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A DPG FRAMEWORK FOR STRONGLY MONOTONE OPERATORS∗

PIERRE CANTIN† AND NORBERT HEUER‡

Abstract. We present and analyze a hybrid technique to numerically solve strongly monotone nonlinear problems
by the discontinuous Petrov–Galerkin method with optimal test functions (DPG). Our strategy is to relax the nonlinear
problem to a linear one with additional unknown and to consider the nonlinear relation as a constraint. We propose to
use optimal test functions only for the linear problem and to enforce the nonlinear constraint by penalization. In fact,
our scheme can be seen as a minimum residual method with nonlinear penalty term. We develop an abstract framework
of the relaxed DPG scheme and prove under appropriate assumptions the well-posedness of the continuous formulation
and the quasi-optimal convergence of its discretization. As an application we consider an advection-diffusion problem
with nonlinear diffusion of strongly monotone type. Some numerical results in the lowest-order setting are presented to
illustrate the predicted convergence.

Key words. Discontinuous Petrov–Galerkin method, optimal test functions, strongly monotone operator, advection-
diffusion, nonlinear penalty.

AMS subject classifications. 65N30, 65J15, 65N12, 47H05

1. Introduction. In recent years, the discontinuous Petrov–Galerkin method with optimal test
functions (“DPG method” in the following) has proved to be an attractive strategy to produce inf-
sup stable approximations for a wide class of problems. The basic setting stems from Demkowicz and
Gopalakrishnan [14, 13] and has been extended, e.g., to linear elasticity [1, 18], the Stokes and Maxwell
equations [28, 7], the Schrödinger equation [15], boundary integral and fractional equations [24, 17].
Another promising application area is singularly perturbed problems [16, 9, 3, 4, 25].

All the cited references, however, deal with linear problems. An extension of the DPG technology to
nonlinear problems, on the other hand, is a delicate issue. Principal problem is that the calculation (or
approximation) of optimal test functions involves an application of the underlying operator (the DPG
method is a minimum residual method). For nonlinear problems this step thus becomes nonlinear,
i.e., expensive. One way to circumvent the nonlinearity is, of course, to linearize the underlying
problem. This has been the approach in [8, 29]. A different idea is to apply the minimum residual
technique in product or “broken” spaces to the nonlinear problem. Bui-Thanh and Ghattas [5] did
this by considering the entire nonlinear problem as a constraint, and Carstensen et al. [6] developed
a representation of the DPG scheme by a nonlinear mixed form and analyzed the case of lowest
order approximations. DPG for contact problems has been studied in [21], though in this case the
nonlinearity is due to the contact condition which is treated by a variational inequality. We also note
that Muga and van der Zee [27] study problems posed in Banach spaces. In those cases the calculation
of optimal test functions becomes nonlinear even though the underlying PDE is linear.

In this paper we propose a combined scheme that employs the DPG technique to a linear relaxation
of the nonlinear problem and where the nonlinearity is added as a constraint. Specifically, we relax
the nonlinear problem by introducing an additional variable which then has a nonlinear relation with
the original variables. This nonlinear relation is dealt with outside the DPG framework which can
therefore develop its full potential, e.g., for singularly perturbed problems. In fact, although here we
consider continuous and strongly monotone operators, we claim that our technique is applicable to
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singularly perturbed strongly monotone operators. This, and extensions to more general nonlinear
problems, is ongoing research. In contrast, we do not see an obvious extension of [5] or [6] to singularly
perturbed nonlinear problems, except for introducing a linear relaxation as we propose.

In the context of the nonlinear DPG scheme from [6] we mentioned their extension to a nonlinear
mixed form. In fact, in the linear case it is well known that there is a mixed form of the DPG scheme,
and this is precisely the method proposed (for a specific model problem) by Cohen et al. [11]. As we
will see, our scheme can also be viewed as an extension of this mixed form. To be specific at this point,
let us consider a (linear) continuously invertible operator A : U → V ′ with Banach space U , Hilbert
space V , and dual V ′. A mixed (or saddle-point) form of Au = F is(

0 A∗

A −R

)(
u
v

)
=

(
0
F

)
in U ′ × V ′

with solution (u,v) = (u, 0). Here, R : V → V ′ is the Riesz operator and A∗ : V → U ′ the
adjoint of A. The (practical) DPG method [23] can be seen as a conforming discretization of this
saddle point problem. In the nonlinear case, our method is equivalent to replacing the operator A by
a linear relaxation B and the zero block by a nonlinear operator C (and, of course, redefining spaces
and variables). This yields an operator of the form

