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Comparison of Speaker Adaptation Methods as
Feature Extraction for SVM-Based Speaker
Recognition

Marc Ferras, Cheung-Chi Leung, Claude Barras, and Jeardauvain,Member, |EEE

Abstract—In the last years the speaker recognition field has State-of-the-art Large Vocabulary Continuous Speech &eco
made extensive use of speaker adaptation techniques. Adatibn  npition (LVCSR) systems use speaker-adapted models. THe goa
allows speaker model parameters to be estimated using lessy¢ adaptation techniques is to turn speaker-independedétso

speech data than needed for maximum likelihood (ML) training. . .
The Maximum-A-Posteriori (MAP) and Maximum Likelihood into speaker-dependent ones using much less data than would

Linear Regression (MLLR) techniques have typically been usd b€ needed for full speaker-dependent training. In speaker
for adaptation. Recently, MAP and MLLR adaptation have recognition, speaker adaptation was first used in the GMM-

been incorporated in the feature extraction stage of Suppdr UBM paradigm [6], where a Universal Background Model
Vector Machine (SVM) based speaker recognition systems. Tav (UBM) is trained on data from many speakers in an attempt

approaches to feature extraction use a SVM to classify eitlehe
MAP-adapted Gaussian mean vector parameters (GSV-SVM) or to model the whole set of observable speakers. The UBM

the Maximum-Likelihood Linear Regression (MLLR) transfor m IS adapted to each speaker via Maximum A Posteriori (MAP)
coefficients (MLLR-SVM). In this paper we provide an experi- estimation [7] using the enroliment data. This allows a itkda

mental analysis of the GSV-SVM and MLLR-SVM approaches. model to be trained when little data is available, which ieof
We largely focus on the latter by exploring constrained and o case when a large number of parameters are estimated.

unconstrained transforms and different choices of the acastic | ¢ Ei h |18 d Joint Eactor Analvsi
model. A channel-compensated front-end is used to prevenhe [N '€cent years, Eigenchannel [8] and Joint Factor Analysis

MLLR transforms to adapt to channel components in the speech (JFA) [9], [10] MAP adaptation have given excellent resitdts
data. Additional acoustic models were trained using Speake scenarios with large inter-session variability. Thesdiggues

Adaptive Training (SAT) to better estimate the speaker MLLR  yse more or less complex models to separate the speaker and
transforms. We provide results on the NIST 2005 and 2006 channel variabilities during adaptation.

Speaker Recognition Evaluation (SRE) data and fusion restg on
the SRE 2006 data. The results show that using the compensédte Recently, two other successful approaches to speakerecog

front-end’ SAT models and mu|t|p|e regression classes brg] nition have used adaptation techniques to obtain feathl‘:ﬂst

major performance improvements. are classified using Support Vector Machines (SVM). A first
Index Terms—Speaker recognition, CMLLR, MLLR, GMM approach uses the mean vectors of a speaker-adapted GMM,
Gaussian supervectors, SVM ' ' ' " obtained via MAP adaptation of a UBM, as features. A

Gaussian supervector is formed by stacking all mean vectors
of this model and is classified using a SVM. We refer to
|. INTRODUCTION this approach as Gaussian Supervectors or GSV-SVM [11].

Current state-of-the-art systems for text-independelit @ second approach, the Hidden Markov Models (HMM) of
speaker recognition use cepstral coefficients as baserésatu@n Automatic Speech Recognition (ASR) system are adapted
Although popular and successful, cepstral features are m$ing Maximum-Likelihood Linear Regression (MLLR) and
optimal for speaker recognition tasks, since they resualnfr the transform coefficients used as features. MLLR transform
the interaction of several information sources such as tResPpeaker-independent model into a speaker-dependent one,
message, acoustic context, channel and speaker, the Idtfturing information that is specific to the speaker. The us
factor exhibiting the lowest variability [1]. From this wie of MLLR transform coefficients as features has been adddesse
the speaker information seems to be buried underneath otk 2]-[14] and, when classified using a SVM, it is referred t
sources of variability. Modeling the undesired variapijlie.g. @S MLLR-SVM. A purely acoustic variant using Constrained
channel or text-dependency, to remove its harmful factass WMMLLR (CMLLR) and a Universal Background Model (UBM)
been widely used to address this problem. Several chanifel@ Speaker Adaptive Training (SAT) [15] framework has
and session compensation techniques, e.g. Feature Mapffgn pPresented in [16].

(FM) [2], Factor Analysis (FA) [3] or Nuisance Attribute This paper presents an in-depth exploration of MAP and
Projection (NAP) [4] have been successfully applied and aMLLR adaptation in the context of GSV-SVM and MLLR-
being used in state-of-the-art systems. Session and charméM systems. Given the relevance of session compensation
mismatch have also been addressed using score normaiizatibSPeaker recognition, two widely-used compensation-tech
techniques such as T-norm or H-norm [5]. niques are considered, i.e. Feature Mapping at the cepstral

Adaptation techniques have long been used in speech red§ye! and NAP at the SVM feature level. For the MLLR-

nition to improve robustness with respect to speaker viitigh  SVM systems, the type of transform (MLLR vs. CMLLR), the
model (GMM vs. phonemic HMM) and the front-end (ASR

This work has been partially financed by OSEO under the Quamgram.  VS. SID cepstral normalizations) are studied. This lashpoi
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is specially meaningful in the context of the recent NISThe new estimates on the adaptation data and the prior

Speaker Recognition Evaluation (SRE) campaigns, focusikgowledge. Given that mean vectors are placed at the most

on channel mismatch. Using a channel-compensated fraht-dikely points of each Gaussian component, an efficient way of

allows MLLR adaptation to focus on the speaker componerdsanging the overall statistical distribution is by shiffithem.

of cepstra rather than both speaker and channel componefiiBus, a simple form of MAP adaptation is mean adaptation
The remainder of the paper is organized as follows: Sectiorhich moves the Gaussian mean vectors according to

Il reviews adaptation methods as well as speaker adaptive

training. Section IIl provides a quick overview of support ;= ai Bi{xy + (1 — ;) (3)

vector machines for the speaker recognition tasks. Section

IV presents the evaluation protocols and task used in thesgvheref, is the adapted mean vector for théh Gaussian,

experiments. Section V describes the architectures dpeelo Fi{x} the expected mean feature vector for the adaptation

for this work, starting with the cepstral front-ends, théwet data,u; its prior mean vectorx a random feature vector, and

LVCSR acoustic models, and finally the configuration of the: the adaptation factor

SVM-based systems targeted in this study. In Section VI the

acoustic speaker recognition systems used as an expesiment o = 4)

baseline are described. In Section VII we present and discus

the results for GSV-SVM and MLLR-SVM systems individ- which weights the old and new estimates via the relevance

ually as well as the fusion results for the NIST 2005 anfactor 7. Given a specific sequence of adaptation d¥ta=

U

n; +71

2006 Speaker Recognition Evaluations. Conclusions aengi(xy, ..., X¢,...,xT) With 1 < ¢ < T, the effective number
in Section VIII. of frames assigned to Gaussiam; is estimated as
Il. SPEAKERADAPTATION £l )
: . . Ny = ZP(1|Xt) ®)
Speaker adaptation techniques seek to obtain a speaker- =

dependent model given a speaker-independent model and some
speech data belonging to a specific speaker. The speake@nd Ei{x} as
independent model is typically trained using speech data .
from many speakers. The adaptation procedure transforens th . 1 .
model parameters to optimize a certain criterion, e.g. mai Ei{x} ~ n; ;p(zlxt)xt (©)

ing posterior probability or likelihood. This section pesds

three techniques for Gaussian mean adaptation, namely Maxwhere p(i|x;) is the occupancy probability for théth
imum A Posteriori (MAP), i.e. standard Bayesian adaptatioaussian, defined as

and Maximum-Likelihood Linear Regression (MLLR) and

Constrained MLLR under the maximum-likelihood criterion. plilx;) = ]\;\iN(XtWiv i)
The use of CMLLR in Speaker Adaptive Training (SAT) is Zj:l NN (xe; 15, 25)
described in the last part of the section.

