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Abstract—In the last years the speaker recognition field has
made extensive use of speaker adaptation techniques. Adaptation
allows speaker model parameters to be estimated using less
speech data than needed for maximum likelihood (ML) training.
The Maximum-A-Posteriori (MAP) and Maximum Likelihood
Linear Regression (MLLR) techniques have typically been used
for adaptation. Recently, MAP and MLLR adaptation have
been incorporated in the feature extraction stage of Support
Vector Machine (SVM) based speaker recognition systems. Two
approaches to feature extraction use a SVM to classify either the
MAP-adapted Gaussian mean vector parameters (GSV-SVM) or
the Maximum-Likelihood Linear Regression (MLLR) transfor m
coefficients (MLLR-SVM). In this paper we provide an experi-
mental analysis of the GSV-SVM and MLLR-SVM approaches.
We largely focus on the latter by exploring constrained and
unconstrained transforms and different choices of the acoustic
model. A channel-compensated front-end is used to prevent the
MLLR transforms to adapt to channel components in the speech
data. Additional acoustic models were trained using Speaker
Adaptive Training (SAT) to better estimate the speaker MLLR
transforms. We provide results on the NIST 2005 and 2006
Speaker Recognition Evaluation (SRE) data and fusion results on
the SRE 2006 data. The results show that using the compensated
front-end, SAT models and multiple regression classes bring
major performance improvements.

Index Terms—Speaker recognition, CMLLR, MLLR, GMM,
Gaussian supervectors, SVM

I. I NTRODUCTION

Current state-of-the-art systems for text-independent
speaker recognition use cepstral coefficients as base features.
Although popular and successful, cepstral features are not
optimal for speaker recognition tasks, since they result from
the interaction of several information sources such as the
message, acoustic context, channel and speaker, the latter
factor exhibiting the lowest variability [1]. From this view,
the speaker information seems to be buried underneath other
sources of variability. Modeling the undesired variability, e.g.
channel or text-dependency, to remove its harmful factors has
been widely used to address this problem. Several channel
and session compensation techniques, e.g. Feature Mapping
(FM) [2], Factor Analysis (FA) [3] or Nuisance Attribute
Projection (NAP) [4] have been successfully applied and are
being used in state-of-the-art systems. Session and channel
mismatch have also been addressed using score normalization
techniques such as T-norm or H-norm [5].

Adaptation techniques have long been used in speech recog-
nition to improve robustness with respect to speaker variability.

This work has been partially financed by OSEO under the Quaeroprogram.

State-of-the-art Large Vocabulary Continuous Speech Recog-
nition (LVCSR) systems use speaker-adapted models. The goal
of adaptation techniques is to turn speaker-independent models
into speaker-dependent ones using much less data than would
be needed for full speaker-dependent training. In speaker
recognition, speaker adaptation was first used in the GMM-
UBM paradigm [6], where a Universal Background Model
(UBM) is trained on data from many speakers in an attempt
to model the whole set of observable speakers. The UBM
is adapted to each speaker via Maximum A Posteriori (MAP)
estimation [7] using the enrollment data. This allows a detailed
model to be trained when little data is available, which is often
the case when a large number of parameters are estimated.
In recent years, Eigenchannel [8] and Joint Factor Analysis
(JFA) [9], [10] MAP adaptation have given excellent resultsin
scenarios with large inter-session variability. These techniques
use more or less complex models to separate the speaker and
channel variabilities during adaptation.

Recently, two other successful approaches to speaker recog-
nition have used adaptation techniques to obtain features that
are classified using Support Vector Machines (SVM). A first
approach uses the mean vectors of a speaker-adapted GMM,
obtained via MAP adaptation of a UBM, as features. A
Gaussian supervector is formed by stacking all mean vectors
of this model and is classified using a SVM. We refer to
this approach as Gaussian Supervectors or GSV-SVM [11].
In a second approach, the Hidden Markov Models (HMM) of
an Automatic Speech Recognition (ASR) system are adapted
using Maximum-Likelihood Linear Regression (MLLR) and
the transform coefficients used as features. MLLR transforms
a speaker-independent model into a speaker-dependent one,
capturing information that is specific to the speaker. The use
of MLLR transform coefficients as features has been addressed
in [12]–[14] and, when classified using a SVM, it is referred to
as MLLR-SVM. A purely acoustic variant using Constrained
MLLR (CMLLR) and a Universal Background Model (UBM)
in a Speaker Adaptive Training (SAT) [15] framework has
been presented in [16].

This paper presents an in-depth exploration of MAP and
MLLR adaptation in the context of GSV-SVM and MLLR-
SVM systems. Given the relevance of session compensation
in speaker recognition, two widely-used compensation tech-
niques are considered, i.e. Feature Mapping at the cepstral
level and NAP at the SVM feature level. For the MLLR-
SVM systems, the type of transform (MLLR vs. CMLLR), the
model (GMM vs. phonemic HMM) and the front-end (ASR
vs. SID cepstral normalizations) are studied. This last point
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is specially meaningful in the context of the recent NIST
Speaker Recognition Evaluation (SRE) campaigns, focusing
on channel mismatch. Using a channel-compensated front-end
allows MLLR adaptation to focus on the speaker components
of cepstra rather than both speaker and channel components.

The remainder of the paper is organized as follows: Section
II reviews adaptation methods as well as speaker adaptive
training. Section III provides a quick overview of support
vector machines for the speaker recognition tasks. Section
IV presents the evaluation protocols and task used in these
experiments. Section V describes the architectures developed
for this work, starting with the cepstral front-ends, then the
LVCSR acoustic models, and finally the configuration of the
SVM-based systems targeted in this study. In Section VI the
acoustic speaker recognition systems used as an experimental
baseline are described. In Section VII we present and discuss
the results for GSV-SVM and MLLR-SVM systems individ-
ually as well as the fusion results for the NIST 2005 and
2006 Speaker Recognition Evaluations. Conclusions are given
in Section VIII.

II. SPEAKER ADAPTATION

Speaker adaptation techniques seek to obtain a speaker-
dependent model given a speaker-independent model and some
speech data belonging to a specific speaker. The speaker-
independent model is typically trained using speech data
from many speakers. The adaptation procedure transforms the
model parameters to optimize a certain criterion, e.g. maximiz-
ing posterior probability or likelihood. This section presents
three techniques for Gaussian mean adaptation, namely Max-
imum A Posteriori (MAP), i.e. standard Bayesian adaptation,
and Maximum-Likelihood Linear Regression (MLLR) and
Constrained MLLR under the maximum-likelihood criterion.
The use of CMLLR in Speaker Adaptive Training (SAT) is
described in the last part of the section.

A. Maximum a Posteriori

A Gaussian Mixture Model (GMM) for a random multivari-
ate variablex can be formulated as

p(x|Θ) =
N

∑

i=1

λiN (x; µi,Σi) (1)

where λi is the weight for thei-th Gaussian,N () is the
Gaussian probability density function andµi andΣi are the
mean and covariance matrix for Gaussiani.

Maximum A Posteriori (MAP) estimation [6], [7] maxi-
mizes the a posteriori distribution of the adaptation dataX

given the a priori model parametersΘ, that is, using the Bayes
formula

argmax
Θ

p(X|Θ)p(Θ) (2)

where p(X|Θ) is the likelihood function ofX given the
model parameters and the prior distribution for the mean
vectors are assumed to be Gaussian.

