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Most speaker recognition systems rely on shortterm acoustic cepstral features for extracting the speaker-relevant information from the signal. But phonetic discriminant features, extracted by a bottle-neck multi-layer perceptron (MLP) on longer stretches of time, can provide a complementary information and have been adopted in speech transcription systems. We compare the speaker verification performance using cepstral features, discriminant features, and a concatenation of both followed by a dimension reduction. We consider two speaker recognition systems, one based on maximum likelihood linear regression (MLLR) super-vectors and the other on a state-ofthe-art i-vector system with two session variability compensation schemes. Experiments are reported on a standard configuration of NIST SRE 2008 and 2010 databases. The results show that the phonetically discriminative MLP features retain speakerspecific information which is complementary to the short-term cepstral features. The performance improvement is obtained with both score domain and feature domain fusion and the speaker verification equal error rate (EER) is reduced up to 50% relative, compared to the best i-vector system using only cepstral features.

I. INTRODUCTION

A COUSTIC cepstral features, extracted from short-term speech frames of 20-30 ms, are widely used in stateof-the-art speaker verification systems [START_REF] Kinnunen | An overview of text-independent speaker recognition: from features to supervectors[END_REF]. Since a few years, discriminative features, as extracted by a multi-layer perceptron (MLP), have been adopted in automatic speech recognition (ASR) systems in combination with short-term cepstral features thanks to their relevance and effectiveness [START_REF] Morgan | Pushing the envelope -Aside[END_REF], [START_REF] Fousek | Transcribing broadcast data using MLP features[END_REF], [START_REF] Valente | A comparative large scale study of MLP features for Mandarin ASR[END_REF]. The extraction of MLP feature makes use of temporal information which spans much longer stretches of time (typically 300-500 ms), compared to the extraction of cepstral features. MLP features used for ASR may consist of phoneme posterior probabilities (Tandem connectionist features [START_REF] Hermansky | Tandem connectionist feature stream extraction for conventional HMM systems[END_REF], [START_REF] Zhu | Using MLP features in SRI's conversational speech recognition system[END_REF]) or the linear outputs of the neurons in the bottle-neck layer of the MLP. The latter ones, known as bottle-neck features, have been found to be more suitable in the framework of hidden markov model (HMM)-gaussian mixture model (GMM) based ASR [START_REF] Grezl | Optimizing bottle-neck features for LVCSR[END_REF]. Both probabilistic and bottle-neck features contain a phonetic information which is derived by the MLP from long-term speech frames. This longer stretch of time ensures that a significant phonetic information from speech signal is taken into account in the calculation of each MLP feature vector. Such features may also keep timbre-specific information and thus be relevant for a speaker recognition system. Alternatively, the MLP can also be trained to compute the target speakers posterior probabilities, using either the output layer [START_REF] Heck | Robustness to telephone handset distortion in speaker recognition by discriminative feature design[END_REF] or the bottle-neck layer [START_REF] Wu | MLP internal representation as discriminative features for improved speaker recognition[END_REF], [START_REF] Yaman | Bottleneck features for speaker recognition[END_REF] as features. Stoll et al. compared speaker-and phonetic-discriminative features for a speaker recognition task and got slightly better performance with the phonetic-based features [START_REF] Stoll | Speaker recognition via nonlinear discriminant features[END_REF]; however, simply concatenating MLP and cepstral features did not help in improving the speaker recognition performance. In a previous work [START_REF] Do | Augmenting shortterm cepstral features with long-term discriminative features for speaker verification of telephone data[END_REF], we also observed that augmented features, consisting of phonetically discriminative MLP and cepstral features, do not outperform the cepstral features. We have thus proposed to reduce the dimension of the augmented features, using principal component analysis (PCA), which helps in improving the speaker verification performance compared to the performance obtained with cepstral features [START_REF] Do | Augmenting shortterm cepstral features with long-term discriminative features for speaker verification of telephone data[END_REF]. However, these results were obtained with a baseline GMM-universal background model (UBM) system [START_REF] Reynolds | Speaker verification using adapted Gaussian mixture models[END_REF] and they need to be confirmed in a more performing framework.