(@)

B. Maximum-Likelihood Linear Regression

A. Maximuma Posteriorl Maximum-Likelihood Linear Regression [17], [18] adapts

A Gaussian Mixture Model (GMM) for a random multivari-ihe opservation probability of a HMM in a parametric way,

ate variablex can be formulated as by finding a transform that maximizes the likelihood of the
N adaptation data given the transformed Gaussian parameters

p(x|0) = Z)‘iN(X; iy ) (1) 1-e.p(X|®). As opposed to standard MAP adaptation which
P adapts only the observed Gaussian components, MLLR adapts

all of the components in a set of Gaussians, a so-called

Gaussian probability density function apd and 3; are the regression class. In mean adaptation, Gaussian mean vector
mean and covariance matrix for Gaussian ‘ p of the model are adapted using an affine transform with
. parametersA andb as

Maximum A Posteriori (MAP) estimation [6], [7] maxi-
mizes the a posteriori distribution of the adaptation dXta .
given the a priori model paramete®s that is, using the Bayes p=Ap+b (8)
formula

where )\; is the weight for thei-th Gaussian /() is the

where 41 is the adapted mean vector. Using the resulting
mean-adapted model, co-variance matrices can be alsoegidapt

argmax p(X|©)p(©) ) g

where p(X|®) is the likelihood function ofX given the . T
model parameters and the prior distribution for the mean ¥ =HXH )

vectors are assumed to be Gaussian. 1 . .
Th timati f | derived . th We present mean adaptation only since these parameteroiamaanly
€ re-esumation fiormulas are erve using fsed in speaker recognition. Please refer to [6], [7] for weght and co-

Expectation-Maximization (EM) algorithm, which balancesariance re-estimation formulas.
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at the expense of estimating the additional linear tramsforThis property is particularly useful in Speaker Adaptiveinr
H. ¥ and¥ are respectively the non-adapted and adapted dng (SAT), used in the feature extraction scheme presemted i
variance matrices for the adapted Gaussian. As in mean add®] and described next.
tation, co-variance matrices are also adapted in the marimu
likelihood sense using the Expectation-Maximization (EMp. Speaker Adaptive Training

algorithm. Details on the estimation procedure and MLLR A common use of feature-space CMLLR is speaker adap-

variants can be found in [18]. . - : . .
MLLR transforms are typically estimated across a set (g%/ e training (SAT) [15] which seeks to jointly estimate a

) . t of CMLLR transforms, one per speaker, and a speaker-
Gau_ssmns, a regression class, that_shares the same ItJf"’“f]ﬁﬁ]ependent model in the transformed feature space. Such a
mation pgra_\mete?s_Usmg the acousn_c mode_ls of a LVCSR eaker-independent model captures the overall featste-di
system,_ it is relatively easy to deﬂng a_f|>_<eo! numl?er %[L)Jtion of a large number of speakers. Given a set of B speakers
regression classes pased on the phonetic similarity phtoine and their corresponding adaptation cepafor 1 < i < B,
models. More sophisticated approaches use knowledgetb AT optimizes the maximum likelihood criterion on a per-
or data-driven decision trees that dynamically determhme t

: i . speaker basis as
number regression classes based on the observation phrt;bab|p

similarity and taking into account the amount of available B
adaptation data per class [19]. Therefore, each of the segre argrg%xnp(ci(XiH@) (13)
sion classes results in a separate MLLR transform that id use =1

to adapt a subset of the Gaussian parameters in the model. where the individual speaker-dependent transfofmsand
the model parameter® = (u;,...,puyn,21,...,2y) are
C. Constrained MLLR jointly estimated. Such an optimization is commonly done
. o , in two steps by, first, estimating the feature-space CMLLR
'A.‘ main concern c_)f MLLR_ gdaptatlpn is how _to re_l'ablytransforms C; that project the speaker-dependent features
estimate the regression coefficients using the availabieitrg _onto a speaker-independent space and, second, re-training

data. It is common to simplify the regression model by usings gpeaker-independent mod@l using those features. This
diagonal or block-diagonal co-variance matrices [18] éhgr process, illustrated in Fig 1, can be iterated several times

reducing the number of parameters in the linear regressign g\ manner, obtaining a speaker-independent model with
model or to share the mean and variance transforms. Cofwer inter-speaker variability, at each iteration

strained MLLR (CMLLR) [20] as described in this section
falls into the latter category, using the same transforrmfean

. . . . X X oo Xg ------
vector and co-variance matrix adaptation. For an arbitrary = 2 B wain ®
Gaussian component in a regression class, its parameters ar_ ) ) )
transformed as = G Ca Cp

- 1 1 1 ______ 1
p=Ap+b (10) 1 X2 Xp frain O
3 =AXAT (11)
M c2 C3
where the linear transformA is used for adaptation of
both 1 and . A main difference from MLLR adaptation of *  x2 X2 X2 o a2
the Gaussian mean vectors is that, using the same number = = = train

of parameters, the co-variance matrices are also adapted.

The algorithm used for MLLR adaptation can also be usddp- 1. Block diagram of two iterations of speaker adaptianing (SAT).

to estimate the CMLLR transforms. Sufficient statistics are

computed given the current estimates Af and b in the

expectation step and the likelihood function is maximizéthw Il. SUPPORTVECTORMACHINES

respect to these parameters in the maximization step. The systems explored in this work use discriminative mod-
When only one regression class is used, adaptation agling of speakers based on Support Vector Machines (SVM),

be performed in the model-space, as in (10), or alterngtivéhtroduced in speaker verification a few years ago. Such

in the feature-space by transforming the features so theat tlassifiers are capable of successfully discriminatinghhig

likelihood function with respect to the speaker-indeperidedimensional and sparse feature spaces where other modeling

model is maximized. The feature-space transform is approaches fail to generalize. SVMs [21] are binary clessfi
which use a weighted sum of kernel functions as the dis-
xt =A%, — A" 'b (12) criminant function. For a set of input-output pairs of tiaip