The re-estimation formulas are derived using the
Expectation-Maximization (EM) algorithm, which balances

the new estimates on the adaptation data and the prior
knowledge. Given that mean vectors are placed at the most
likely points of each Gaussian component, an efficient way of
changing the overall statistical distribution is by shifting them.
Thus, a simple form of MAP adaptation is mean adaptation1

which moves the Gaussian mean vectors according to

µ̂i = αiEi{x} + (1 − αi)µi (3)

whereµ̂i is the adapted mean vector for thei-th Gaussian,
Ei{x} the expected mean feature vector for the adaptation
data,µi its prior mean vector,x a random feature vector, and
αi the adaptation factor

αi =
ni

ni + τ
(4)

which weights the old and new estimates via the relevance
factor τ . Given a specific sequence of adaptation dataX =
(x1, . . . ,xt, . . . ,xT) with 1 ≤ t ≤ T , the effective number
of frames assigned to Gaussiani, ni is estimated as

ni =

T
∑

t=1

p(i|xt) (5)

andEi{x} as

Ei{x} ≈ 1

ni

T
∑

t=1

p(i|xt)xt (6)

where p(i|xt) is the occupancy probability for thei-th
Gaussian, defined as

p(i|xt) =
λiN (xt; µi,Σi)

∑M

j=1
λjN (xt; µj ,Σj)

(7)

B. Maximum-Likelihood Linear Regression

Maximum-Likelihood Linear Regression [17], [18] adapts
the observation probability of a HMM in a parametric way,
by finding a transform that maximizes the likelihood of the
adaptation data given the transformed Gaussian parameters,
i.e. p(X|Θ). As opposed to standard MAP adaptation which
adapts only the observed Gaussian components, MLLR adapts
all of the components in a set of Gaussians, a so-called
regression class. In mean adaptation, Gaussian mean vectors
µ of the model are adapted using an affine transform with
parametersA andb as

µ̂ = Aµ + b (8)

where µ̂ is the adapted mean vector. Using the resulting
mean-adapted model, co-variance matrices can be also adapted
as

Σ̂ = HΣH
T (9)

1We present mean adaptation only since these parameters are commonly
used in speaker recognition. Please refer to [6], [7] for theweight and co-
variance re-estimation formulas.
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at the expense of estimating the additional linear transform
H. Σ andΣ̂ are respectively the non-adapted and adapted co-
variance matrices for the adapted Gaussian. As in mean adap-
tation, co-variance matrices are also adapted in the maximum-
likelihood sense using the Expectation-Maximization (EM)
algorithm. Details on the estimation procedure and MLLR
variants can be found in [18].

MLLR transforms are typically estimated across a set of
Gaussians, a regression class, that shares the same transfor-
mation parameters2. Using the acoustic models of a LVCSR
system, it is relatively easy to define a fixed number of
regression classes based on the phonetic similarity of tri-phone
models. More sophisticated approaches use knowledge-based
or data-driven decision trees that dynamically determine the
number regression classes based on the observation probability
similarity and taking into account the amount of available
adaptation data per class [19]. Therefore, each of the regres-
sion classes results in a separate MLLR transform that is used
to adapt a subset of the Gaussian parameters in the model.

C. Constrained MLLR

A main concern of MLLR adaptation is how to reliably
estimate the regression coefficients using the available training
data. It is common to simplify the regression model by using
diagonal or block-diagonal co-variance matrices [18] thereby
reducing the number of parameters in the linear regression
model or to share the mean and variance transforms. Con-
strained MLLR (CMLLR) [20] as described in this section
falls into the latter category, using the same transform formean
vector and co-variance matrix adaptation. For an arbitrary
Gaussian component in a regression class, its parameters are
transformed as

µ̂ = Aµ + b (10)

Σ̂ = AΣA
T (11)

where the linear transformA is used for adaptation of
both µ andΣ. A main difference from MLLR adaptation of
the Gaussian mean vectors is that, using the same number
of parameters, the co-variance matrices are also adapted.
The algorithm used for MLLR adaptation can also be used
to estimate the CMLLR transforms. Sufficient statistics are
computed given the current estimates ofA and b in the
expectation step and the likelihood function is maximized with
respect to these parameters in the maximization step.

When only one regression class is used, adaptation can
be performed in the model-space, as in (10), or alternatively
in the feature-space by transforming the features so that the
likelihood function with respect to the speaker-independent
model is maximized. The feature-space transform is

xt = A
−1

x̂t − A
−1

b (12)

wherext is the speaker-independent feature vector at timet

andx̂t is the corresponding speaker-dependent feature vector.

2Note that MLLR adaptation of a single Gaussian is equivalentto ML
re-training of the Gaussian.

This property is particularly useful in Speaker Adaptive Train-
ing (SAT), used in the feature extraction scheme presented in
[16] and described next.

D. Speaker Adaptive Training

A common use of feature-space CMLLR is speaker adap-
tive training (SAT) [15] which seeks to jointly estimate a
set of CMLLR transforms, one per speaker, and a speaker-
independent model in the transformed feature space. Such a
speaker-independent model captures the overall feature distri-
bution of a large number of speakers. Given a set of B speakers
and their corresponding adaptation cepstraXi for 1 ≤ i ≤ B,
SAT optimizes the maximum likelihood criterion on a per-
speaker basis as

argmax
Θ,Ci

B
∏

i=1

p(Ci(Xi)|Θ) (13)

where the individual speaker-dependent transformsCi and
the model parametersΘ = (µ

1
, . . . , µN ,Σ1, . . . ,ΣN ) are

jointly estimated. Such an optimization is commonly done
in two steps by, first, estimating the feature-space CMLLR
transforms Ci that project the speaker-dependent features
onto a speaker-independent space and, second, re-training
the speaker-independent modelΘ using those features. This
process, illustrated in Fig 1, can be iterated several timesin
an EM manner, obtaining a speaker-independent model with
lower inter-speaker variability, at each iteration.

X1 X2 · · · XB Θ
train

X
1
1 X

1
2 · · · X

1
B Θ

1

train

it.
1 C1

1
C1

2
C1

B

X
2
1 X

2
2 · · · X

2
B Θ

2

train

it.
2 C2

1
C2

2
C2

B

Fig. 1. Block diagram of two iterations of speaker adaptive training (SAT).

III. SUPPORTVECTORMACHINES

The systems explored in this work use discriminative mod-
eling of speakers based on Support Vector Machines (SVM),
introduced in speaker verification a few years ago. Such
classifiers are capable of successfully discriminating high-
dimensional and sparse feature spaces where other modeling
approaches fail to generalize. SVMs [21] are binary classifiers
which use a weighted sum of kernel functions as the dis-
criminant function. For a set of input-output pairs of training
samples(xl, tl) with 1 ≤ l ≤ N andtl ∈ ±1 for positive and
negative classes

f(x) =

NSV
∑

l=1

αltlk(xl,x) + b (14)
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where
∑NSV

l=1
αltl = 0, αl > 0 and b is an offset. In this

expansion, theNSV support vectorsxl, the training data points
lying on the separation margin, as well asαl are obtained
so as to maximize the classification margin. The soft-margin
variant further minimizes the number of classification errors
so that it can deal with non-linear separable data sets. The
kernel function satisfies the Mercer condition, i.e.k(·, ·) must
be positive semi-definite. This condition implies thatk can be
written as

k(xi,xj) = φ(xi)
T φ(xj) 1 ≤ i, j ≤ N (15)

which is a regular dot product on a possibly infinite vector
space mapped from the input space by the functionφ(·).