In this paper, we study the effectiveness of combining cepstral features with phonetically discriminative features in a state-of-the-art speaker verification system with session variability compensation technique and we investigate linear discriminant analysis (LDA) on augmented features to discriminate the speakers. We consider two speaker verification systems, one is based on the state-of-the-art i-vector approach [START_REF] Dehak | Front-End Factor Analysis for Speaker Verification[END_REF] and the other on maximum likelihood linear regression (MLLR) super-vectors [START_REF] Stolcke | MLLR transforms as features in speaker recognition[END_REF], [START_REF] Sarkar | Speaker verification using m-vector extracted from MLLR super-vector[END_REF]. For session variability compensation, we explore two recently developed techniques namely eigen factor radial (EFR) [START_REF] Bousquet | Intersession Compensation and Scoring Methods in the i-vectors Space for Speaker Recognition[END_REF] and probabilistic LDA (PLDA) [START_REF] Prince | Computer Vision: Models Learning and Inference[END_REF]. We show that augmented features improve the speaker verification performance in contrast to several previous studies [START_REF] Stoll | Speaker recognition via nonlinear discriminant features[END_REF], [START_REF] Do | Augmenting shortterm cepstral features with long-term discriminative features for speaker verification of telephone data[END_REF]. The system performances are demonstrated on a standard task of NIST speaker recognition evaluation (SRE) 2008 and 2010 core condition.

II. FEATURE EXTRACTION A. Cepstral features

Cepstral feature are estimated on the telephone bandwidth (0-4kHz) every 10ms, using a 30 ms analysis window. For each frame the cubic root of the Mel scale power spectrum is computed, followed by an inverse Fourier transform, and 12 LPC-based cepstral coefficients are extracted, using a process similar to that of perceptual linear predictive (PLP) coefficients [START_REF] Hermansky | Perceptual linear predictive (PLP) analysis of speech[END_REF]. Cepstral mean removal and variance normalization are carried on independently for each speaker utterances. The 39dimensional acoustic feature vector consists of 12 cepstral coefficients and the log energy, along with the first and second derivative coefficients computed over a window of 5 and 7 frames, respectively. Speech fundamental frequency F 0 , which reflects the vocal fold vibration rate, can also be useful for speaker verification and complement the spectral envelope [START_REF] Adami | Modeling Prosodic Dynamics for Speaker Recognition[END_REF], [START_REF] Reynolds | The superSID project: exploiting highlevel information for high-accuracy speaker recognition[END_REF], [START_REF] Shriberg | High-level features in speaker recognition[END_REF]. In this respect, a 3-dimensional pitch feature vector (pitch, ∆ and ∆∆ pitch) is extracted, using the autocorrelation method [START_REF] Boersma | Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound[END_REF] coupled with linear interpolation in order to avoid zero values in the unvoiced segments. The pitch feature vector is added to the original PLP features, resulting in a 42-dimensional cepstral feature vector (PLP+F 0 ). These features are used as the baseline cepstral features and, henceforth, will be abbreviated as PLP.

B. Discriminative features

The MLP features are generated in two steps. The first step is raw features extraction which constitutes the input layer to the MLP neural network. In this work, the TRAP-DCT (TempoRAl Pattern -Discrete Cosine Transform) [START_REF] Grezl | Optimizing bottle-neck features for LVCSR[END_REF] is used as raw features. The TRAP-DCT features are obtained from a 19band Mel scale spectrogram, using a 30 ms window and a 10 ms offset, similar to [START_REF] Le | Multi-Style MLP Features for BN Transcription[END_REF] on broadcast data. A discrete cosine transform (DCT) is applied to 500 ms window of each band from which 25 first DCT coefficients are retained. The retained DCT coefficients are then concatenated together. In total, the raw features have, thus, 19 × 25 = 475 DCT coefficients. The raw features are then input to a 4-layer MLP [START_REF] Fousek | Transcribing broadcast data using MLP features[END_REF] with the bottle-neck architecture [START_REF] Grezl | Optimizing bottle-neck features for LVCSR[END_REF]. The size of the third layer (the bottle-neck) is equal to the desired number of features (39).

In a second step, the raw features are processed by the MLP and the features are not taken from the output layer of the MLP but from the hidden bottle-neck layer and de-correlated by a PCA whitening transformation. No speaker normalization and adaptation technique was applied on the raw features like VTLN or SAT/CMLLR [START_REF] Tüske | A study on speaker normalized MLP features in LVCSR[END_REF] or on the MLP features like HLDA, phonetic MLLR adaptation [START_REF] Zhu | On using MLP features in LVCSR[END_REF], [START_REF] Tüske | A study on speaker normalized MLP features in LVCSR[END_REF]. These normalization techniques may improve the ASR performance but remove a more speaker specific information. The MLP feature vector has finally 39 dimensions. An illustration of MLP (bottle-neck) feature extraction is shown in Fig. 1. Fig. 1. MLP (bottle-neck) features extraction using a 4-layer MLP neural network. The input features are TRAP-DCT, extracted from 500 ms windows in the sub-bands of short-term spectrogram [START_REF] Fousek | Transcribing broadcast data using MLP features[END_REF], [START_REF] Grezl | Optimizing bottle-neck features for LVCSR[END_REF]. PCA is applied to decorrelate the 39-dimensional feature vector taken from the bottle-neck layer.