(1)

(
C B∗

B −R

)
: U × V → U ′ × V ′,

whose stability relies (among other properties) on the boundedness below of B. In our case, the nonlin-
earity is outsourced to C so that all the (linear) DPG strategies, aiming precisely at the boundedness-
below property, can be employed. In our analysis it will be necessary to weight the operator R, though
in specific applications there are precise bounds for this weighting parameter. We stress the fact that,
since both B and C are acting on the unknowns of interest (represented by u), it is not necessary to
consider the variable v. Indeed, in the numerical scheme we will be dealing with the Schur comple-
ment of −R only. Standard DPG feature is to using product (broken) spaces V so that the numerical
inversion of a discretization of R can be done locally and is, thus, cheap.

In the linear context, similar ideas have been used to deal with boundary, transmission and contact
conditions outside the DPG framework, [19, 20, 21]. In fact, our abstract framework includes the
analysis of linear boundary and transmission problems presented in [19, 20] as special cases. Though,
differently from before, we decompose (or extend) nonlinear operators and develop an analysis based
on the saddle point structure. Furthermore, we present an analysis that includes the approximation
of optimal test functions whereas in [19, 20], these functions were assumed to be known exactly.

In this paper we consider, as a model, an advection-diffusion problem with nonlinear strongly
monotone diffusivity,

(2) −∇· (λ(|∇u|)∇u+ βu) = f in Ω, u = 0 on ∂Ω

with connected Lipschitz domain Ω ⊂ Rd and d ≥ 2. Of course, there is extensive literature on the
numerical analysis of advection-diffusion problems, going back at least to Ciarlet, Schultz and Varga
[10] when considering monotone operators. We do not start to discuss all the options as there are too
many and since, more importantly, we use this problem only as a model to illustrate our idea and to
show its applicability.

Considering the model problem (2), our relaxed linearized problem will be

−∇· (ρ+ βu) = f in Ω, u = 0 on ∂Ω
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with the nonlinear flux ρ = ρ(∇u) as additional variable. The solution of this problem is not unique
so that the associated operator, denoted by B, has a non-trivial kernel. The missing nonlinear closure
relation ρ = λ(|∇u|)∇u will be represented by the kernel of a nonlinear operator C.

The rest of this paper is organized as follows. In the next section we present an abstract framework
for operators of the form (1). To the best of our knowledge, such kind a of operator has not been
analyzed before, although the particular case of R = 0 has the typical structure of a mixed method
for nonlinear problems. Under appropriate assumptions we prove its invertibility by using the Schur
complement (Theorem 2.3 in §2.1). In §2.2 we present our discrete scheme in abstract form and prove
its quasi-optimal convergence (Theorem 2.8). The remainder of the paper is devoted to applying the
abstract framework to the model problem (2). In Section 3, we precisely define the model problem, state
necessary assumptions, and introduce spaces and norms. The introduction of meshes and corresponding
product spaces is necessary for the DPG approximation, i.e., to localize the calculation of optimal test
functions. In Section 4 we develop a variational formulation of our model problem with resulting
operator of the type (1). The relaxed linear part is developed in §4.1. Here, any well-posed variational
formulation of the linear problem will do, but for illustration we focus on an ultra-weak variant.
This is by no means mandatory and, indeed, different formulations are equivalent, cf. [7]. Though in
complicated cases like singular perturbations ultra-weak formulations are easier to analyze (current
state of the art) and give the option of direct access to field variables, cf. [16, 25]. The nonlinear closure
relation is studied in §4.2 and afterwards, in §4.3, the combined variational formulation is presented
and its well-posedness is proved (Theorem 4.7). With all these preparations at hand, the presentation
of our relaxed DPG scheme for the model problem is brief and a proof of its quasi-optimal convergence
(Theorem 5.1) is immediate. This is the contents of Section 5. In Section 6 we present a numerical
realization of our relaxed DPG scheme for the model problem and report on results for the cases with
and without advection.

To alleviate notation, the expression |·| is context-dependent and denotes either the Lebesgue
measure of a set, the absolute value of a real number or the Euclidean norm of a vector. We use
boldface letters for vector and tensor valued quantities. In the calculation of norms via duality,
suprema are taken over non-zero elements without further notice.