. ) ~ sampleg(xy,¢;) with 1 <1 < N andt; € £1 for positive and
wherex is the speaker-independent feature vector at timeyegative classes

andx; is the corresponding speaker-dependent feature vector.
Nsv

2Note that MLLR adaptation of a single Gaussian is equivatentL flx) = Z artik(x1,x) + b (14)
re-training of the Gaussian. =1
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wherezl]\flv agt; = 0, oy > 0 and b is an offset. In this A. Front-end
expansion, théVgy support vectors;, the training data points
lying on the separation margin, as well ag are obtained
S0 as to maximize the classification margin. The soft-mar
variant further minimizes the number of classification esro - o
so that it can deal with non-linear separable data sets. The SPeech Recognition (PLP12)This is the front-end used
kernel function satisfies the Mercer condition, ig:, -) must by the previously trained LVCSR system. It uses 39

be positive semi-definite. This condition implies titatan be cepstral features with 12 MEL-PLP coefficients and the
written as log-energy along with their correspondiny and AA

coefficients extracted every 10ms using a 30ms window

k(xi,x5) = o(xi)Tp(x;) 1<i,j<N (15) on the 0-3.8kHz bandwidth. Mean and variance normal-
o o ization are applied to each segment of interest. When used
which is a regular dot product on a possibly infinite vector  in the LVCSR-based systems, only the frames assigned to

We use two different cepstral front-ends as a side effect of
using the previously trained models of the LVCSR system for
He MLLR and CMLLR transform computation:

space mapped from the input space by the function. the speech states of the acoustic models are used. When
used with the other systems, Speech Activity Detection
IV. TASK AND EVALUATION (SAD) is performed based on the voicing features as

The speaker verification systems explored in this study were Produced by the ESPS géb° pitch extraction algorithm.
evaluated using conversational telephone speech datawfoll ¢ Speaker Recognition (PLP15N) This front-end uses
ing the NIST 2005 and 2006 Speaker Recognition Evaluation feature-level channel compensation and feature Gaussian-
(SREJ protocols. A speaker verification system is asked to iZation as is commonly done for speaker recognition. The
decide whether speech from a given target speaker is priesent ~ configuration was optimized for use in past NIST SRE
a particular speech segment. We used the SRE 2005 English- €valuations. We use 15 MEL-PLP coefficients along with
only core-condition data for system development and the SRE their A, AA coefficients, and the and AA energies

2006 English-only core-condition data for system evabrati for a tota] of 47 featurgs. The features are extracted every
These data consist of 5-minute-long segments containiagtab 10ms using a 30ms window on the 0-3.8kHz bandwidth.
two minutes of speech per conversation $id& total of 646 For the LVCSR-based systems only the frames assigned

(274 male / 372 female) target speaker segments are awailabl {0 the speech states of the acoustic models are used. For

for model training in SRE 2005 and 816 (354 male / 462 the other systems, the voiced frames are determined by

female) for SRE 2006. 2117 test speaker segments (907 male the ESPS gef0® pitch extraction algorithm. We apply

/ 1210 female) and 3735 (1606 male / 2129 female) are 9ender-specific feature mapping [2] to compensate for

available for SRE 2005 and SRE 2006 respectively. The ratio channel distortion using segments from the test speakers

of impostor to true access trials is about 10 in both cases N Previous NIST SRE test sets 1997 to 2002 (24769

and all trials involve speakers with the same gender, known a S€gments, 6 hours/gender) as training data. The resulting

priori. features are Gaussianized using feature warping [23] with
The primary performance measure for the NIST speaker @ 3 second window.

detection task is the Detection Cost Function (DCF) defined

as_t_h_e weighted sum of the false alarm and miss error prog— LVCSR

abilities DCFnorm = Puriss + 9.9 X PraiseAlarm- We also

report the Minimal DCF (MDC) value obtained a posteriori We use several acoustic model setups to compute both the

for the best possible detection threshold. Since this dipgra Phonetic alignment and to estimate the MLLR transforms. The

point favors false alarms, we provide the Equal Error Ragcoustic models and a pronunciation dictiofaaye used to

(EER) as an alternative performance measure. The Detect®ign the provided word-level transcripts with the audidada

Error Tradeoff (DET) curves [22] are used to assess systéife explore three acoustic model configurations, two based on

behavior over the full range of operating points. The DEthe PLP12 and PLP15N front-ends and one trained using SAT:

curve is comparable to the Receiver Operating Charadtezist , The PLP12 AM system is based on the LIMSI SWB

(ROC) curve but uses a non-linear axis, which results in a speech-to-text system [24]. It uses gender-independent

linear curve for a normal distribution, improving its reé&ddy. continuous density HMM with Gaussian mixtures for
acoustic modeling. The acoustic models are tied-state,
V. SYSTEM DESCRIPTION context-dependent triphones, where the tied-states are

The systems explored in this paper use the adaptation automatically found by means of a decision tree. A total
methods described in Section Il to extract base features tha ©f about 6400 tied-states are used, with 32 Gaussians
are particularly relevant for SVM-based speaker recogniti per state. This system uses the PLP12 front-end, i.e. 39
All of them use SVM classifiers, differing only in the base ~ cepstral features, and it was trained on Switchboard |
feature vectors, and have the same post-processing steps. T (4862 conversation sides), Switchboard 1l (2348 sides),
details of the systems are given in the following sections. Callhome (240 sides) and Fisher (6127 sides) corpora,

3The NIST 2005 and 2006 SRE evaluation plans, http:/wwivgts/ SKTH Software, http://www.speech.kth.se/software
speech/tests/spk/ SWe used the pronunciation dictionary of the LVCSR system] [2dd
4The core conditions involve the two conversation sides. manually added missing entries.
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for a total of 13577 conversation sides involving about The impostor speaker data consists of 2243 speech seg-
650 hours of data. ment§ from the NIST SRE 2004 training data plus 4854

« The PLP15N AM system is the same as PLP12 AMspeech segmerifsfrom the Switchboard | (SWB1) corpus,
except that it uses the PLP15N front-end, with thall in the English language with a minimum and an average
speaker-recognition-specific normalizations. Switchimg effective duration of 10 seconds and 2 mindtegspectively.
the PLP15N front-end required re-training the acoustitranscripts are available for all of the segments. The SRE
models. For this purpose, exactly the same training d&2804 transcripts were obtained automatically using theOBT’
was used as for PLP12 AM training. Since both frontBBN speech recognition system and they were provided by
ends result in time-aligned cepstra, the alignments prbHST for the SRE 2004 evaluation. The SWB1 data were
duced with the PLP12 AM for the training data were alsmanually transcribed (LDC Corpus 93T4). All SVM-based
used when training the new PLP15N acoustic modelsystems share the same impostor data, since transcripts are
The PLP12 AM and PLP15N AM are therefore directiyneeded for some MLLR systems but not for other acoustic
comparable. systems.

« For the PLP15N+SAT AM system, the PLP15N AM The SVM classifier uses a linear kernel and it is trained
acoustic models were used as seed models for omging gender-dependent impostor speaker data. We used the
iteration of SAT re-estimation [15]. We computed on&VMTorch'? package developed at the IDIAP laboratory,
CMLLR transform per speaker using all of his/her speechithout score normalization as it resulted in a performance
data. The acoustic models were re-trained using thess?S.