IV. TASK AND EVALUATION

The speaker verification systems explored in this study were
evaluated using conversational telephone speech data follow-
ing the NIST 2005 and 2006 Speaker Recognition Evaluation
(SRE)3 protocols. A speaker verification system is asked to
decide whether speech from a given target speaker is presentin
a particular speech segment. We used the SRE 2005 English-
only core-condition data for system development and the SRE
2006 English-only core-condition data for system evaluation.
These data consist of 5-minute-long segments containing about
two minutes of speech per conversation side4. A total of 646
(274 male / 372 female) target speaker segments are available
for model training in SRE 2005 and 816 (354 male / 462
female) for SRE 2006. 2117 test speaker segments (907 male
/ 1210 female) and 3735 (1606 male / 2129 female) are
available for SRE 2005 and SRE 2006 respectively. The ratio
of impostor to true access trials is about 10 in both cases
and all trials involve speakers with the same gender, known a
priori.

The primary performance measure for the NIST speaker
detection task is the Detection Cost Function (DCF) defined
as the weighted sum of the false alarm and miss error prob-
abilities DCFNorm = PMiss + 9.9 × PFalseAlarm. We also
report the Minimal DCF (MDC) value obtained a posteriori
for the best possible detection threshold. Since this operating
point favors false alarms, we provide the Equal Error Rate
(EER) as an alternative performance measure. The Detection
Error Tradeoff (DET) curves [22] are used to assess system
behavior over the full range of operating points. The DET
curve is comparable to the Receiver Operating Characteristics
(ROC) curve but uses a non-linear axis, which results in a
linear curve for a normal distribution, improving its readability.

V. SYSTEM DESCRIPTION

The systems explored in this paper use the adaptation
methods described in Section II to extract base features that
are particularly relevant for SVM-based speaker recognition.
All of them use SVM classifiers, differing only in the base
feature vectors, and have the same post-processing steps. The
details of the systems are given in the following sections.

3The NIST 2005 and 2006 SRE evaluation plans, http://www.nist.gov/
speech/tests/spk/

4The core conditions involve the two conversation sides.

A. Front-end

We use two different cepstral front-ends as a side effect of
using the previously trained models of the LVCSR system for
the MLLR and CMLLR transform computation:

• Speech Recognition (PLP12): This is the front-end used
by the previously trained LVCSR system. It uses 39
cepstral features with 12 MEL-PLP coefficients and the
log-energy along with their corresponding∆ and ∆∆
coefficients extracted every 10ms using a 30ms window
on the 0-3.8kHz bandwidth. Mean and variance normal-
ization are applied to each segment of interest. When used
in the LVCSR-based systems, only the frames assigned to
the speech states of the acoustic models are used. When
used with the other systems, Speech Activity Detection
(SAD) is performed based on the voicing features as
produced by the ESPS getf05 pitch extraction algorithm.

• Speaker Recognition (PLP15N): This front-end uses
feature-level channel compensation and feature Gaussian-
ization as is commonly done for speaker recognition. The
configuration was optimized for use in past NIST SRE
evaluations. We use 15 MEL-PLP coefficients along with
their ∆, ∆∆ coefficients, and the∆ and ∆∆ energies
for a total of 47 features. The features are extracted every
10ms using a 30ms window on the 0-3.8kHz bandwidth.
For the LVCSR-based systems only the frames assigned
to the speech states of the acoustic models are used. For
the other systems, the voiced frames are determined by
the ESPS getf05 pitch extraction algorithm. We apply
gender-specific feature mapping [2] to compensate for
channel distortion using segments from the test speakers
in previous NIST SRE test sets 1997 to 2002 (24769
segments, 6 hours/gender) as training data. The resulting
features are Gaussianized using feature warping [23] with
a 3 second window.

B. LVCSR

We use several acoustic model setups to compute both the
phonetic alignment and to estimate the MLLR transforms. The
acoustic models and a pronunciation dictionary6 are used to
align the provided word-level transcripts with the audio data.
We explore three acoustic model configurations, two based on
the PLP12 and PLP15N front-ends and one trained using SAT:

• The PLP12 AM system is based on the LIMSI SWB
speech-to-text system [24]. It uses gender-independent
continuous density HMM with Gaussian mixtures for
acoustic modeling. The acoustic models are tied-state,
context-dependent triphones, where the tied-states are
automatically found by means of a decision tree. A total
of about 6400 tied-states are used, with 32 Gaussians
per state. This system uses the PLP12 front-end, i.e. 39
cepstral features, and it was trained on Switchboard I
(4862 conversation sides), Switchboard II (2348 sides),
Callhome (240 sides) and Fisher (6127 sides) corpora,

5KTH Software, http://www.speech.kth.se/software
6We used the pronunciation dictionary of the LVCSR system [24] and

manually added missing entries.
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for a total of 13577 conversation sides involving about
650 hours of data.

• The PLP15N AM system is the same as PLP12 AM
except that it uses the PLP15N front-end, with the
speaker-recognition-specific normalizations. Switchingto
the PLP15N front-end required re-training the acoustic
models. For this purpose, exactly the same training data
was used as for PLP12 AM training. Since both front-
ends result in time-aligned cepstra, the alignments pro-
duced with the PLP12 AM for the training data were also
used when training the new PLP15N acoustic models.
The PLP12 AM and PLP15N AM are therefore directly
comparable.

• For the PLP15N+SAT AM system, the PLP15N AM
acoustic models were used as seed models for one
iteration of SAT re-estimation [15]. We computed one
CMLLR transform per speaker using all of his/her speech
data. The acoustic models were re-trained using the
CMLLR-transformed cepstra. In this case, we used a
slightly different clustering threshold optimized for these
features. We obtained a total of 6100 tied-states, a number
comparable to the 6400 states in the PLP12 AM and
PLP15 AM.

C. SVM-based systems

The SVM-based systems differ in the strategies used to
obtain the base supervectors, one per speaker and per session.
They share the same post-processing and SVM setup in order
to ease the comparison of the different features. The training
data and tuning parameters were set to maximize the SRE
2005 cross-validation performance.

Nuisance Attribute Projection (NAP) [4], [25] inter-session
variability compensation is applied to the base supervectors,
prior to normalization. NAP finds a linear transform that
removes the subspace exhibiting the largest inter-sessionvari-
ability in the feature space7. The NAP transform is obtained
using NIST SRE 2004 training data, which is known to
potentially have a high inter-session variability8. We set the
session subspace dimension to 50 which was experimentally
found to be almost optimal for all systems described in this
paper.