2. Abstract nonlinear penalized mixed problem. In this section we present the abstract
framework of our DPG scheme. We first discuss specific continuous formulations, as an operator
system similar to a saddle point problem and its Schur complement. In the second part we present two
discretizations. The first is a conforming scheme based on the Schur complement and amounts to a
DPG method with exactly optimal test functions. The second discretization uses the operator system
and amounts to approximating the optimal test functions. Under appropriate assumptions we prove
the quasi-optimal convergence of both methods (Theorems 2.5 and 2.8).

2.1. Continuous setting. Let U and V be two real Hilbert spaces with topological duals U ′ and
V ′, respectively. We consider a bounded linear operator B : U → V ′, an isomorphism R : V → V ′,
and a continuous nonlinear operator C : U → U ′. (Later, C will be assumed to be Lipschitz continuous
and strongly monotone in a certain sense.) Then we define the block operator Tκ : U×V → U ′×V ′,
with κ > 0, as

Tκ =

(
C B∗

B − 1
κR

)
.

Here, B∗ : V → U ′ is the adjoint operator of B, i.e., 〈Bu,v〉 = 〈B∗v,u〉 for all u ∈ U and v ∈ V . To
alleviate the notation, 〈·, ·〉 is used generically to denote the duality between two arbitrary dual spaces.
Denoting N (B) and R(B) the kernel and the range of B, respectively, we define PB : U → N (B) the
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U -orthogonal projector of U on N (B).
The following theorem provides sufficient conditions on the continuous operators B, C and R such

that the operator Tκ is bijective, with Lipschitz continuous inverse.

Proposition 2.1. Additionally to the assumptions made above, assume that
(i) R−1 is coercive on R(B) with coercivity constant c−1

R > 0,
(ii) there exists cB > 0 such that ||u− PB(u)||2 ≤ cB ||Bu||2V ′ for all u ∈ U ,

(iii) there exist cU , cV > 0 such that

cU ||PB(u1 − u2)||2U ≤ 〈C(u1)− C(u2),u1 − u2〉+ cV ||B(u1 − u2)||2V ′

for all u1,u2 ∈ U .
Then, for all κ ≥ κ0 := (cV +cUcB)cR, Tκ is bijective with Lipschitz continuous inverse. In particular,

(3) cU ||u1 − u2||2U ≤ 〈C(u1)− C(u2),u1 − u2〉+ κ〈R−1B(u1 − u2), B(u1 − u2)〉

for all u1,u2 ∈ U .

Proof. Since R is bijective we can consider the Schur complement of − 1
κR to obtain

(4)

(
C + κB∗R−1B 0

0 −κ−1R

)
= S‡κTκS

†
κ.

Here, S†κ : U×V → U×V and S‡κ : U ′×V ′ → U ′×V ′ are the respective involutory operators
( i.e., equal to their inverses) defined as

S†κ =

(
IdU 0

κR−1B −IdV

)
, and S‡κ =

(
IdU ′ κB∗R−1

0 −IdV ′

)
.

It then follows that Tκ is invertible if and only if the operator Dκ = C + κB∗R−1B : U → U ′

is invertible. Since B∗R−1B defines a linear bounded operator we infer that Dκ is continuous. Let
us now prove that Dκ is strongly monotone, specifically that (3) holds. Let u1,u2 ∈ U and start
observing that

||u1 − u2||2U = ||PB(u1 − u2)||2U + ||u1 − u2 − PB(u1 − u2)||2U ,

owing to the definition of PB . By assumption (i) we can bound

||B(u1 − u2)||2V ′ ≤ cR〈R−1B(u1 − u2), B(u1 − u2)〉.

Combining this bound with assumptions (ii) and (iii), it follows that

cU ||u1 − u2||2U ≤ 〈C(u1)− C(u2),u1 − u2〉+ (cV + cBcU )cR〈R−1B(u1 − u2), B(u1 − u2)〉.

As a result, Dκ is continuous and strongly monotone for all κ ≥ κ0 := (cV + cBcU )cR, i.e.,Dκ is
invertible for all κ ≥ κ0 with Lipschitz continuous inverse, see, e.g., [26, Chap. 2])

Remark 2.2. (i) In the case of a linear operator C, − 1
κR plays the role of a regularizing operator

needed for the bijectivity of Tκ. As in the linear case, here the invertibility of Tκ does not require the
surjectivity of B, but only that the range R(B) is closed in V ′ (see, e.g., [22, Remark 4.3]).

