing the value of α (i.e. it gives more

importance to the inter-cluster dissimilarity in Equa-

tion (16)).

However, the main strength of the proposed ap-

proach is how easily it can be extended to the multi-

modal (5B) and supervised (5C) cases. For instance,

adding both written name vertices and supervised iden-

tification edges to the graph results in a major per-

formance improvement: configuration 5D is 2% better

than the baseline 5E.

5.2 Oracle performance

All experiments reported in the rest of the paper focus

on speaker identification. However, depending on the

configuration, not all speech turns can be identified.

For instance, it might happen that no acoustic model is

available for a given speaker and his/her name is never

written on screen nor spoken. In order to determine

the IER lower bound, we performed oracle experiments,

reported in Table 6.

An oracle is capable of correctly identifying any de-

tected speech turn as long as the corresponding identity

vertex is available in the graph. For instance, configu-

ration 6B shows that it is theoretically possible to cor-

rectly identify 63.8% of the total speech duration in

an unsupervised way by propagation of the detected

written names. When all sources of information are

combined (6G), one cannot expect to get better than

IER = 8.7%.

5.3 Mono-modal speaker identification

Table 7 summarizes mono-modal supervised speaker

identification experiments: they are mono-modal be-

cause they only rely on acoustic data, and supervised

because they rely on prior speaker models I∗ to iden-

tify speech turns.

It can be demonstrated that solving the optimiza-

tion problem with configuration 7A leads to the follow-

ing solution:

ID(t) =

{
i∗ = argmax

i∈I∗
pti if pti∗ > (1− αT I∗)

? otherwise.
(34)

This is basically the standard open-set speaker identifi-

cation paradigm: for each speech turn, select the most

probable speaker model as long as its probability is

higher than a predefined threshold. The only difference

with the GMM-UBM baseline lies in the fact that this

decision is taken at speech turn level instead of cluster

level (from a preliminary speaker diarization step) for

the baseline. This explains why configuration 7A leads

to slighlty worse results than the baseline (+0.5% IER).

However, this limitation is addressed in configura-

tion 7B by adding edges between speech turns (t↔ t′)

to the graph. A closer look at the hyper-parameters

tuned on the development set tells us that speaker di-

arization (βT T = 0.55) is given slightly more impor-

tance than supervised speaker identification (βT I =

0.45). Moreover, αT T is automatically set to 0.19, en-

forcing pure speech turn clusters (according to Fig-

ure 8). Ultimately, this leads to better results than the

baseline (−1% IER).

5.4 Cross-modal speaker identification

Table 8 summarizes cross-modal unsupervised speaker

identification experiments: they are unsupervised be-

cause they do not rely on any prior speaker models, and

cross-modal because identities are propagated accross

modalities (from written or spoken names to speech

turns).

Configuration 8A shows the most promising results.

Indeed, although it is an unsupervised approach, it does

perform better than the best mono-modal supervised

approach (7B in Table 7). Moreover, its performance
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Table 5 Speaker diarization experiments. Strict transitivity constraints.

# Vertices Edges DER Purity Coverage

5A T t↔ t′ 21.1% 94.7% 83.6%
5B T ∪W ∪ IW t↔ t′ ↔ w ⇔ iw 18.3% 93.4% 85.8%
5C T ∪ I∗ i∗ ↔ t↔ t′ 18.2% 94.0% 86.1%
5D T ∪W ∪ IW ∪ I∗ i∗ ↔ t↔ t′ ↔ w ⇔ iw 17.8% 93.9% 85.7%

5E BIC clustering baseline [1] 19.8% 92.1% 86.8%

Table 6 Oracle performance. IER and Recall do not sum
to one because of non-speech, speech and overlapping speech
detection errors.

# Vertices IER Precision Recall

6A I∗ 35.0% 100.0% 67.9%

6B IW 39.3% 100.0% 63.8%
6C IS 35.8% 100.0% 67.3%
6D IW ∪ IS 21.5% 100.0% 81.9%

6E I∗ ∪ IW 13.4% 100.0% 90.1%
6F I∗ ∪ IS 10.9% 100.0% 92.5%
6G I∗ ∪ IW ∪ IS 8.7% 100.0% 94.9%

Table 7 Mono-modal speaker identification, with relaxed
transitivity contraints (P. = Precision, R. = Recall)

# Vertices Edges IER P. R.

7A T ∪ I∗ i∗ ↔ t 49.4% 54.7% 54.3%
7B T ∪ I∗ i∗ ↔ t↔ t′ 47.9% 55.9% 55.8%

7C GMM-UBM baseline 48.9% 57.5% 54.3%

(IER = 46.5%) is very close to the one of the corre-

sponding oracle (6B in Table 6, IER = 39.3%). It also

obtains slightly better results than the baseline system

8D described in the introduction [37].

On the other side, it seems that the asynchronous

nature of t ↔ s edges (a speaker rarely pronounces its

own name) is not well suited for the proposed frame-

work. As a matter of fact, configuration 8B focusing on

named speaker identification yields poor performances

(IER = 81.8%) even though both the speech transcrip-

tion and the named entity detection steps are done

manually. However, the integration of spoken name ver-

tices does bring a small (−0.9% IER) improvement to

configuration 8A (yet not as significant as we would

have expected based on the performance of oracle 6D).