The resulting supervectors are normalized by means of min-
max component scaling. Every feature is fit into the range
[-1/

√
M ,1/

√
M ], where M is the number of features of the

vector. This forces the SVM to deal with dot products with
a maximum magnitude of 1. The resulting mean value of the
features is expected to be 0, so any offset before normalization
is removed. Min-max statistics are collected from the impostor
speaker set described below. In preliminary experiments, this
method was found to outperform mean and variance normal-
ization as well as rank normalization for several SVM-based
acoustic systems.

7An orthonormal set of vectors spanning the maximal inter-session
variability subspace can be obtained from the eigenvectorsE =
(e1, e2, . . . , eDNAP

) corresponding to the largest eigenvalues of the inter-
session co-variance matrix. Based onE, we use the projection matrixI−EE

T

to remove session variability from a feature vector.
8Most of the 310 speakers have more than 10 sessions per speaker involving

several channel conditions

The impostor speaker data consists of 2243 speech seg-
ments9 from the NIST SRE 2004 training data plus 4854
speech segments10 from the Switchboard I (SWB1) corpus,
all in the English language with a minimum and an average
effective duration of 10 seconds and 2 minutes11 respectively.
Transcripts are available for all of the segments. The SRE
2004 transcripts were obtained automatically using the RT’03
BBN speech recognition system and they were provided by
NIST for the SRE 2004 evaluation. The SWB1 data were
manually transcribed (LDC Corpus 93T4). All SVM-based
systems share the same impostor data, since transcripts are
needed for some MLLR systems but not for other acoustic
systems.

The SVM classifier uses a linear kernel and it is trained
using gender-dependent impostor speaker data. We used the
SVMTorch12 package developed at the IDIAP laboratory,
without score normalization as it resulted in a performance
loss13.

D. GSV-SVM System

The Gaussian Supervector (GSV) approach [11] uses the
mean vectors of a speaker-dependent GMM as features, where
these are obtained via standard MAP adaptation14 [7] of a
previously trained GMM-UBM estimated using speech data
from many speakers. Assuming N Gaussian components in the
GMM, the mean vectorsµi = [µi1, . . . , µiC ]T for 1 ≤ i ≤ N

are arranged as

m = [µT

1 , µT

2 , . . . , µT

N
]T (16)

resulting in a Gaussian mean supervectorm of dimension
NC, whereN is the number of Gaussians andC the dimen-
sion of the cepstral features. For a speaker of interest one
vector is used as the base supervector.

For the PLP15N features, we use two gender-dependent
UBMs with diagonal covariance matrices trained on about 120
hours of speech data per gender, the same impostor speaker
data that is used for SVM training, i.e. NIST SRE 2004 and
Switchboard I data. We use 5 iterations of maximum likelihood
training with 1% of the global variance as the variance floor.
The number of Gaussians used ranges from 64 up to 1024
depending on the configuration. To obtain the speaker-specific
models we use 3 iterations of standard MAP mean adaptation
with a relevance factor of 10.

Given the high dimensionality of the supervectors used,
reaching tens of thousands of components for the best per-
forming configurations, the feature dimensionality can become

9About 60 hours of speech, after speech activity detection.
10For a total of about 170 hours of speech excluding silence segments.
11For homogeneity with train and test data, which have an average duration

of 2 minutes as well.
12SVMTorch, a Support Vector Machine for Large-Scale Regression and

Classification Problemshttp://www.idiap.ch/learning/SVMTorch.html
13We found both gender-independent and gender-dependent T-norm to be

harmful for several SVM-based systems. We believe this might be related to
the highly skewed score distributions, far from a Gaussian shape, output by
the SVM. Scores gather around -1 roughly ranging from -0.8 to-1.1, which
seems to be due to the strong imbalance of the training data, i.e. 1 true speaker
against 7000 impostor speakers.

14Eigenchannel [8] or Joint Factor Analysis [9] are alternative methods
which can be used to obtain inter-session compensated supervectors.
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larger than the number of training samples. We use a soft-
margin SVM for classification since, in such degenerate situ-
ations, it successfully avoids overfitting by balancing machine
complexity vs. training performance.

We use the SVM configuration described in Section V-C.
The linear kernel is derived from an approximation of the
Kullback-Leibler (KL) divergence, a measure of dissimilarity
between the distributions given by the GMM of two speakers,
described in [25]. Given two models for segmentssa andsb,
the distance can be expressed as

k(sa, sb) =
N

∑

i=1

(

√

λiΣ
−

1

2

i µ
a

i

)T (

√

λiΣ
−

1

2

i µ
b

i

)

(17)

where we keep the notation used in (1). The covariance
matrices are the same for both segments since only the means
are adapted. This kernel satisfies Mercer’s condition sinceit
is linear. A regular dot product using the normalized Gaussian
supervectors

m
′ = [

√

λ1

µ1

σ1

,
√

λ2

µ2

σ2

, . . . ,
√

λM

µM

σM

]T (18)

whereM = NC, N is the number of Gaussians andC is
the dimension of the cepstral feature vectors, is equivalent
to (17). µi and σi for 1 ≤ i ≤ M are the scalar mean
and variance parameters of the corresponding cepstral and
Gaussian components. We prefer this second form since the
normalized supervectors can be post-processed arbitrarily, e.g.
for inter-session variability compensation.

E. MLLR-SVM Systems

The MLLR-SVM systems use the MLLR regression coeffi-
cients arranged in a vector form as the base supervectors and
a SVM as classifier. We use two MLLR-SVM variants in our
experiments, MLLRh-SVM and MLLRg-SVM where either
the acoustic models of a LVCSR system or a GMM-UBM are
used to align cepstra and compute MLLR transforms.

1) MLLRh-SVM: This system is based on the MLLR-SVM
system proposed in [12]. Given the orthographic transcription
of a speech segment, we use the acoustic models of a LVCSR
system described earlier in Section V-B and the pronunciation
dictionary to align the corresponding speech data to the
transcripts. This alignment is used to assign each frame to
a regression class, covering a part of the acoustic space. One
MLLR transform is computed per regression class using the
same acoustic models used for alignment. The coefficients of
transformr are stacked as a supervector of the form

mr = [Ar
11, . . . ,Ar

1C, . . . ,Ar
C1, . . . ,Ar

CC,

b
r
1, . . . ,br

C]T (19)

with A
r and b

r being the matrix and the offset15, i.e
only mean vectors are adapted, andC the dimension of the
cepstral feature vectors. The supervectors for all transforms
are concatenated together in one vector

15Offset coefficients are always included as they directly compensate for
convolutional distortion in the cepstral features.

m = [m1
T , . . . ,mR

T ]T (20)

assuming a total ofR regression classes. We use such a
vector as the base supervector for every speaker of interest.

The number of transforms used depends on the amount
of speech data available for adaptation. Using many classes
results in a finely represented phonetic space but less speech
data is available for each class-dependent transform. We
force a full-matrix16 transform regardless of the amount of
adaptation data assigned to the corresponding class. Three
static regression-class configurations involving only speech17

are used in these experiments:

• One transform (1t), speech only
• Two transforms (2t), vowels and consonants
• Three transforms (3t),

– fricative and stop consonants
– nasal consonants, semivowels and back vowels
– front vowels

The MLLR supervectors rapidly end up with thousands of
features18 that are classified using a SVM, as described in
Section V-C. The linear kernel reduces to computing a regular
dot product of the MLLR supervectors as

k(sa, sb) = (ma)T
m

b (21)

wherem
a andm

b are the MLLR supervectors, as defined
in (20), corresponding to speech segmentssa andsb.