The MLP neural network is trained using ICSI Quicknet software [START_REF] Johnson | ICSI Quick-Net software package[END_REF] on about 2000 hours of conversational telephone speech (CTS) data, mainly from the Switchboard, CallHome or Fisher databases provided by the LDC [START_REF] Prasad | The 2004 BBN/LIMSI 20xRT English conversational telephone speech recognition system[END_REF]. The phonetic segmentation was obtained through forced alignment. Since the amount of data for training the MLP is very large, efficient training procedure should be implemented. In our work, a simplified training scheme, proposed in [START_REF] Zhu | Using MLP features in SRI's conversational speech recognition system[END_REF], was applied for the training. Following this scheme, the conversation sides are randomized and split in three non-overlapping subsets, used in 6 training epochs with fixed learning rates. The first three epochs use only 13% of data, the next two use 26%, the last epoch uses 52% of the data, with the remainder used for cross-validation to monitor the performance. The MLP has 138 targets, corresponding to the individual states for each phone and one state for the additional pseudo phones (silence, breath, filler-word).

C. Feature Dimension Reduction

Two techniques are considered for reducing the dimension of the augmented features resulting from the concatenation of MLP (39 dimension) and PLP (42 dimension), namely principal component analysis (PCA) and linear discriminant analysis (LDA) [START_REF] Fukunaga | Introduction to Statistical Pattern Recognition[END_REF]. With PCA, the projection space is generated through eigen value decomposition of the covariance matrix estimated using augmented features pooled over many nontarget speakers. With LDA, the transformation matrix aims to maximize the ratio of between-class scatter S B and withinclass scatter S W .

III. SPEAKER VERIFICATION SYSTEMS

We consider two approaches to evaluate the speaker verification performance of the proposed features; one is based on maximum likelihood linear regression (MLLR) super-vectors and the other relies on the standard i-vector approach.

A. MLLR super-vector

In the MLLR super-vector system [START_REF] Sarkar | Speaker verification using m-vector extracted from MLLR super-vector[END_REF], [START_REF] Stolcke | MLLR transforms as features in speaker recognition[END_REF], speakers or utterances are represented by a super-vector formed by row-wise stacking the element of the respective speaker or utterance MLLR transformation [START_REF] Leggetter | Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models[END_REF]. The MLLR transformation for a speaker is estimated with respect to a universal background model (UBM) in the maximum likelihood (ML) sense using his/her training data, without any speech transcription, as 

μk = Aµ k + b, Σk = Σ k ( 

B. i-vector

The i-vector system characterizes speakers and utterances with vectors obtained by projecting their speech data onto a total variability space T where speaker and channel information is dense [START_REF] Dehak | Front-End Factor Analysis for Speaker Verification[END_REF]. It is generally expressed as:

S = m + T w ( 2 
)
where w is called an i-vector and m and S are the GMM super-vector of the speaker independent UBM and speaker adapted model, respectively. It was implemented using the Bob toolkit [START_REF] Anjos | Bob: a free signal processing and machine learning toolbox for researchers[END_REF], [START_REF] Khoury | SPEAR: An open source toolbox for speaker recognition based on Bob[END_REF].

IV. SESSION VARIABLITY COMPENSATION & SCORING

During the test phase, the i-vector or the MLLR super-vector of the test utterance is scored against the claimant speaker specific vector obtained in the training phase, after a postprocessing of the vectors for session variability compensation. We consider two techniques most commonly used in the ivector framework.

1) Eigen Factor Radial (EFR): The i-vector w is iteratively length normalized to compensate the session variability as per [START_REF] Bousquet | Intersession Compensation and Scoring Methods in the i-vectors Space for Speaker Recognition[END_REF]. During test, the score between the length normalized i-vector of claimant ŵcl and test utterance ŵtst is calculated through a Mahalanobis distance normalized with the withinclass covariance matrix computed using data pooled from many non-target speakers. In the case of MLLR based system, high-dimensional MLLR super-vectors are first projected onto a LDA space in order to reduce the dimension and better discriminate the speakers. Afterward, LDA projected MLLR super-vectors are length normalized and scored similarly to the i-vectors.