CMLLR-transformed cepstra. In this case, we used a
slightly different clustering threshold optimized for 8& D. GSV-SVM System

features. We obtained a total of 6100 tied-states, anumbeﬁ-he Gaussian Supervector (GSV) approach [11] uses the
comparable to the 6400 states in the PLP12 AM angean vectors of a speaker-dependent GMM as features, where
PLP15 AM. these are obtained via standard MAP adaptatidi] of a
previously trained GMM-UBM estimated using speech data
C. SVM-based systems from many speakers. Assuming N Gaussian components in the
The SVM-based systems differ in the strategies used ®&MM, the mean vectorg; = |1, ..., pic]t for1 <i < N
obtain the base supervectors, one per speaker and perrsessi@ arranged as
They share the same post-processing and SVM setup in order
to ease the comparison of the different features. The trgini m=[pul pul . pR]" (16)

data and tuning parameters were set to maximize the SRE N . . .
= resulting in a Gaussian mean superveaiorof dimension
2005 cross-validation performance.

Nuisance Attribute Projection (NAP) [4], [25] inter-sessi NC, whereN is the number of Gaussians adlithe dimen-

I Lo . sion of the cepstral features. For a speaker of interest one
variability compensation is applied to the base supervegcto :
ector is used as the base supervector.

e s e e sorm . Fo the PLEISN fetures, e use o gnder dperden
P 9 9 UBMs with diagonal covariance matrices trained on about 120

ability in the feature spade The NAP transform is obtained hours of speech data per aender. the same impostor speaker
using NIST SRE 2004 training data, which is known to P ber g ' P P

potentially have a high inter-session variabflityVe set the data that is used for SVM training, i.e. NIST SRE 2004 and

. ) : ; . %yvitchboard | data. We use 5 iterations of maximum likelihoo
session subspace dimension to 50 which was experiment Yni a0 : :
: . ) relining with 1% of the global variance as the variance floor.
found to be almost optimal for all systems described in thllshe number of Gaussians used ranges from 64 up to 1024
paper.

. . depending on the configuration. To obtain the speaker-8peci
The resulting supervectors are normalized by means of min- ) . :

. e models we use 3 iterations of standard MAP mean adaptation
max component scaling. Every feature is fit into the range

[-1/+/M,1\/M], where M is the number of features of the ith a relevance factor of 10.

vector. This forces the SVM to deal with dot products with G|v_en the high dimensionality of the supervectors used,
. i . reaching tens of thousands of components for the best per-
a maximum magnitude of 1. The resulting mean value of tf}e

features is expected to be 0, so any offset before normilizat orming configurations, the feature dimensionality candree

is removed. Min-max statistics are collected from the iMiPoS  9about 60 hours of speech, after speech activity detection.
speaker set described below. In preliminary experimehts, t °For a total of about 170 hours of speech excluding silencensats.

g 11 o . ) )
method was found to Outperform mean and variance normal--For homogeneity with train and test data, which have an gesdairation
. o of 2 minutes as well.
ization as well as rank normalization for several SVM-basedleVN|T0rch a Support Vector Machine for Large-Scale Regapsand
acoustic systems. Classification Problembttp://www.idiap.ch/learning/SVMTorch.html
13we found both gender-independent and gender-dependeatri4o be
“An orthonormal set of vectors spanning the maximal intes&®  harmful for several SVM-based systems. We believe this tighrelated to

variability subspace can be obtained from the eigenvectBls = the highly skewed score distributions, far from a Gausstaape, output by
(e1,e2,...,epyap) COresponding to the largest eigenvalues of the intethe SVM. Scores gather around -1 roughly ranging from -0.81td, which
session co-variance matrix. BasedBnwe use the projection matrik-EE”  seems to be due to the strong imbalance of the training datd, frue speaker
to remove session variability from a feature vector. against 7000 impostor speakers.

8Most of the 310 speakers have more than 10 sessions per sjeakeng 14Eigenchannel [8] or Joint Factor Analysis [9] are altewmtimethods

several channel conditions which can be used to obtain inter-session compensated vagpers.
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larger than the number of training samples. We use a soft-
margin SVM for classification since, in such degenerate situ m=[m”, ... mg’]" (20)

ations, it successfully avoids overfitting by balancing hiae ) | o2 . | h
complexity vs. training performance. assuming a total oR regression classes. We use such a

We use the SVM configuration described in Section y.cvector as the base supervector for every speaker of interest
The linear kernel is derived from an approximation of the The number of transforms used (_jepend_s on the amount
Kullback-Leibler (KL) divergence, a measure of dissinitiar of speeph dz.;\ta available for adaptatlpn. Using many classes
between the distributions given by the GMM of two speakereSults in a finely represented phonetic space but less Ispeec

described in [25]. Given two models for segmestsand s® data is available for each class-dependent transform. We
the distance can be expressed as " force a full-matriX® transform regardless of the amount of

adaptation data assigned to the corresponding class. Three
static regression-class configurations involving onlyespe
T i i .
k(s9, s%) = Z (\/)\—iz;%ﬂ/?) (\/A—iE;%uf) (17) are used in these experiments:
Pl « One transform 1t), speech only

where we keep the notation used in (1). The covariance® Two transforms £0), vowels and consonants
« Three transforms3t),

matrices are the same for both segments since only the means tricati q

are adapted. This kernel satisfies Mercer’'s condition sihce - ncat:ve and stop consqnantsl d back |

is linear. A regular dot product using the normalized Gaarssi - Pas‘:‘ conslonants, SeMIVOWeIS and back vowels
— front vowels

supervectors
The MLLR supervectors rapidly end up with thousands of
m’ = [\//\_1&, \/)\—QB’._.” /)\M“_M]T (18) featured® that are classified using a SVM, as described in
g1 02 oM Section V-C. The linear kernel reduces to computing a regula
where M = NC, N is the number of Gaussians antis dot product of the MLLR supervectors as
the dimension of the cepstral feature vectors, is equivalen
to (17). u; ando; for 1 < i < M are the scalar mean k(s%,s%) = (m*)Tm® (21)
and variance parameters of the corresponding cepstral and " b .
Gaussian components. We prefer this second form since thé(vherem andm’ are the MLLR supervectors, as defined

normalized supervectors can be post-processed arbjtrang. in (20), correspor.1ding to speech segmentand sp.
for inter-session variability compensation. 2) MLLRg-SVM: A large-vocabulary ASR system needs
huge amounts of speech and text data, as well as substantial

computational resources for training. This makes the imple
E. MLLR-SVM Systems mentation of such a system not accessible to everyone. A
The MLLR-SVM systems use the MLLR regression coeffisimple and cost-effective alternative is to replace theuatio
cients arranged in a vector form as the base supervectors &MM by a GMM-UBM, hence MLLR,-SVM. The cepstra
a SVM as classifier. We use two MLLR-SVM variants in ouare now aligned against a single HMM state with a global
experiments, MLLR-SVM and MLLR,-SVM where either Gaussian mixture observation probability. The phonelics
the acoustic models of a LVCSR system or a GMM-UBM aralignment is no longer straightforwaiti However, a GMM-
used to align cepstra and compute MLLR transforms. based system can be used for any language since no trasscript
1) MLLR,-SVM: This system is based on the MLLR-SVMor ASR hypotheses are required. Another advantage of a
system proposed in [12]. Given the orthographic transioiipt GMM-based approach is that any cepstral front-end with
of a speech segment, we use the acoustic models of a LVC&® kind of normalization, including session and channel
system described earlier in Section V-B and the pronuranaticompensation, can be used. Multiple SAT iterations can also
dictionary to align the corresponding speech data to the performed as CMLLR computation and training are faster
transcripts. This alignment is used to assign each frame fto a GMM than for the acoustic models of a LVCSR system.
a regression class, covering a part of the acoustic space. OnWe use two gender-dependent GMM-UBM trained using
MLLR transform is computed per regression class using tlike impostor data, i.e. SRE 2004 and Switchboard I. These
same acoustic models used for alignment. The coefficientsasé the same GMM-UBMs used by the GSV-SVM system. A
transformr are stacked as a supervector of the form single MLLR transform is computed and the corresponding
supervector is normalized and classified as in the Mj1LR