2) MLLRg-SVM: A large-vocabulary ASR system needs
huge amounts of speech and text data, as well as substantial
computational resources for training. This makes the imple-
mentation of such a system not accessible to everyone. A
simple and cost-effective alternative is to replace the acoustic
HMM by a GMM-UBM, hence MLLRg-SVM. The cepstra
are now aligned against a single HMM state with a global
Gaussian mixture observation probability. The phonetic-class
alignment is no longer straightforward19. However, a GMM-
based system can be used for any language since no transcripts
or ASR hypotheses are required. Another advantage of a
GMM-based approach is that any cepstral front-end with
any kind of normalization, including session and channel
compensation, can be used. Multiple SAT iterations can also
be performed as CMLLR computation and training are faster
for a GMM than for the acoustic models of a LVCSR system.

We use two gender-dependent GMM-UBM trained using
the impostor data, i.e. SRE 2004 and Switchboard I. These
are the same GMM-UBMs used by the GSV-SVM system. A
single MLLR transform is computed and the corresponding
supervector is normalized and classified as in the MLLRh-
SVM system. We refer to this simplified approach as MLLRg-
SVM.

16According to experiments that are not included in this paper, backing
off to a diagonal MLLR transform when lacking data for reliable estimation
resulted in increased error rates for the 2t and 3t classes.

17The non-speech class involving silence and breath is dropped as it is
assumed to carry no speaker information.

18For the PLP12 front-end, each MLLR transform has39 ·39+39 = 1560
coefficients,47 · 47 + 47 = 2256 for PLP15N. This dimension is multiplied
by the number of transforms.

19Explicit assignment of Gaussians has been used as an alternative in [26]
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F. CMLLR-SVM Systems

The CMLLR-SVM systems follow the same strategy as the
MLLR-SVM systems. We also explore two variants of the
CMLLR-SVM approach depending on whether the acoustic
models of a LVCSR system or of a GMM-UBM are used to
compute the CMLLR transforms, resulting in the CMLLRh-
SVM and CMLLRg-SVM systems respectively.

1) CMLLRh-SVM: This system uses the acoustic HMM of
an LVCSR system for alignment and to estimate the feature-
space CMLLR transforms. We use one transform per speaker
segment corresponding to the speech class only, as is often
performed in LVCSR systems. In our experiments this also
allows comparison with a purely acoustic approach based on
a GMM-UBM, which uses a single transform for the whole
model. We compute one feature-space transform per segment
given by the parameters (A

−1,−A
−1

b) which are inverted
to obtain the model-space transforms (A,b) whose parameters
are actually used for classification. These latter parameters are
the features used in the CMLLRh-SVM system. Other than
using CMLLR transforms, all steps are the same as in the
MLLRh-SVM system.

2) CMLLRg-SVM: The CMLLRg-SVM system estimates a
single feature-space CMLLR transform using a GMM-UBM.
In principle, this approach is thought to work together with
SAT, since the transforms used for model training and those
used for feature extraction become homogeneous, i.e. both use
CMLLR. A main difference of this approach with respect
to SAT as used in speech recognition is that we compute
one feature-space CMLLR transform per speaker segment,
resulting in a speaker- and session-dependent transform. In the
training phase, these transforms remove both the inter-speaker
and inter-session variabilities in the GMM-UBM.

We use the gender-dependent GMM-UBMs used in the
GSV-SVM system, i.e. trained using SRE 2004 and Switch-
board I data. When using SAT, we perform one re-training
iteration only so that GMM-based and LVCSR-based systems
use the same number of iterations, which eases comparison
of the systems using SAT. For feature extraction purposes, the
feature-space CMLLR transforms are inverted as in CMLLRh-
SVM to obtain the model-space transform parameters. Further
processing is the same as in the MLLRh-SVM system.

VI. BASELINE SYSTEMS

Although the main aim of this paper is to compare systems
using different adaptation methods, it is also interestingto test
their behavior in combination with other systems given that,
currently, fusing systems integrating some degree of diversity
is a major source of system performance improvement. In this
section we describe the two acoustic state-of-the-art systems
used as baseline systems in these experiments either for
individual or fused system comparison.

A. PLP-SVM system

The PLP-SVM system is based on the Generalized Linear
Discriminant Sequence (GLDS) kernel [27] and uses PLP15N
features, explicit polynomial mapping and a SVM classifier.
Cepstra are expanded by concatenating first, second and third

order monomial expansions forming as many supervectors as
cepstral vectors. These are normalized to have a unity variance
within the speech segment and finally averaged, obtaining
20824 features per speaker segment. This expansion can be
seen as estimating first, second and third order statistical
moments of the cepstral vectors. We use a Kernel Principal
Component Analysis (KPCA) [28] with a 2nd order polyno-
mial kernel to extend the polynomial features to orders higher
than three20 while reducing the dimensionality of the feature
space. We used 2917 session in the SRE 2004 data to train
the KPCA transform. Taking all of the eigenvectors, we obtain
2917 output features. These vectors are kept as base features
for the PLP-SVM following NAP compensation, normalization
and SVM classification as in all SVM-based systems.

B. PLP-GMM system

The PLP-GMM system [29] is based on the GMM-UBM
paradigm [6] using hybrid-domain eigenchannel compensation
based on a factor analysis model of utterance variability [30].
The front-end is based on the PLP15N analysis bypassing
feature mapping, since it showed a negative interaction with
factor analysis compensation. We use two gender-dependent
UBMs with 1536 mixtures each, trained on about 24 hours
of speech from SRE 2000 and SRE 2001 development and
training data. Covariance matrices are diagonal and a variance
floor threshold of 1% of the global variance is applied at
each training iteration. Speaker models are obtained using3
iterations of eigenchannel adaptation with the ALIZE toolkit
[31], thus performing model-domain session compensation for
the target speaker segments. The channel factor-loading matrix
was trained using the SRE 2004 training data, the same data
as used for NAP compensation in the SVM-based systems,
and a channel-space dimension of 40. Test segments are
compensated in the feature-domain and scored using standard
log-likelihood ratios, taking the 20 top-scoring Gaussians.
We use gender-dependent T-norm [5] for score normalization
based on 250 male and 250 female segments taken from the
SRE 2004 training data.

C. System Fusion

SVM-based systems obtain scores by projecting test seg-
ment supervectors against the supervector obtained for the
target speaker during training. These scores should be in the
range [-1,+1], although the large number of impostor speaker
segments used for training highly biases their distribution
towards -1. The PLP-GMM system outputs log-likelihood-
ratio scores, i.e a target model vs. the UBM likelihood scores.

We use forward-backward scoring for all of the systems
[32], which aims at making the train and test phases symmet-
ric. The forward system uses a conventional approach where
the test speech is scored against the target speaker model. In
the backward system, we score the training speech against
the test speaker model. Therefore, we obtain two scores per
system and per trial. Each score is considered individuallyfor
system fusion.

20Explicit polynomial mapping is untractable for such orders.
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We use a logistic regression model21 for score fusion, which
outputs normalized log-likelihood-ratio scores. The SRE 2005
data was used for training the model and the SRE 2006 data
was used for test, so only performance for the latter are shown
in the results. Scores for empty segments were excluded from
training.