2) Probabilistic LDA (PLDA): PLDA is a generative modeling technique which decomposes the i-vector into several components as:

w = µ w + Φy s + Γz + (3) 
where Φ and Γ are rectangular matrices representing the eigen voice and eigen channel subspace respectively. y s and z are called the speaker and channel factor, respectively, with a priori normal distribution. indicates the residual noise. In test phase, the score between the i-vector of claimant w cl and test utterance w tst is calculated as:

score(w cl , w tst ) = log p(w cl , w tst |θ tar ) p(w cl , w tst |θ non ) (4) 
with hypothesis θ tar that w cl and w tst are from the same speaker and hypothesis θ non that they are from different speakers. For details see [START_REF] Prince | Computer Vision: Models Learning and Inference[END_REF]. MLLR super-vectors are processed similarly than i-vectors without any prior LDA.

V. EXPERIMENTAL SETUP

Experiments are preformed on male speakers of two standard tasks of NIST SRE 2008 (task 7, tel-tel) and 2010 (task 5, tel-tel) as per NIST evaluation plans [START_REF]The NIST Year 2008 Speaker Recognition Evaluation Plan[END_REF], [START_REF]The NIST Year 2010 Speaker Recognition Evaluation Plan[END_REF]. There are 1270 and 5200 utterances, respectively for NIST 2008 and 2010 for training 1270 and 5200 target models. All utterances are 5 minutes long with around 2.5 minutes speech duration. For the experiments on NIST SRE 2008, the total variability space T is trained using 12399 non-target speech utterances collected from various database (NIST 2004-05, Switchboard II part 1, 2 & 3; Switchboard cellular part 1 & 2, about 15 sessions per speaker; 890 speakers). This dataset is also used for implementing PCA, LDA, EFR and PLDA in both MLLR super-vector and i-vector systems. The reference speaker label is used for training the LDA and PLDA projections. In the case of PCA and LDA in augmented feature domain (i.e. concatenation of MLP and PLP), the file-wise mean vector is considered. For PLDA, both speaker and channel factors are varied to find the best speaker verification performance (with a step of 50 upto the dimension of the vector). MLLR adaptation is performed using a single iteration. For SRE 2010 experiments, 6947 additional utterances are taken from SRE 2006 and 2008 for training the T space, EFR and PLDA. However, the LDA or PCA projection matrices used are the ones estimated on SRE 2008 development set. The dimension of the i-vector is 400 for both SRE 2008 and 2010 systems. The UBM consisting of 512 Gaussians with diagonal covariance matrices is trained using non-target data from NIST SRE 2004. In the case of MLP+PLP augmented features followed by LDA or PCA, a dedicated i-vector or MLLR system is implemented on the projected features. However, UBM size, UBM training data, i-vector dimension, number of iterations for total variability space, PLDA training and procedure were fixed on SRE 2008 development set and kept identical for the experiments on SRE 2010 test set. The system performance is measured using the equal error rate (EER).

VI. RESULTS AND DISCUSSION

For analysis, speaker verification system performances are presented with EFR and PLDA session variability technique on task 7 (tel-tel) of NIST SRE 2008 core condition. The best system is selected according to the lowest EER. Then, system performances for the best configuration are given on SRE 2010.

A. Performance on SRE 2008 development set

In this section, we compare the performance of a speaker verification system with or without augmented feature on task 7 of NIST SRE 2008 core condition. The optimal PCA or LDA projection size is selected based on the lowest EER for different values of projection as shown in Fig. 2 based on the respective system with EFR.

From Table I, it can be observed that a system using a simple concatenation of the MLP+PLP features without any further projection fails to improve upon the baseline MLLR system. PCA/LDA projected dimension of augmented features % Equal error rate (EER) PCA-MLLR-system LDA-MLLR-system PCA-ivector-system LDA-ivector-system Fig. 2. Speaker verification performance of MLLR super-vector and i-vector systems with EFR for different PCA/LDA projected dimension of augmented features (MLP+PLP) on task 7 (tel-tel) of NIST SRE 2008 core condition.

Conversely, when projected either with PCA or LDA, the system using augmented features shows a remarkably lower EER compared to the best system with standalone features for both MLLR and i-vector systems with the different session variability and scoring techniques, a relative improvement above 20% for the MLLR systems and i-vector systems. The late fusion of standalone MLP and PLP feature based systems in the score domain also provides a comparable reduction of the EER. Thus, both MLP and PLP contain complementary speaker related information when integrated into a speaker verification system using a current session variability compensation technique in contrast to [START_REF] Stoll | Speaker recognition via nonlinear discriminant features[END_REF], [START_REF] Do | Augmenting shortterm cepstral features with long-term discriminative features for speaker verification of telephone data[END_REF]. The i-vector system yields a better performance than the MLLR based system for both EFR and PLDA. In the case of EFR, augmented features projected with LDA show a slightly better performance than with PCA. Conversely, for PLDA, a slightly better performance is observed with PCA, which could be due to a complementarity between PCA and PLDA.