. . N r SVM system. We refer to this simplified approach as MIgkR
my = [Allv"'a 1Cy - - £3C1y - - - £3CC>»

T, beT (29)
. ) ) ) 16According to experiments that are not included in this papecking
with AT and b® being the matrix and the offd&t i.e off to a diagonal MLLR transform when lacking data for relkestimation

only mean vectors are adapted, afidthe dimension of the reslglted in increased error r_ates f_or the_: 2t and 3t classes._ o
The non-speech class involving silence and breath is dbggeit is
cepstral feature vectors. The supervectors for all tran$$0 ,s5ymed 1o carry no speaker information.
are concatenated together in one vector 18For the PLP12 front-end, each MLLR transform 1285 39+39 = 1560
coefficients, 47 - 47 + 47 = 2256 for PLP15N. This dimension is multiplied

150ffset coefficients are always included as they directly gensate for by the number of transforms.
convolutional distortion in the cepstral features. 1Explicit assignment of Gaussians has been used as an diterira[26]
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F. CMLLR-SVM Systems order monomial expansions forming as many supervectors as

The CMLLR-SVM systems follow the same strategy as th%gpstral vectors. These are normali;ed to have a unitynm_ia_
MLLR-SVM systems. We also explore two variants of thithin the speech segment and finally gveraged, _obtalnmg
CMLLR-SVM approach depending on whether the acousti0824 featur.es per speaker segment. Thl_s expansion can be
models of a LVCSR system or of a GMM-UBM are used t§€€N as estimating first, second and third order statistical
compute the CMLLR transforms, resulting in the CMLLR Mmoments of the ce_pstral vectors. We use a Kernel Principal
SVM and CMLLR,-SVM systems respectively. Cgmponent Analysis (KPCA) [28]. with a 2nd order polyno-

1) CMLLR,-SVM: This system uses the acoustic HMM ofmial kernel to gxtend thg polynor_mal fe_ature_s to orders éigh
an LVCSR system for alignment and to estimate the featut@an threé” while reducing the dimensionality of the feature -
space CMLLR transforms. We use one transform per speakBace- We used 2917 session in the SRE 2004 data to train
segment corresponding to the speech class only, as is o 8 KPCA transform. Taking all of the eigenvectors, we abtai
performed in LVCSR systems. In our experiments this algg’L/ OUtput features. These vectors are kept as base feature
allows comparison with a purely acoustic approach based B the PLP-SVM following NAP compensation, normalization
a GMM-UBM, which uses a single transform for the whol@nd SVM classification as in all SVM-based systems.
model. We compute one feature-space transform per segment
given by the parametersA("*, —A~'b) which are inverted B pLP-GMM system

to obtain the model-space transforrds, ) whose parameters The PLP-GMM system [29] is based on the GMM-UBM

are actually used for classification. These latter pararsaie . ) . o .
the features used in the CMLIFSVM system. Other than paradigm [6] using hybrid-domain eigenchannel compeasati
. i : d on a factor analysis model of utterance variabili@}.[3
sing CMLLR transforms, all steps are the same as in th&>° . Y . :
using P ! e front-end is based on the PLP15N analysis bypassing

MLLRp-SVM system. feat . . it sh d tive int tioh wit
2) CMLLR,-SVM: The CMLLR,-SVM system estimates a, o, c_Mapping, since it showed a negative interactioh wi
factor analysis compensation. We use two gender-dependent

single feature-space CMLLR transform using & GMM-UBM BMs with 1536 mixtures each, trained on about 24 hours

In principle, this approach is thought to work together wit
SAT, since the transforms used for model training and tho _speech from SR.E 2000 and SRE 2.001 development_ and
aining data. Covariance matrices are diagonal and anegia

used for feature extraction become homogeneous, i.e. sath . . .
g oor threshold of 1% of the global variance is applied at

CMLLR. A main difference of this approach with respec o : . .
to SAT as used in speech recognition is that we compuf ch training iteration. Speaker models are obtained u3ing

one feature-space CMLLR transform per speaker segm |?rations of eigenchannel adaptation with the ALIZE tdblk

resulting in a speaker- and session-dependent transfarthel thtla]'éa:?uest gegglirgr”;g mn?gr?tl;d??:?hzer}]snséfpag%?ﬁ;?apo;;
training phase, these transforms remove both the inteakgye getsp 9 ; 1T

e : e i was trained using the SRE 2004 training data, the same data
and inter-session variabiliies in the GMM-UBM. as used for NAP compensation in the SVM-based systems,

We use the gender-dependent GMM-UBMs used in th%d a channel-space dimension of 40. Test segments are

GSV-SVM system, i.e. trained using SRE 2004 and Switcfi mpensated in the feature-domain and scored using sthndar

X . . CO
board | data. When using SAT, we perform one re-trainin D . . . )
iteration only so that GMM-based and LVCSR-based systel(eg -likelihood ratios, taking the 20 top-scoring Gaus.slar_l

e use gender-dependent T-norm [5] for score normalization

use the same number of iterations, which eases compari Ol 4 on 250 male and 250 female seaments taken from the
of the systems using SAT. For feature extraction purposes, %RE 2004 training data 9

feature-space CMLLR transforms are inverted as in CMELR
SVM to obtain the model-space transform parameters. Furthe
processing is the same as in the MLI-BVM system. C. System Fusion

SVM-based systems obtain scores by projecting test seg-
VI. BASELINE SYSTEMS ment supervectors against the supervector obtained for the
Although the main aim of this paper is to compare systenti@rget speaker during training. These scores should beein th
using different adaptation methods, it is also interestintest range [-1,+1], although the large number of impostor speake
their behavior in combination with other systems given thasegments used for training highly biases their distributio
currently, fusing systems integrating some degree of diger towards -1. The PLP-GMM system outputs log-likelihood-
is a major source of system performance improvement. In thRfio scores, i.e a target model vs. the UBM likelihood ssore
section we describe the two acoustic state-of-the-aresyst We use forward-backward scoring for all of the systems
used as baseline systems in these experiments either [8%], which aims at making the train and test phases symmet-
individual or fused system comparison. ric. The forward system uses a conventional approach where
the test speech is scored against the target speaker model. |
the backward system, we score the training speech against
A PLP-SMM system the test speaker model. Therefore, we obtain two scores per

The PLP-SVM system is based on the Generalized Linegfstem and per trial. Each score is considered individifally
Discriminant Sequence (GLDS) kernel [27] and uses PLP15Jystem fusion.