5.5 Multi-modal speaker identification

In Table 9, the last set of experiments shows how the

best mono-modal supervised approach (configuration 7B,

IER = 47.9%) and the best cross-modal unsupervised

one (configuration 8A, IER = 46.5%) can be advan-

tageously combined into a joint multi-modal speaker

identification approach (configuration 9, IER = 25.3%).

This major performance leap can be explained by

the intrinsical complementarity of both approaches. Ta-

ble 9 provides a detailed analysis of their behavior.

Indeed, the REPERE corpus also comes with annota-

tion of speaker roles: anchor, journalist, reporter, guest

or other. The supervised approach 7B works very well

for anchors (IER = 20.3%) because a large amount of

acoustic data is available in the training set to learn

their models. Conversely, the unsupervised approach 8A

performs very poorly (IER = 79.4%) because the an-

chors names are very rarely displayed on screen. Recip-

rocally, it is very good (IER = 34.4%) at recognizing

journalists, reporters or guests because they are nearly

systematically introduced by an overlaid title block.

Finally, Table 10 highlights the effect of transitivity

constraints relaxation on the performance of the best

proposed configuration. As envisioned in Section 3.4,

strict transitivity contraints should be prefered if speaker

diarization is the targeted application, while loose tran-

sitivity constraints lead to better speaker identifica-

tion results. Strict constraints tend to yield purer clus-

ters (+5.7%) and higher precision (+5.9%), while looser

ones favor higher coverage (+5.4%) and better recall

(+2.7%).

6 Conclusion

The first contribution of this paper is the introduction

of a unified framework for mono-, cross- and multi-

modal person recognition in multimedia data. Dubbed

Person Instance Graph, this framework models the per-

son recognition task as a graph mining problem: per-

son instance or identity vertices are connected with

edges weighted by the probability that they are from

the same person. Practically, we described how the pro-

posed framework can be applied to speaker identifica-

tion in TV broadcast – with speech turn, written name

and spoken name instance vertices.

The second contribution of this paper is related to

the use of Integer Linear Programming to solve the

problem of clustering person instances based on their
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Table 8 Cross-modal speaker identification experiments. Relaxed transitivity constraints.

# Vertices Edges IER Precision Recall

8A T ∪W ∪ IW t↔ t′ ↔ w ⇔ iw 46.5% 66.8% 56.9%

8B T ∪ S ∪ IS t↔ t′ ↔ s⇔ is 81.8% 21.5% 21.4%
8C T ∪W ∪ IW ∪ S ∪ IS iw ⇔ w ↔ t↔ t′ ↔ s⇔ is 45.6% 62.7% 58.2%

8D Late name propagation baseline [37] 47.5% 90.5% 55.5%

Table 9 Multi-modal speaker identification experiments. Relaxed transitivity constraints.

# Vertices Edges
All Anchors All but anchors

IER P. R. IER P. R. IER P. R.

7B T ∪ I∗ i∗ ↔ t↔ t′ 47.9% 55.9% 55.8% 20.3% 86.6% 79.7% 51.8% 50.8% 48.3%
8A T ∪W ∪ IW t↔ t′ ↔ w ⇔ iw 46.5% 66.8% 56.8% 79.4% 31.8% 20.6% 34.4% 76.9% 65.8%

9 T ∪ I∗ ∪W ∪ IW i∗ ↔ t↔ t′ ↔ w ⇔ iw 25.3% 79.4% 78.6% 23.9% 82.9% 76.1% 22.4% 82.5% 77.9%

Table 10 Effect of transitivity constraints relaxation on the
multi-modal configuration 9

Constraints Strict Loose

DER 17.8% 20.0%
Purity 93.9% 88.2%

Coverage 85.7% 91.1%

IER 27.6% 25.3%
Precision 85.3% 79.4%

Recall 75.9% 78.6%

identity. In particular, we proposed two major exten-

sions of our previous work [6]: a weighted version of

the objective function and the relaxation of transitivity

constraints.

Finally, the third contribution of this paper is a

thorough experimental evaluation of the proposed frame-

work on a publicly available benchmark database. In

particular, depending on the graph configuration (i.e.

the choice of its vertices and edges), we showed that

multiple tasks can be addressed interchangeably (e.g.

speaker diarization, supervised or unsupervised speaker

identification), outperforming state-of-the-art mono-modal

approaches.

While this work focused only on speaker identifica-

tion, the proposed framework can be easily extended

to face recognition. Indeed, state-of-the-art face detec-

tion and tracking algorithms are now robust enough

to obtain reliable face tracks instance vertices f . Face

similarity measures could provide weights for f ↔ f ′ or

f ↔ i edges. Even when those weights are missing, the

proposed framework could be used to perform speech-

based face recognition (e.g. using t↔ f edges weighted

by lip-sync measures [5]).

Another promising research direction is cross-show

processing, i.e. building one unique person instance graph

for a whole video collection – instead of one per video.

This could lead to significant improvements in terms of

recall: the identity of a person formally introduced in

one video could be propagated automatically to other

videos where he/she cannot be identified. Oracle stud-

ies on the subject tend to confirm this assumption [35].

However, scaling up the proposed approaches (based

on computationally expensive integer linear program-

ming) to such large graphs is not a trivial task. We

may have to look at similar problems addressed in the

graph mining community, such as community detec-

tion [4] or complex (i.e. made of heterogeneous vertices)

graph clustering [27].
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