(ii) In Proposition 2.1, if we assume in addition that C is monotone, i.e., 〈C(u1)−C(u2),u1−u2〉 ≥
0 for all u1,u2 ∈ U , then we infer from (3) that Tκ is bijective with Lipschitz continuous inverse for
all κ ≥ 1.
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Now, given F ∈ V ′ and G ∈ U ′, we consider two variational formulations, of penalized mixed
form

(5) (u,v) ∈ U×V : Tκ(u,v) = (G,F ) in U ′×V ′,

and the reduced Schur variant

(6) u ∈ U : 〈Dκu,w〉 = κ〈R−1F,Bw〉+ 〈G,w〉 ∀w ∈ U ,

with

〈Dκu,w〉 := κ〈R−1Bu, Bw〉+ 〈C(u),w〉 (u,w ∈ U).

The following result is a consequence of the Schur factorization (4) and Proposition 2.1.

Theorem 2.3. Let the assumptions of Proposition 2.1 hold true. Then, for all κ ≥ κ0 with κ0

as before, problems (5) and (6) are uniquely solvable and equivalent. Specifically, if (u,v) ∈ U×V
solves (5), then u solves (6). Conversely, if u ∈ U solves (6), then (u, κR−1(Bu − F )) ∈ U×V
solves (5).

Under additional assumptions on the operators B and C, we have a strong characterization of the
solution of (6).

Proposition 2.4. Assume that
(i) 〈C(u)−G,v〉 = 0 for all v ∈ N (B) implies C(u) = G in U ′,

(ii) B : U → V ′ is surjective.
Then, u ∈ U solves (6) if and only if C(u) = G in U ′ and Bu = F in V ′.

Proof. Let u ∈ U be solving (6). It follows that 〈C(u) − G,w〉 = 0 for all w ∈ N (B). By
assumption (i) we infer that C(u) = G in U ′. Therefore, u satisfies 〈R−1Bu, Bw〉 = 〈R−1F,Bw〉 for
all w ∈ U , i.e.,B∗R−1(Bu− F ) = 0 in U ′. Using assumption (ii) and recalling that R : V → V ′ is
an isomorphism, we conclude that B∗R−1 : V ′ → U ′ is injective, so that Bu = F in V ′. The other
direction is immediate.

2.2. Discretization. We analyze approximations of the continuous problems (5) and (6). At the
continuous level, these two problems are equivalent by Theorem 2.3 so that considering Tκ or Dκ with
their respective right-hand side yields the same problem. However, considering one operator or the
other at the discrete level is no longer equivalent.

For an index parameter h > 0, let Uh and Vh be two (families of) finite-dimensional spaces such
that Uh ⊂ U and Vh ⊂ V . Of course, later h will be a mesh parameter. We denote the canonical
injection maps by ih : Uh → U and jh : Vh → V , with i∗h : U ′ → U ′h and j∗h : V ′ → V ′h the
respective adjoints. The discrete spacesUh and Vh are provided with the induced norms ||·||Uh

:= ||ih ·||U
and ||·||Vh

:= ||jh ·||V .

2.2.1. Semi-discrete scheme. One possibility is to discretize the operator Dκ in the standard
way, that is, considering D?

κ,h : Uh → U ′h defined as

D?
κ,h = i∗hDκih, with Dκ = C + κB∗R−1B.

This discretization still requires to calculate R−1, which is not feasible in practice. In DPG discretiza-
tions, R is the Riesz operator RV : V → V ′ and such a semi-discrete scheme is sometimes called ideal
DPG method. It is distinguished from the practical variant which includes a discretization of R−1

V ,
cf. [23].
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The operator D?
κ,h induces the problem

(7) uh ∈ Uh : 〈D?
κ,huh,wh〉 = κ〈R−1F,Bihwh〉+ 〈G, ihwh〉 ∀wh ∈ Uh.

Theorem 2.5. Assume that the assumptions from Proposition 2.1 hold true with constants κ0 and
cU specified there. Then, for all κ ≥ κ0, D?