features, explicit polynomial mapping and a SVM classifier.
Cepstra are expanded by concatenating first, second amd thiE%Explicit polynomial mapping is untractable for such orders
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We use a logistic regression mo#feor score fusion, which modeling only the speaker components but requires retrgini
outputs normalized log-likelihood-ratio scores. The SRIB®2 of the acoustic models. Several acoustic classes can be used
data was used for training the model and the SRE 2006 d&ta more precise adaptation when enough speech data are
was used for test, so only performance for the latter are shoavailable. In these experiments we explored front-end ,type
in the results. Scores for empty segments were excluded froransform type, model type and training technique and num-
training. ber of transforms used for acoustic model adaptation. Given

the large number of different configurations, acronyms are
VIl. RESULTS introduced to ease further discussion. The nhaming corwesti
- designate systems by capital letters indicating the type of
A. Individual Systems ] . MLLR transform (QMLLR or MLLR), model type (@M or

We conducted two series of experiments, one to evalugi®im) and the number of cepstral coefficients in the front-end
MAP adaptation in the GSV-SVM systems and one to evaluqtg for PLP12 or_15for PLP15N). For the MLLR systems
MLLR adaptation in the MLLR-SVM systems, with a focus onysing HMM, the number of transforms is also specified.
the latter. We give results for forward and forward-bacldvarEvemua||y, if speaker adaptive training is used, the SATte

fused systems on both the NIST SRE 2005 and SRE 2006 d@§&dded too. Table Il shows the system names along with their
Improvements are always relative unless otherwise stated. yegpective configurations.

1) GSV-SVM Systems: The GSV-SVM performance was

first assessed for several configurations differing in theiber [ System Front-end | Model | SAT | Type | Transforms
of Gaussians used in the GMM speaker models. We teste@G12 PLP12 GMM | x | CMLLR 1
from 64 to 1024 Gaussians in exponential steps. The relevar cgf'g SAT ﬁ:ﬁg ﬁmm \X/ gmtts i
factorT was set to 10, the same value obtained by optimizationcg1s PLP15N | 6MM | x | CMLLR 1
on the PLP-GMM system. MDC and EER values for forwargd CG15 SAT PLP15N | GMM | / gMLLR 1
; H15 PLP15N | HMM | x MLLR 1
and forw_ard backward averaged systems are shown in T_able H15 SAT PLPISN | HMM | + | CMLLR 1
Decreasing error rates can be observed as more Gaussiang gz PLP12 MM T x MLLR 1
used in the speaker models up to 256 Gaussians, slightly loweMG12 SAT PLP12 GMM |/ MLLR 1
than the optimal number reported in other studies [33]. A 5 | MH12 1t PLP12 | HMM | x| MLLR !
. . MH12 2t PLP12 HMM | x MLLR 2
and more Gaussians performance drops again, probably due jg412 3t PLP12 HMM | x MLLR 3
having to estimate too many parameters in the speaker modeléG15 PLPISN | GMM | x MLLR 1
for the amount of data actually used for adaptation. Thisdre | MG15 SAT | PLPISN | GMM |/ | MLLR 1
) MH15 1t PLP15N | HMM | x MLLR 1
is seen for both SRE 2005 and SRE 2006 qlata. MH15 1t SAT | PLP15N | HMM | / MLLR 1
Forward-backward system fusion brings improvements inMH15 2t PLP15N | HMM | x MLLR 2
all cases, with gains dependent on the system and the evailti> g: SAT PLEISN | fhavt \X/ MR g
ation data. Overall, the relative gains are in the range of 3PAVIH15 3t SAT | PLPISN | HMM | o/ MLLR 3

to 15% for MDC and 1.5% to 13% for EER, thus exhibiting TABLE Il
a large variability. SYSTEM NAMING CONVENTION FORCMLLR-SVM AND MLLR-SVM
SYSTEMS COLUMNS SPECIFY SYSTEM ACRONYMTYPE OF TRANSFORM
SRE 2005 SRE 2006 (CMLLR vs. MLLR), MODEL TYPE(GMM vs. HMM), FRONT-END
MDC T EER (%) MDC [ EER (%) TYPE (PLP12vs. PLP15N), SAT (/) OR STANDARDML (x) MODEL
System F FBE F FB| F FB- F FB TRAINING, AND NUMBER OF TRANSFORMY1 TO 3).

GSV 64g |.0226 .0214 5.32 5.24.0207 .0201 4.82 4.5
GSV 128g |.0192 .0190 5.11 5.08.0181 .0174 4.03 3.9]
GSV 2569 |.0177 .0172 4.664.45|.0182 .0174 3.54 3.2¢

GSV 5129 |.0186 .0179 4.914.40|.0200 .0193 4.09 3.7 : P
GSV 1024g 0199 0.187 503 4.620218 0184 426 3.6 As shown in [16], convergence of the SAT re-estimation

TABLE | process in a CMLLR/GMM system is fast. One or two SAT
MDC AND EEROF GSV-SVMSYSTEMS ON THESRE 2005nD SRE  Iterations already provide a significant gain while keepting
2006EVALUATION DATA . COLUMN F SHOWS FORWARD SCORES AND  COmputational cost at a reasonable level. For this reasen, w
COLUMN FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH se one SAT iteration in these experiments. This allowsma fai
A WEIGHT OF 0.5. THE BEST SB(C)(ESEfC'E FACH COLUMN ARE SHOWN IN comparison with the PLP15N+SAT acoustic models of the
LVCSR system which used one iteration to keep computational
resources at a reasonable level.

] Table Il compares results for several CMLLR-SVM sys-
2) MLLR-SVM Systems: The MLLR-SVM systems allow 4o yith different front-ends and models, including SAT.

exploration of a wide variety of adaptation schemes each Wi o absolute MDC and EER are higher for the SRE 2005

their pros and cons. CMLLR performs mean andi _varian%eata compared to the SRE 2006 data, suggesting structural
adaptation at the cost of reduced adaptation capab|I|tyl\/l:3MdiﬁerenCes in the two databases, e.g. the proportion dveat

_do not requ_ire transcripts to perform adaptation,_but miogel speakers. This difference could be partly explained by e u
s less prei[:lsdeftha? ngsll? aCOIL\’ASLtmeO(?EI?' tl_Jsmtg afchan ‘mostly native English speaker data for training, resgitin
compensated front-end aflows adaptation to focus Oa{‘significant phonetic mismatch between train and test data.