VII. RESULTS

A. Individual Systems

We conducted two series of experiments, one to evaluate
MAP adaptation in the GSV-SVM systems and one to evaluate
MLLR adaptation in the MLLR-SVM systems, with a focus on
the latter. We give results for forward and forward-backward
fused systems on both the NIST SRE 2005 and SRE 2006 data.
Improvements are always relative unless otherwise stated.

1) GSV-SVM Systems: The GSV-SVM performance was
first assessed for several configurations differing in the number
of Gaussians used in the GMM speaker models. We tested
from 64 to 1024 Gaussians in exponential steps. The relevance
factorτ was set to 10, the same value obtained by optimization
on the PLP-GMM system. MDC and EER values for forward
and forward-backward averaged systems are shown in Table I.
Decreasing error rates can be observed as more Gaussians are
used in the speaker models up to 256 Gaussians, slightly lower
than the optimal number reported in other studies [33]. For 512
and more Gaussians performance drops again, probably due to
having to estimate too many parameters in the speaker models
for the amount of data actually used for adaptation. This trend
is seen for both SRE 2005 and SRE 2006 data.

Forward-backward system fusion brings improvements in
all cases, with gains dependent on the system and the evalu-
ation data. Overall, the relative gains are in the range of 3%
to 15% for MDC and 1.5% to 13% for EER, thus exhibiting
a large variability.

SRE 2005 SRE 2006
MDC EER (%) MDC EER (%)

System F FB F FB F FB F FB
GSV 64g .0226 .0214 5.32 5.24.0207 .0201 4.82 4.59
GSV 128g .0192 .0190 5.11 5.03.0181 .0174 4.03 3.91
GSV 256g .0177 .0172 4.664.45 .0182 .0174 3.54 3.26
GSV 512g .0186 .0179 4.914.40 .0200 .0193 4.09 3.77
GSV 1024g .0199 0.187 5.03 4.62.0218 .0184 4.26 3.67

TABLE I
MDC AND EEROF GSV-SVM SYSTEMS ON THESRE 2005AND SRE
2006EVALUATION DATA . COLUMN F SHOWS FORWARD SCORES AND

COLUMN FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH
A WEIGHT OF 0.5. THE BEST SCORES IN EACH COLUMN ARE SHOWN IN

BOLDFACE.

2) MLLR-SVM Systems: The MLLR-SVM systems allow
exploration of a wide variety of adaptation schemes each with
their pros and cons. CMLLR performs mean and variance
adaptation at the cost of reduced adaptation capability. GMM
do not require transcripts to perform adaptation, but modeling
is less precise than LVCSR acoustic models. Using a channel-
compensated front-end allows MLLR adaptation to focus on

21We used the FoCal toolkit http://www.dsp.sun.ac.za/∼nbrummer/focal/
index.htm.

modeling only the speaker components but requires retraining
of the acoustic models. Several acoustic classes can be used
for more precise adaptation when enough speech data are
available. In these experiments we explored front-end type,
transform type, model type and training technique and num-
ber of transforms used for acoustic model adaptation. Given
the large number of different configurations, acronyms are
introduced to ease further discussion. The naming conventions
designate systems by capital letters indicating the type of
MLLR transform (CMLLR or MLLR), model type (GMM or
HMM) and the number of cepstral coefficients in the front-end
(12 for PLP12 or 15for PLP15N). For the MLLR systems
using HMM, the number of transforms is also specified.
Eventually, if speaker adaptive training is used, the SAT term
is added too. Table II shows the system names along with their
respective configurations.

System Front-end Model SAT Type Transforms
CG12 PLP12 GMM × CMLLR 1
CG12 SAT PLP12 GMM

√
CMLLR 1

CH12 PLP12 HMM × CMLLR 1
CG15 PLP15N GMM × CMLLR 1
CG15 SAT PLP15N GMM

√
CMLLR 1

CH15 PLP15N HMM × CMLLR 1
CH15 SAT PLP15N HMM

√
CMLLR 1

MG12 PLP12 GMM × MLLR 1
MG12 SAT PLP12 GMM

√
MLLR 1

MH12 1t PLP12 HMM × MLLR 1
MH12 2t PLP12 HMM × MLLR 2
MH12 3t PLP12 HMM × MLLR 3
MG15 PLP15N GMM × MLLR 1
MG15 SAT PLP15N GMM

√
MLLR 1

MH15 1t PLP15N HMM × MLLR 1
MH15 1t SAT PLP15N HMM

√
MLLR 1

MH15 2t PLP15N HMM × MLLR 2
MH15 2t SAT PLP15N HMM

√
MLLR 2

MH15 3t PLP15N HMM × MLLR 3
MH15 3t SAT PLP15N HMM

√
MLLR 3

TABLE II
SYSTEM NAMING CONVENTION FORCMLLR-SVM AND MLLR-SVM

SYSTEMS. COLUMNS SPECIFY SYSTEM ACRONYM, TYPE OF TRANSFORM
(CMLLR VS. MLLR), MODEL TYPE (GMM VS. HMM), FRONT-END

TYPE (PLP12VS. PLP15N), SAT (
√

) OR STANDARDML (×) MODEL
TRAINING , AND NUMBER OF TRANSFORMS(1 TO 3).

As shown in [16], convergence of the SAT re-estimation
process in a CMLLR/GMM system is fast. One or two SAT
iterations already provide a significant gain while keepingthe
computational cost at a reasonable level. For this reason, we
use one SAT iteration in these experiments. This allows a fair
comparison with the PLP15N+SAT acoustic models of the
LVCSR system which used one iteration to keep computational
resources at a reasonable level.

Table III compares results for several CMLLR-SVM sys-
tems with different front-ends and models, including SAT.
The absolute MDC and EER are higher for the SRE 2005
data compared to the SRE 2006 data, suggesting structural
differences in the two databases, e.g. the proportion of native
speakers. This difference could be partly explained by the use
of mostly native English speaker data for training, resulting in
a significant phonetic mismatch between train and test data.

The choice of the front-end has a large influence in perfor-
mance, probably because of the specific speaker recognition
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normalizations22, namely feature mapping and feature warp-
ing, used for the PLP15N features23. Systems using PLP15N
features outperform their PLP12-based counterparts. Using
forward scoring, a relative gain of around 10%-14% in MDC,
and up to 13% in EER are obtained for the GMM-based
systems (CG15 vs. CG12, CG15 SAT vs. CG12 SAT) and
from 11% to 20% in MDC or EER using LVCSR acoustic
models (CH15 vs. CH12). Forward-backward scoring, which
makes scores less dependent on the target speaker24 was found
to improve performance by 5%-20% in MDC and 3%-18%
in EER. Overall the MDC gains are slightly higher for SRE
2006 while the EER reductions are larger for SRE 2005.
Figure 2 (left) shows DET curves for systems using PLP12
and PLP15N front-ends on the SRE 2006 data. A consistent
improvement is seen for almost all operating points for both
the GMM-based and HMM-based systems.