κ,h is invertible with uniformly Lipschitz continuous inverse,
and problem (7) is well posed. In addition, assuming that C is Lipschitz continuous with constant cLip,
we have the quasi-optimal error estimate

||u− ih(uh)||U ≤
(
1 + c−1

U

(
cLip + κ||B∗R−1B||L(U ,U ′)

))
inf

wh∈Uh

||u− ih(wh)||U .

Here, u ∈ U and uh ∈ Uh are the unique solutions of (6) and (7), respectively.

Proof. The discrete operator D?
κ,h defines a conforming approximation of the continuous prob-

lem (6). Therefore, its uniform Lipschitz continuous invertibility follows from the Lipschitz continuous
invertibility of Dκ, cf. Theorem 2.3. Again, by the conformity of the approximation, the a priori error
estimate follows by standard arguments using the monotonicity (3).

2.2.2. Fully discrete scheme. In order to avoid the inversion of the operator R, present in (7),
we discretize, instead of the Schur complement Dκ, the full operator Tκ as Tκ,h : Uh×Vh → U ′h×V

′
h

defined by

(8) Tκ,h =

(
Ch B∗h
Bh − 1

κRh

)
=

(
i∗h 0
0 j∗h

)
Tκ

(
ih 0
0 jh

)
.

Applying the Schur factorization to this discrete operator we obtain the fully discrete problem

(9) uh ∈ Uh : 〈Dκ,huh,wh〉 = κ〈R−1
h j∗hF,Bhwh〉+ 〈i∗hG,wh〉 ∀wh ∈ Uh,

with

(10) 〈Dκ,huh,wh〉 := 〈Ch(uh),wh〉+ κ〈R−1
h Bhuh, Bhwh〉.

The well-posedness of (9) follows similarly as in Proposition 2.1, by using the existence of a Fortin
operator Π : V → Vh satisfying, uniformly in h,

〈Bihuh,v − jhΠvh〉 = 0 ∀uh ∈ Uh, v ∈ V ,(11a)

∃cΠ > 0, ||jhΠv||2V ≤ cΠ||v||2V ∀v ∈ V .(11b)

In the context of DPG methods, Gopalakrishnan and Qiu [23] have employed such an operator to
analyze the approximation of optimal test functions. This is precisely our motivation. Let us recall
this result, cf. [23, Proof of Theorem 2.1].

Lemma 2.6. Assume that (11) holds. Then, ||Bihuh||2V ′ ≤ cΠ||Bhuh||2V ′h for all uh ∈ Uh.

The following proposition extends the statements of Proposition 2.1 to the discrete level.

Proposition 2.7. Assume that,
(i’) R−1

h is coercive on R(Bh) with coercivity constant c−1
Rh

> 0,

(ii) there exists cB > 0 such that ||u− PB(u)||2 ≤ cB ||Bu||2V ′ for all u ∈ U ,
(iii) there exist cU , cV > 0 such that

cU ||PB(u1 − u2)||2U ≤ 〈C(u1)− C(u2),u1 − u2〉+ cV ||B(u1 − u2)||2V ′

for all u1,u2 ∈ U ,
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(iv) there exists a Fortin operator Π : V → Vh satisfying (11).
Then, for all κ ≥ κ0,h := (cV + cBcU )cΠcRh

, Tκ,h is invertible with Lipschitz continuous inverse. In
particular,

(12) cU ||uh − vh||2Uh
≤ 〈Ch(uh)− Ch(vh),uh − vh〉+ κ〈R−1

h Bh(uh − vh), Bh(uh − vh)〉

for all uh,vh ∈ Uh.

Proof. We follow the same route as in the proof of Proposition 2.1. Specifically, the discrete
operator Tκ,h is invertible if and only if Dκ,h is invertible. We prove that Dκ,h is continuous and
strongly monotone.

Let uh,vh ∈ Uh. By assumptions (ii), (iv) and Lemma 2.6 we have

||ih(uh − vh)− PBih(uh − vh)||2U ≤ cB ||Bih(uh − vh)||2V ′ ≤ cBcΠ||Bh(uh − vh)||2V ′h ,

so that, using assumption (i’), it follows that

||ih(uh − vh)− PBih(uh − vh)||2U ≤ cBcΠcRh
〈R−1

h Bh(uh − vh), Bh(uh − vh)〉.