2lwe used the FoCal toolkit http:/Awww.dsp.sun.aczafrummer/focal/ The choice of the front-end has a |ar.gle influence in perf?_r'
index.htm. mance, probably because of the specific speaker recognition

QO

SURN|
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pormalization%z, namely feature mapping and feature warp- MD(S:RE foé)éR %) MDERE |20££R %)
ing, used for the PLP15N featufésSystems using PLP15N System | F FB F FB| F FB F FB
features outperform their PLP12-based counterparts. dJsin ggg AT -82‘2% -8382 ;g; g-%ggggg -8322 g-gg g-;é
forward scoring, a relative gain of a_round 10%-14% in MDC, | 5515 0329 0298 7.53 72110292 0258 670 639
and up to 13% in EER are obtained for the GMM-based [cG1s 0303 .0276 7.93 7.860255 .0241 596 5.6
systems (CG15 vs. CG12, CG15 SAT vs. CG12 SAT) and 8(H5ig SAT -8323 -8323 g-gg g-gggggg -83‘1% g-ig g-gi

0 % i i i : : ) ) ' : ’
from 11% to 20% in MDC or EER using LVCSR.acoustllc CH15 SAT| 0286 0244 632 6360236 0220 584 556
models (CH15 vs. CH12). Forward-backward scoring, which TABLE 1N

ma_kes scores less dependent on the ta_r96t Sﬁé&kﬂ' found MDC AND EEROFCMLLR-SVM sYSTEMS ON THESRE 2005AND SRE
to improve performance by 5%-20% in MDC and 3%-18% 2006EVALUATION DATA . COLUMN F SHOWS FORWARD SCORES AND

in EER. Overall the MDC gains are s||ght|y h|gher for SRECOLUMN FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH
2006 while the EER reductions are larger for SRE 2005. A WEIGHT OF 0.5.

Figure 2 (left) shows DET curves for systems using PLP12

and PLP15N front-ends on the SRE 2006 data. A consistent

; ; : : SRE 2005 SRE 2006
improvement is seen for almost all operating points for both MDC [ EER(%)| MDC [ EER(%)
the GMM-based and HMM-based systems. System F FB F FB| F FB F FB
Concerning the type of model used to compute CMLLR |[MG12 .0384 .0363 9.81 9.360301 .0290 7.40 7.18
; ; MG12 SAT |.0326 .0310 8.07 7.940272 .0248 6.16 5.79
transforms, _an_HMMls clearly ad\{antageouswnh the PLP15N MH1Z 1t '0348 0310 798 7640281 0250 592 57b
features, this is not the case with the PLP12 features. For|pmH12 2t 0310 .0268 6.94 6.65.0245 .0206 5.37 5.05
the former, we observe relative gains of 8%-20% in MDC or |MH12 3t .0298 .0262 6.94 6.780261 .0223 5.28 5.0
EER for the forward systems and 6%-20% for the forward- |MG15 (0367 .0342 8.90 8.86.0304 .0282 7.72 1.58
. |MG15 SAT |.0278 .0264 7.20 7.280244 .0226 5.70 5.48
bgckward fused systems (CH15_vs. CGls). The DET curves in| yu15 1t 0254 .0232 5.74 5.70.0207 .0189 5.10 4.82
Figure 2 (left) show rather consistent gains for these syste | MH15 2t .0222 .0201 5.86 5.74.0192 .0171 4.27 4.1p
for most of the operating points. Gains are in general dight [MH153t | 0219 .0201 545 5410191 0171 4.27 4.23
: : o | MHI5 Tt SAT|.0199 .0180 4.86 4.57.0183 .0164 432 4.3l
lower for the PLP15 SAT acoustic models, reach!ng 13% | MH15 2t SAT| 0180 .0159 453 4.330155 .01433.45 3.57
but also as small as 1%. Using the PLP12 acoustic modelg MH15 3t SAT| .0185 .0167 4.95 4.87.0154 .01363.77 3.68
results in very small improvements, with GMM-based systems TABLE IV

eventually outperforming HMM-based systems. This can b@DC AND EEROF MLLR-SVM SYSTEMS ON THESRE 2005AND SRE

seen in the left part of Figure 2 (Ieft) around the MDC, shown 2006EVALUATION DATA . COLUMN F CORRESPONDS TO FORWARD

with the cice O s e A g o
Using SAT models turns out to be slightly beneficial

for GMM-based systems, but performance decreases for the

HMM-based systems. Forward systems using GMM (CG15

SAT vs. CG15) show relative improvements of over 3% in\jhough the PLP12 and PLP15N front-ends also differ in the
MDC and 1%-8% in EER. Gains are slightly larger for the, \mper of PLP coefficients, we believe that most of the gain
forward-backward systems on the SRE 2005 data but no gain,ptained by using feature mapping and feature waing
is observed on the SRE 2006 data. As for the HMM-based, .o 3 (right) shows DET curves for the MH12 2t and
systems, the results suggest that there is a bad interastion 15 ot systems on the SRE 2006 data. The improvement
using the CMLLR transforms together with SAT, as this aRsptained using the PLP15N front-end is consistent in the low

proach always leads to performance loss for both the forwagqe_ajarm probability region covering the MDC and the EER
and the forward-backward scored systems. operating points.

As for the MLLR-based systems, we assessed the effects 0 sing the acoustic models of the LVCSR system instead

the front-end, model, number of transforms_and SAT. Tab_le INf 2 GMM-UBM improves system performance significantly,
shows results for the most relevant experiments. We disCysssn though we restricted here to only one transform. The
the most important points in the following. _, gains for systems using the PLP12 features are half those of
The use of the PLP15N front-end, with specific speakgfe systems using the PLP15N features, keeping in mind that
recognition normalizations, results in large perf_ormalme GMM-based and HMM-based systems differ in the speech
provements over PLP12, using mean and variance normalyivity detection used, i.e. voicing level vs. alignmeand
ization. Relative gains of around_ 25% MDC and EER werge saT approach used, i.e. per-session SAT vs. per-speaker
obtained for most of the experiments (MH15 vs. MHI2)saT respectively. PLP12 experiments (MH12 vs. MG12) show
with both forward and forward-backward scoring. These gainyera|| relative gains of 10% in MDC and EER regardless of
seem to be independent of the number of transforms stk scoring approach and evaluation corpus. PLP15N systems
using HMM (MH15 vs. MG15, MH15 SAT vs. MG15 SAT)
show enormous gains compared to those using a GMM, in the
range of 28% to 37% both in MDC or EER. These results are

22Note that all experiments use NAP inter-session compeanrsab, regard-
ing the channel, the results actually show the interactibohannel mapping
and NAP together. We found that NAP always brought a perfocaagain.

23Although the number of coefficients and the use of the logegne
coefficient also changes from PLP12 to PLP15N front-ends.

24Forward-backward scoring can be thought of as a rough forpeotrial
T-norm using the test speaker as the only cohort speaker.