Concerning the type of model used to compute CMLLR
transforms, an HMM is clearly advantageous with the PLP15N
features, this is not the case with the PLP12 features. For
the former, we observe relative gains of 8%-20% in MDC or
EER for the forward systems and 6%-20% for the forward-
backward fused systems (CH15 vs. CG15). The DET curves in
Figure 2 (left) show rather consistent gains for these systems
for most of the operating points. Gains are in general slightly
lower for the PLP15 SAT acoustic models, reaching 13%
but also as small as 1%. Using the PLP12 acoustic models
results in very small improvements, with GMM-based systems
eventually outperforming HMM-based systems. This can be
seen in the left part of Figure 2 (left) around the MDC, shown
with the circle.

Using SAT models turns out to be slightly beneficial
for GMM-based systems, but performance decreases for the
HMM-based systems. Forward systems using GMM (CG15
SAT vs. CG15) show relative improvements of over 3% in
MDC and 1%-8% in EER. Gains are slightly larger for the
forward-backward systems on the SRE 2005 data but no gain
is observed on the SRE 2006 data. As for the HMM-based
systems, the results suggest that there is a bad interactionof
using the CMLLR transforms together with SAT, as this ap-
proach always leads to performance loss for both the forward
and the forward-backward scored systems.

As for the MLLR-based systems, we assessed the effects of
the front-end, model, number of transforms and SAT. Table IV
shows results for the most relevant experiments. We discuss
the most important points in the following.

The use of the PLP15N front-end, with specific speaker
recognition normalizations, results in large performanceim-
provements over PLP12, using mean and variance normal-
ization. Relative gains of around 25% MDC and EER were
obtained for most of the experiments (MH15 vs. MH12),
with both forward and forward-backward scoring. These gains
seem to be independent of the number of transforms used.

22Note that all experiments use NAP inter-session compensation so, regard-
ing the channel, the results actually show the interaction of channel mapping
and NAP together. We found that NAP always brought a performance gain.

23Although the number of coefficients and the use of the log-energy
coefficient also changes from PLP12 to PLP15N front-ends.

24Forward-backward scoring can be thought of as a rough form ofper-trial
T-norm using the test speaker as the only cohort speaker.

SRE 2005 SRE 2006
MDC EER (%) MDC EER (%)

System F FB F FB F FB F FB
CG12 .0342 .0308 7.57 8.15.0290 .0265 6.88 6.71
CG12 SAT .0326 .0293 7.82 7.72.0287 .0253 6.53 6.20
CH12 .0329 .0298 7.53 7.24.0292 .0258 6.70 6.39
CG15 .0303 .0276 7.93 7.86.0255 .0241 5.96 5.61
CG15 SAT .0292 .0265 7.27 6.99.0246 .0241 5.88 5.61
CH15 .0264 .0237 6.28 6.28.0230 .0216 5.46 5.24
CH15 SAT .0286 .0244 6.32 6.36.0236 .0220 5.84 5.56

TABLE III
MDC AND EEROF CMLLR-SVM SYSTEMS ON THESRE 2005AND SRE

2006EVALUATION DATA . COLUMN F SHOWS FORWARD SCORES AND
COLUMN FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH

A WEIGHT OF 0.5.

SRE 2005 SRE 2006
MDC EER (%) MDC EER (%)

System F FB F FB F FB F FB
MG12 .0384 .0363 9.81 9.36.0301 .0290 7.40 7.13
MG12 SAT .0326 .0310 8.07 7.94.0272 .0248 6.16 5.79
MH12 1t .0348 .0310 7.98 7.64.0281 .0250 5.92 5.79
MH12 2t .0310 .0268 6.94 6.65.0245 .0206 5.37 5.05
MH12 3t .0298 .0262 6.94 6.78.0261 .0223 5.28 5.01
MG15 .0367 .0342 8.90 8.86.0304 .0282 7.72 7.58
MG15 SAT .0278 .0264 7.20 7.28.0244 .0226 5.70 5.43
MH15 1t .0254 .0232 5.74 5.70.0207 .0189 5.10 4.82
MH15 2t .0222 .0201 5.86 5.74.0192 .0171 4.27 4.15
MH15 3t .0219 .0201 5.45 5.41.0191 .0171 4.27 4.23
MH15 1t SAT .0199 .0180 4.86 4.57.0183 .0164 4.32 4.31
MH15 2t SAT .0180 .0159 4.53 4.33.0155 .0143 3.45 3.57
MH15 3t SAT .0185 .0167 4.95 4.87.0154 .0136 3.77 3.68

TABLE IV
MDC AND EEROF MLLR-SVM SYSTEMS ON THESRE 2005AND SRE

2006EVALUATION DATA . COLUMN F CORRESPONDS TO FORWARD
SCORES ONLY. COLUMN FB SHOWS AVERAGED FORWARD AND

BACKWARD SCORES WITH A WEIGHT OF0.5.

Although the PLP12 and PLP15N front-ends also differ in the
number of PLP coefficients, we believe that most of the gain
is obtained by using feature mapping and feature warping25.
Figure 3 (right) shows DET curves for the MH12 2t and
MH15 2t systems on the SRE 2006 data. The improvement
obtained using the PLP15N front-end is consistent in the low
false-alarm probability region covering the MDC and the EER
operating points.

Using the acoustic models of the LVCSR system instead
of a GMM-UBM improves system performance significantly,
even though we restricted here to only one transform. The
gains for systems using the PLP12 features are half those of
the systems using the PLP15N features, keeping in mind that
GMM-based and HMM-based systems differ in the speech
activity detection used, i.e. voicing level vs. alignment,and
the SAT approach used, i.e. per-session SAT vs. per-speaker
SAT respectively. PLP12 experiments (MH12 vs. MG12) show
overall relative gains of 10% in MDC and EER regardless of
the scoring approach and evaluation corpus. PLP15N systems
using HMM (MH15 vs. MG15, MH15 SAT vs. MG15 SAT)
show enormous gains compared to those using a GMM, in the
range of 28% to 37% both in MDC or EER. These results are

25We observed in past experiments that using 12 to 16 PLP coefficients
with feature mapping and warping resulted in similar performance, although
15 was found to be optimal.
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Fig. 2. DET curves for the CMLLR systems on the SRE 2006 evaluation data: varying the front-end (left) and model (right).
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Fig. 3. DET curves for the MLLR systems on the SRE 2006 evaluation data: per-model curves using 2 transforms (left) and per-class curves using the
PLP15N front-end and SAT models (right).

stable regardless of the scoring approach and the use of SAT.
They highlight the importance of precisely modeling speech
in a text-independent speaker recognition task. Its combina-
tion with speaker-specific acoustic-level normalizationsseems
specially fruitful. Their interaction with NAP or the number
of coefficients has not been explored in these experiments.

SAT models bring significant gains compared to regular
ML training and are additive to those obtained using PLP15N
features. GMM-based systems using SAT and PLP12 features
(MG12 SAT vs. MG12) obtain relative improvements of
around 15% in MDC and EER with even larger gains, in the
range 17%-28% in MDC and EER when PLP15N features
(MG15 SAT vs. MG15) are used. Systems using CMLLR
transforms (CG12 SAT and CG15 SAT) obtain similar gains.
Note, however, that these systems outperform MLLR coun-
terparts when standard maximum likelihood training is used
for GMM (CG12 vs. MG12, CG15 vs. MG15). For HMM-
based systems, SAT results in large performance gains too,

in the range of 15%-26% in MDC and 9%-28% in EER
on both the SRE 2005 and SRE 2006 data. Considering the
cumulative gain from systems using PLP12 acoustic models
to those using PLP15N SAT acoustic models, improvements
over 40% are achieved. Figure 3 (left) shows DET curves for
PLP12, PLP15 and PLP15 SAT acoustic models for systems
using 2 transforms on the SRE 2006 data. The cumulative
improvement is constant for a wide range of operating points.