Owing to assumption (iii) and the definition of Ch, we also have

cU ||PBih(uh − vh)||2U ≤ 〈Ch(uh)− Ch(vh),uh − vh〉+ cV ||Bih(uh − vh)||2V ′ .

Again applying Lemma 2.6 and combining the two last inequalities, it follows that

cU ||uh − vh||2Uh
≤ 〈Ch(uh)− Ch(vh),uh − vh〉

+ (cV + cBcU )cΠcRh
〈Bh(uh − vh), R−1

h Bh(uh − vh)〉.

In particular, (12) holds for κ ≥ κ0,h := (cV + cBcU )cΠcRh
. We conclude that Dκ,h is continuous and

strongly monotone for all κ ≥ κ0,h with Lipschitz continuous inverse.

Theorem 2.8. Assume that the assumptions from Propositions 2.1, 2.7 hold true, and that κ ≥
max(κ0;κ0,h), with the constants κ0, κ0,h and cU from before. Then, problems (6) and (9) are well
posed. In addition, assuming that the assumptions from Proposition 2.4 hold true and that C is
Lipschitz continuous with Lipschitz constant cLip, we have the quasi-optimal error estimate

||u− ih(uh)||U ≤
(
1 + c−1

U

(
cLip + κ||B∗jhR−1

h j∗hB||L(U ,U ′)

))
inf

wh∈Uh

||u− ih(wh)||U .

Here, u ∈ U and uh ∈ Uh are the unique solutions of (6) and (9), respectively.

Proof. Let wh ∈ Uh and denote ξh = uh −wh. By Proposition 2.7 we have

cU ||ξh||2Uh
≤ 〈Ch(uh)− Ch(wh), ξh〉+ κ〈R−1

h Bh(uh −wh), Bhξh〉

for all κ ≥ κ0,h. In addition, since Bu = F and C(u) = G according to Proposition 2.4, the relations

〈R−1
h j∗hBu, Bhξh〉 = 〈R−1

h j∗hF,Bhξh〉 and 〈i∗hC(u), ξh〉 = 〈i∗hG, ξh〉.

hold. Hence, we conclude that

κ〈R−1
h j∗hB(u− ihuh), Bhξh〉+ 〈C(u)− C(ihuh), jhξh〉 = 0,
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yielding

cU ||ξh||2Uh
≤ 〈C(u)− C(ihwh), ihξh〉+ κ〈B∗jhR−1

h j∗hB(u− ihwh), ihξh〉.

The triangle inequality and the Lipschitz continuity of C then prove the statement.

3. Nonlinear model problem and functional setting. In the remainder of this paper we
show how our abstract DPG framework applies to an advection-diffusion model problem with nonlinear
diffusion. In this section we specify the model problem and consider its continuous formulation.

Given a source term f , let us consider u : Ω → R, with Ω ⊂ Rd (d ≥ 2) a connected Lipschitz
domain, the solution of

−∇·
(
λ(x, |∇u(x)|)∇u(x) + β(x)u(x)

)
= f(x) for a.a. x ∈ Ω,(13a)

u(x) = 0 for a.a. x ∈ ∂Ω.(13b)

Here, β denotes an Rd-valued advection field and λ an Rd×d-valued diffusion tensor. By ∂Ω we denote
the boundary of Ω, with outwardly oriented unit normal vector n. For simplicity, we write λ(|∇u|)
for λ(x, |∇u(x)|) for almost all x ∈ Ω.

Owing to the theory of continuous strongly monotone operators (see, e.g., [26, Chap. 2]), this
model problem admits a unique solution u ∈ H1

0 (Ω) for any source term f ∈ L2(Ω) if the physical
parameters β and λ satisfy the following assumptions:

• β is Lipschitz continuous on Ω and satisfies

(14a) ess inf Ω (−∇·β) ≥ 0.

• There exist constants 0 < λ[ ≤ λ] such that, for all σ,θ ∈ L2(Ω),

λ[||σ − θ||2L2(Ω) ≤ (λ(|σ|)σ − λ(|θ|)θ,σ − θ)L2(Ω) ,(14b)

λ]||σ − θ||L2(Ω) ≥ ||λ(|σ|)σ − λ(|θ|)θ||L2(Ω).(14c)

Throughout the remainder of this paper we assume that all these conditions are satisfied, specifically
that f ∈ L2(Ω).