25\We observed in past experiments that using 12 to 16 PLP cesific
with feature mapping and warping resulted in similar parfance, although
15 was found to be optimal.
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Fig. 2. DET curves for the CMLLR systems on the SRE 2006 etialnalata: varying the front-end (left) and model (right).
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Fig. 3. DET curves for the MLLR systems on the SRE 2006 evalnatlata: per-model curves using 2 transforms (left) andgss curves using the
PLP15N front-end and SAT models (right).

stable regardless of the scoring approach and the use of SiiTthe range of 15%-26% in MDC and 9%-28% in EER

They highlight the importance of precisely modeling speean both the SRE 2005 and SRE 2006 data. Considering the
in a text-independent speaker recognition task. Its coabircumulative gain from systems using PLP12 acoustic models
tion with speaker-specific acoustic-level normalizatiseems to those using PLP15N SAT acoustic models, improvements
specially fruitful. Their interaction with NAP or the numbe over 40% are achieved. Figure 3 (left) shows DET curves for
of coefficients has not been explored in these experimentsPLP12, PLP15 and PLP15 SAT acoustic models for systems

SAT models bring significant gains compared to reguldSing 2 transforms on the SRE 2006 data. The cumulative
ML training and are additive to those obtained using PLP15iIProvement is constant for a wide range of operating points
features. GMM-based systems using SAT and PLP12 featured e number of MLLR transforms has a considerable impact
(MG12 SAT vs. MG12) obtain relative improvements ofn System performance. There is an overall trend for lower
around 15% in MDC and EER with even larger gains, in th@TOr rates as more classes are used in the system. Since
range 17%-28% in MDC and EER when PLP15N featuré&@ch MLLR transform specializes in one acoustic space, split
(MG15 SAT vs. MG15) are used. Systems using cMLLEata are better fit to the linear regression model, affecting
transforms (CG12 SAT and CG15 SAT) obtain similar gaing€rformance correspondingly. However, the results shaw th
Note, however, that these systems outperform MLLR couHSINg three transforms is not always beneff€ialrhe amount
terparts when standard maximum likelihood training is used26The choice of the classes may have an effect on performanceshis
for GMM (CG]'Z vs. MG12, (?G15 VS. MGlS)' For HMM' Consonants and vowels are used in 2t systems based on a gitmmetic
based systems, SAT results in large performance gains tederia whereas semiautomatic clustering is used for 3tesys.
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of data used to estimate each transform plays an importént reelative gains over 20%. This effect is clearly shown in Fegu
for the segment lengths we deal with: the more classes tbe ld(right) where fusing all the individual systems perforroan
data are available per class. Along these lines, the PLPA2 dmads to only a slight improvement of performance.
PLP15N features result in 1560 and 2256 regression coeffi-

cients per transform respectively. About 30% more pararsete SRE 2005 SRE 2006

t be estimated for the latter. We note, for instance, that MDc [ EER (%) Mbc | EER (%)
must : ‘<, “c, '™ System F FB F FB| F FB F FB
the diagonal MLLR back-off rates dramatically rose using th| (@) PLP-GMM 0287 .0202 5.82 4.74.0218 .0177 4.69 3.7p
PLP15N features, although we forced full MLLR matriceg (b) PLP-SVM 0211 .0204 4.82 4.480198 .0189 4.41 4.14

- ; ; ; c) GSV-SVM 2569 .0177 .0172 4.66 4.45.0182 .0174 3.543.26
in all of the presented experiments. Figure 3 (right) showéd) CH15 0264 0237 6.28 6280230 0216 546 5.2

DET curves for the MH15 SAT systems using from one t@(e) MH15 2t SAT |.0180 .0159 4.53 4.33.0155 .0143 3.453.57

=

three transforms. Going from one to two transforms brings(arb)) Baseline (bl) — — -8123 -812? g‘llg g?g
- : : - (bl+C — — . . . .
a consistent improvement along almost the entire operati @Hd) _ _ ‘0154 0148 312 308
range, while going from two to three transforms does naQtpi+e) — — 0126 .0118 2.572.43
improve the performance anywhere. (bl+c+d) — — 0142 .0140 2.68 2.85
(bl+c+e) — — |.0114 .0114 225 2.57
(bl+c+d+e) All — — |.0113 .0114 2.202.48
B. System Fusion TABLE V

The best performing GSV-SVM, CMLLR-SVM and MLLR- MO 1 SER0r orouss e rvsed SYerews o este 20ne
SVM systems, i.e. GSV-SVM 2569, CH15 and MH15 2t SAT,\\5 coLumn FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES
were selected from Tables I, Il and IV for combination with WITH A WEIGHT OF 0.5.
two other standard cepstral systems, PLP-GMM and PLP-
SVM, previously described in Section V-C. Table V shows
individual system results for the SRE 2005 and SRE 2006
data and fusion results for SRE 2006 only. The SRE 2005
data was used to train the fusion model and excluded from
the evaluation. We studied two approaches to feature extraction for speaker

The GSV-SVM 256g system is the best performing afecognition based on two speaker adaptation techniques,
the non-MLLR-based individual systems. The MH15 2t SAfiamely Gaussian supervectors using MAP adaptation and
system outperforms the rest of the individual system oVeraMLLR transforms. Our experiments showed that (i) an ap-
with relative gains of at least 15% in MDC. In EER termsproach using MLLR transform features classified using a
the gains are more variable, from 2% to 20%, with GSV-SVMBVM is an actual alternative to current state-of-the-aoiestic
eventually outperforming MH15 2t SAT. A large differencesystems. Using features optimized for speaker recognitien
in performance is observed for the PLP-GMM system usingLLR-SVM systems outperformed all other acoustic systems
forward and forward-backward scoring, the latter imprayinat the MDC operating point, including a likelihood-ratio-
around 20% in MDC and EER. DET curves of all the individbased GMM-UBM system using hybrid factor analysis inter-
ual systems on the SRE 2006 data are shown in Figure 4 (lefi#ssion compensation and a system using Gaussian supervec-
Performance of the CH15 system lies far away from the restr features and SVM classification. The channel-compensat
of the individual systems, while MH15 2t SAT outperformdront-end seems to prevent the transform coefficients from
all the systems in the low false-alarm rate region. Similarapturing the channel variability. Speaker Adaptive Tirain
performance is obtained for the GSV-SVM and MH15 2t SA&nd multiple regression classes were found to improve perfo
systems for operating points around the EER. mance for the most advanced adaptation schemes. (ii) For the

As for fusion, the baseline system the combination of thmost simple setups, systems based on CMLLR were found to
PLP-GMM and PLP-SVM systems. In global terms, addingutperform those based on MLLR, with speaker-recognition
any one of the three MLLR-based systems to the baselifemtures and SAT bringing large improvements. (iii) The use
improves performance. The GSV-SVM 2569 system and tlog phonemic HMM instead of a GMM for adaptation results in
CH15 one bring slight improvements to the baseline, whilateresting gains in performance. However, these gainalgho
fusing the baseline with the MH15 2t SAT system brings e balanced against the increase of training complexity and
relative gain of over 23% in MDC and EER regardless of theesources. (iv) The GSV-SVM system outperforms both the
scoring approach. This suggests that Gaussian supersecRitP-GMM and PLP-SVM systems, showing the effectiveness
are somewhat redundant with respect to the baseline systemincluding both GMM and SVM classification into one sys-
given that the PLP-GMM already uses the GMM and the PLEem. (v) Fusion improvements are dominated by the baseline
SVM uses the SVM. On the CMLLR side, although the CH18nd MLLR-SVM system performances. The GSV-SVM and
system is much less performant than GSV-SVM, the fusion @MLLR-SVM systems bring about the same improvement
the baseline with any of these systems results in similar irafter fusion while obtaining very different performance in
provements. This can be interpreted as the CMLLR transformividually. This suggests that MLLR transform coefficients
providing complementary information. The combinationied t involve information that is complementary to that of GMM
baseline with the GSV-SVM 256g and CH15 systems bringgean vectors. Including the GSV-SVM system in a fusion
small gains, especially in EER, while including the MH1&lready using GMM and MLLR transform coefficients does
2t SAT system dominates performance, once again obtainingt bring any further gain.

VIII. CONCLUSION
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