The number of MLLR transforms has a considerable impact
on system performance. There is an overall trend for lower
error rates as more classes are used in the system. Since
each MLLR transform specializes in one acoustic space split,
data are better fit to the linear regression model, affecting
performance correspondingly. However, the results show that
using three transforms is not always beneficial26. The amount

26The choice of the classes may have an effect on performance aswell.
Consonants and vowels are used in 2t systems based on a prioriphonetic
criteria whereas semiautomatic clustering is used for 3t systems.
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of data used to estimate each transform plays an important role
for the segment lengths we deal with: the more classes the less
data are available per class. Along these lines, the PLP12 and
PLP15N features result in 1560 and 2256 regression coeffi-
cients per transform respectively. About 30% more parameters
must be estimated for the latter. We note, for instance, that
the diagonal MLLR back-off rates dramatically rose using the
PLP15N features, although we forced full MLLR matrices
in all of the presented experiments. Figure 3 (right) shows
DET curves for the MH15 SAT systems using from one to
three transforms. Going from one to two transforms brings
a consistent improvement along almost the entire operating
range, while going from two to three transforms does not
improve the performance anywhere.

B. System Fusion

The best performing GSV-SVM, CMLLR-SVM and MLLR-
SVM systems, i.e. GSV-SVM 256g, CH15 and MH15 2t SAT,
were selected from Tables I, III and IV for combination with
two other standard cepstral systems, PLP-GMM and PLP-
SVM, previously described in Section V-C. Table V shows
individual system results for the SRE 2005 and SRE 2006
data and fusion results for SRE 2006 only. The SRE 2005
data was used to train the fusion model and excluded from
the evaluation.

The GSV-SVM 256g system is the best performing of
the non-MLLR-based individual systems. The MH15 2t SAT
system outperforms the rest of the individual system overall,
with relative gains of at least 15% in MDC. In EER terms,
the gains are more variable, from 2% to 20%, with GSV-SVM
eventually outperforming MH15 2t SAT. A large difference
in performance is observed for the PLP-GMM system using
forward and forward-backward scoring, the latter improving
around 20% in MDC and EER. DET curves of all the individ-
ual systems on the SRE 2006 data are shown in Figure 4 (left).
Performance of the CH15 system lies far away from the rest
of the individual systems, while MH15 2t SAT outperforms
all the systems in the low false-alarm rate region. Similar
performance is obtained for the GSV-SVM and MH15 2t SAT
systems for operating points around the EER.

As for fusion, the baseline system the combination of the
PLP-GMM and PLP-SVM systems. In global terms, adding
any one of the three MLLR-based systems to the baseline
improves performance. The GSV-SVM 256g system and the
CH15 one bring slight improvements to the baseline, while
fusing the baseline with the MH15 2t SAT system brings a
relative gain of over 23% in MDC and EER regardless of the
scoring approach. This suggests that Gaussian supervectors
are somewhat redundant with respect to the baseline system,
given that the PLP-GMM already uses the GMM and the PLP-
SVM uses the SVM. On the CMLLR side, although the CH15
system is much less performant than GSV-SVM, the fusion of
the baseline with any of these systems results in similar im-
provements. This can be interpreted as the CMLLR transforms
providing complementary information. The combination of the
baseline with the GSV-SVM 256g and CH15 systems brings
small gains, especially in EER, while including the MH15
2t SAT system dominates performance, once again obtaining

relative gains over 20%. This effect is clearly shown in Figure
4 (right) where fusing all the individual systems performance
leads to only a slight improvement of performance.

SRE 2005 SRE 2006
MDC EER (%) MDC EER (%)

System F FB F FB F FB F FB
(a) PLP-GMM .0287 .0202 5.82 4.74.0218 .0177 4.69 3.72
(b) PLP-SVM .0211 .0204 4.82 4.48.0198 .0189 4.41 4.14
(c) GSV-SVM 256g .0177 .0172 4.66 4.45 .0182 .0174 3.543.26
(d) CH15 .0264 .0237 6.28 6.28.0230 .0216 5.46 5.24
(e) MH15 2t SAT .0180 .0159 4.53 4.33 .0155 .0143 3.453.57
(a+b) Baseline (bl) — — .0169 .0155 3.45 3.35
(bl+c) — — .0149 .0147 3.13 3.12
(bl+d) — — .0154 .0148 3.12 3.03
(bl+e) — — .0126 .0118 2.572.43
(bl+c+d) — — .0142 .0140 2.68 2.85
(bl+c+e) — — .0114 .0114 2.25 2.57
(bl+c+d+e) All — — .0113 .0114 2.202.48

TABLE V
MDC AND EEROF INDIVIDUAL AND FUSED SYSTEMS ON THESRE 2005
AND SRE 2006EVALUATION DATA . COLUMN F SHOWS FORWARD SCORES
AND COLUMN FB SHOWS AVERAGED FORWARD AND BACKWARD SCORES

WITH A WEIGHT OF 0.5.

VIII. C ONCLUSION

We studied two approaches to feature extraction for speaker
recognition based on two speaker adaptation techniques,
namely Gaussian supervectors using MAP adaptation and
MLLR transforms. Our experiments showed that (i) an ap-
proach using MLLR transform features classified using a
SVM is an actual alternative to current state-of-the-art acoustic
systems. Using features optimized for speaker recognition, the
MLLR-SVM systems outperformed all other acoustic systems
at the MDC operating point, including a likelihood-ratio-
based GMM-UBM system using hybrid factor analysis inter-
session compensation and a system using Gaussian supervec-
tor features and SVM classification. The channel-compensated
front-end seems to prevent the transform coefficients from
capturing the channel variability. Speaker Adaptive Training
and multiple regression classes were found to improve perfor-
mance for the most advanced adaptation schemes. (ii) For the
most simple setups, systems based on CMLLR were found to
outperform those based on MLLR, with speaker-recognition
features and SAT bringing large improvements. (iii) The use
of phonemic HMM instead of a GMM for adaptation results in
interesting gains in performance. However, these gains should
be balanced against the increase of training complexity and
resources. (iv) The GSV-SVM system outperforms both the
PLP-GMM and PLP-SVM systems, showing the effectiveness
of including both GMM and SVM classification into one sys-
tem. (v) Fusion improvements are dominated by the baseline
and MLLR-SVM system performances. The GSV-SVM and
CMLLR-SVM systems bring about the same improvement
after fusion while obtaining very different performance in-
dividually. This suggests that MLLR transform coefficients
involve information that is complementary to that of GMM
mean vectors. Including the GSV-SVM system in a fusion
already using GMM and MLLR transform coefficients does
not bring any further gain.
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Fig. 4. DET curves for individual systems on the SRE 2006 evaluation data (left) and fused systems (right).
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