B. Performance on NIST 2010 SRE

In this section, we further present the speaker verification performance on task 5 of NIST SRE 2010 core condition for the i-vector system only, using the PLDA parameters which where found optimal on NIST SRE 2008.

From Table II, we can observe a similar pattern than on NIST SRE 2008. The combination of MLP with PLP features result in a remarkable improvement of the speaker verification performance compared to the systems which uses standalone features for EFR or PLDA session variability compensation schemes. Departing from the observation on the development set, LDA only slightly improves the result compared to the raw concatenated features, while PCA actually degrades the performances. When using EFR scoring, feature fusion results in a better system than score fusion. Compared to the best performing cepstral-based i-vector system with PLDA scoring at 2.25% EER, the concatenation with MLP features followed by a LDA projection results in a 50% relative improvement, at 1.13% EER, and score fusion behaves similarly, halving the EER to 1.12%. More generally, the detection error trade-off (DET) curves presented on Fig. 3 for the PLDA scoring case show that the LDA projection provides the best performance for a large range of operating points.

VII. CONCLUSION

Recently, phonetically discriminative features extracted from long-term temporal windows with a bottle-neck MLP were found to be complementary to the cepstral features for ASR systems. In this work, we explored the combination of PLP cepstral features and MLP features in the context of speaker verification on two standard tasks of NIST SRE 2008 and 2010 core condition. We observed that a system using concatenated features remarkably outperforms the standalone systems, in a state-of-the-art i-vector framework with EFR or PLDA session variability compensation and scoring. It generally helps to project the augmented features onto a lower-dimensional space using PCA or LDA, however the gains obtained with PCA on the development set were not observed on the test set. Using LDA-projected concatenated features, the speaker verification equal error rate was reduced by about 50% relative compared to the best cepstral i-vector system on SRE 2010. Late fusion in score domain of the MLP and PLP systems also provided a similar improvement compared to the corresponding standalone systems, and even slightly outperformed the feature-domain fusion in the best configuration of i-vector systems with PLDA scoring.

These results confirm, as was observed in previous study [START_REF] Do | Augmenting shortterm cepstral features with long-term discriminative features for speaker verification of telephone data[END_REF], that the phonetically discriminative MLP features retain speaker-specific information which is complementary to the short-term cepstral features. Furthermore, their combination is effective both in score and feature domain and provides an important gain in the context of a state-of-the-art speaker verification system.
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 1 where µ k and Σ k represent the mean and co-variance matrix of the kth Gaussian of the UBM model and μk and Σk are the adapted model parameters. The same MLLR transformation (A, b) is shared by all Gaussians. Then, the MLLR transformation matrix A of the particular speaker is stacked row wise to form the representative MLLR super-vector. The bias b did not provide measurable gains in our experiments and is not further considered. It results in a F × F dimensional supervector depending on the dimension F of the feature vectors.

TABLE I

 I Comparison of speaker verification performance with or without PCA/LDA on augmented feature system with the baseline systems on task 7 of NIST SRE 2008 core condition for different configurations.

	System	Features/dim.	Opt.	%EER
			proj.	EFR	PLDA
		MLLR systems		
	Baseline	MLP/39	-	5.08	3.97
	systems	PLP/42	-	4.23	4.43
	Augmented	MLP+PLP/81	-	7.01	6.02
	features	MLP+PLP/81	PCA40	3.44	2.65
		MLP+PLP/81	LDA45	3.39	3.20
	Score fusion	MLP/39 & PLP/42		3.59	2.92
		i-vector systems		
	Baseline	MLP/39	-	3.41	2.61
	systems	PLP/42	-	2.51	2.05
	Augmented	MLP+PLP/81	-	2.01	1.80
	features	MLP+PLP/81	PCA70	1.85	1.58
		MLP+PLP/81	LDA70	1.84	1.63
	Score fusion	MLP/39 & PLP/42		2.48	1.61

  Fig. 3. DET curves corresponding to the PLDA systems presented in TableII.
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		TABLE II			
	Seaker verification performance on task 5 of NIST SRE 2010 core condition
	with i-vector for different session variability and scoring techniques.
	System	Features/dim.	Opt.	%EER
			proj.	EFR	PLDA
	Baseline	MLP/39	-	2.33	2.01
	systems	PLP/42	-	2.55	2.25
	Augmented	MLP+PLP/81	-	1.48	1.15
	features	MLP+PLP/81	PCA70	1.69	1.42
		MLP+PLP/81	LDA70	1.40	1.13
	Score fusion	MLP/39 & PLP/42		1.97	1.12
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