3.1. Standard Sobolev spaces and Péclet number. Let L2(Ω) and L2(Ω) be the standard
Lebesgue spaces collecting R-valued and Rd-valued functions, respectively, satisfying

(v, v)Ω = ||v||2L2(Ω) =

∫
Ω

|v|2 < +∞ and (v,v)Ω = ||v||2L2(Ω) =

∫
Ω

|v|2 < +∞.

We denote by H1(Ω) and H (div; Ω) the classical Sobolev spaces equipped with the scaled inner
products

(v, w)H1(Ω) := (v, w)Ω + `2Ω(∇v,∇w)Ω ∀v, w ∈ H1(Ω),

(τ ,η)H (div;Ω) := (τ ,η)Ω + `2Ω(∇·τ ,∇·η)Ω ∀τ ,η ∈H (div; Ω).

We also denote by H1
0 (Ω) the closure of the space collecting infinitely differentiable functions with

compact support in Ω with the norm ||·||H1(Ω).
The characteristic length `Ω > 0 is introduced so that the above inner products are dimensionally

coherent. Its definition is arbitrary, but fixed once and for all. To avoid the proliferation of constants,
the reference length `Ω is chosen such that

(15) ||β||L∞(Ω)`Ωλ
−1
] = 1.
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This means that the global Péclet number is of order 1, i.e., the magnitude of the advective and
diffusive effects are comparable.

3.2. Mesh partition and product spaces. Let Ωh be a non-overlapping partition of Ω com-
posed open elements T ∈ Ωh with Lipschitz boundary ∂T and outwardly oriented by nT . Let H1(Ωh)
and H (div; Ωh) be the product or “broken” Sobolev spaces equipped with inner products

(v, w)H1(Ωh) := (v, w)Ωh
+ `2Ω(∇v,∇w)Ωh

∀v, w ∈ H1(Ωh),

(τ ,η)H (div;Ωh) := (τ ,η)Ωh
+ `2Ω(∇·τ ,∇·η)Ωh

∀τ ,η ∈H (div; Ωh).

Here, (·, ·)Ωh
=
∑
T∈Ωh

(·, ·)T denotes the element-wise L2-inner product, that is, appearing differential

operators are taken in a piecewise form. For all T ∈ Ωh we denote by H1/2(∂T ) and H−1/2(∂T ) the
trace spaces of H1(T ) and H (div;T ), respectively. They are dual to each other. Traces on the mesh
skeleton ∂Ωh are defined with the trace maps γ : H1(Ωh)→×T∈Ωh

H1/2(∂T ) and γn : H (div; Ωh)→
×T∈Ωh

H−1/2(∂T ), defined as

γ(u)|∂T = u|∂T ∀T ∈ Ωh ∀u ∈ H1(Ωh),

γn(ρ)|∂T = (ρ·nT )|∂T ∀T ∈ Ωh ∀ρ ∈H (div; Ωh).

The duality product between×T∈Ωh
H−1/2(∂T ) and×T∈Ωh

H1/2(∂T ) is denoted by 〈·, ·〉∂Ωh
=∑

T∈Ωh
〈·, ·〉∂T with duality 〈·, ·〉∂T between H−1/2(∂T ) and H1/2(∂T ) (T ∈ Ωh).

We also introduce the trace spaces

H
1/2
00 (∂Ωh) :=

{
û ∈ ×

T∈Ωh

H1/2(∂T ) | ∃w ∈ H1
0 (Ω), û = γ(w)

}
,

H−1/2(∂Ωh) :=
{
ρ̂ ∈ ×

T∈Ωh

H−1/2(∂T ) | ∃ρ ∈H (div; Ω), ρ̂ = γn(ρ)
}
,

equipped with their respective quotient norms,

||v̂||
H

1/2
00 (∂Ωh)

:= inf
w∈H1

0 (Ω)

{
||w||H1(Ω); γ(w) = v̂

}
∀v̂ ∈ H1/2

00 (∂Ωh),(16a)

||ρ̂||H−1/2(∂Ωh) := inf
ρ∈H (div;Ω)

{
||ρ||H (div;Ω); γn(ρ) = ρ̂

}
∀ρ̂ ∈ H−1/2(∂Ωh).(16b)

Finally, we close this section by recalling the Poincaré-Steklov inequality in the product space H1(Ωh),
cf. [2]. The proof is given for completeness, here including the length scale parameter `Ω.

Lemma 3.1. We have

cPS`
−2
Ω ||v||

2
H1(Ωh) ≤ ||∇v||

2
L2(Ωh) +

(
sup

τ̂∈H−1/2(∂Ωh)

〈τ̂ , γ(v)〉∂Ωh

||τ̂ ||H−1/2(∂Ωh)

)2

∀v ∈ H1(Ωh),

with c−1
PS = 2(1 + cPS,0) and cPS,0 > 0 the Poincaré-Steklov constant in H1

0 (Ω) satisfying ||ξ||2L2(Ω) ≤
cPS,0`

2
Ω||∇ξ||2L2(Ω)

for all ξ ∈ H1
0 (Ω).

Proof. Let v ∈ H1(Ωh) and let ξ ∈ H1
0 (Ω) such that −`2Ω∆ξ = v. It holds

||v||2L2(Ω) = `2Ω (∇v,∇ξ)Ωh
− `2Ω〈γn(∇ξ), γ(v)〉∂Ωh

≤ `2Ω||∇v||L2(Ωh)||∇ξ||L2(Ω) + `2Ω||γn(∇ξ)||H−1/2(∂Ωh) sup
τ̂∈H−1/2(∂Ωh)

〈τ̂ , γ(v)〉∂Ωh

||τ̂ ||H−1/2(∂Ωh)

.
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Furthermore, `2Ω||∇ξ||2L2(Ω)
≤ cPS,0||v||2L2(Ω) by the standard Poincaré-Steklov inequality in H1

0 (Ω).

Hence, observing that ||γn(∇ξ)||2
H−1/2(∂Ωh)

≤ (1 + cPS,0)`−2
Ω ||v||2L2(Ω), the statement follows.

4. Penalized variational formulation of the model problem. In this section we apply the
results of Section 2 to devise and approximate a penalized formulation of (13). The objective of our
non-standard formulation is to separate the linear and the nonlinear parts of our problem, namely
rewriting formally (13a) as

−∇· (ρ+ βu) = f, σ = ∇u and ρ = λ(|σ|)σ.

In the following, the operator B stands for the representation of the ultra-weak formulation of the first
two linear equations, and the nonlinear operator C is used to enforce the nonlinear closure relation
ρ = λ(|σ|)σ.

4.1. Ultra-weak formulation of the linear part. We start by specifying a variational formu-
lation of the linear part of the model problem. In this case we select an ultra-weak variant. In some
cases like singularly perturbed problems the ultra-weak form has its advantages but for our model
problem this selection is not essential.

We consider the following linear problem. Find u ∈ L2(Ω), σ ∈ L2(Ω), ρ ∈ L2(Ω), û ∈ H1/2
00 (∂Ωh),

ρ̂ ∈ H−1/2(∂Ωh) such that

(u,β·∇v)Ωh
+ (ρ,∇v)Ωh

− 〈ρ̂, γ(v)〉∂Ωh
= (f, v)Ω ∀v ∈ H1(Ωh),(17a)

(σ, τ )Ω + (u,∇·τ )Ωh
− 〈γn(τ ), û〉∂Ωh

= 0 ∀τ ∈H (div; Ωh),(17b)

and denote the spaces

U := L2(Ω)×L2(Ω)×L2(Ω)×H1/2
00 (∂Ωh)×H−1/2(∂Ωh),

V := H1(Ωh)×H (div; Ωh).

Define the operator B : U → V ′ as

(18) 〈Bu,v〉 := (u,β·∇v +∇·τ )Ωh
+ (σ, τ )Ω + (ρ,∇v)Ωh

− 〈ρ̂, γ(v)〉∂Ωh
− 〈γn(τ ), û〉∂Ωh

for u = (u,σ,ρ, û, ρ̂) ∈ U and v = (v, τ ) ∈ V . Problem (17) is then reformulated as

(19) u ∈ U : Bu = F ∈ V ′,

with F ∈ V ′ such that F : v 7→ (f, v)Ω for all v = (v, τ ) ∈ V . The following lemma gives a strong
characterization of u ∈ U solving (19).

Lemma 4.1. Let u = (u,σ,ρ, û, ρ̂) ∈ U be a solution of (19). Then, u ∈ H1
0 (Ω), ρ ∈ H (div; Ω),

and σ = ∇u, −∇·(ρ+ βu) = f , û = γ(u) and ρ̂ = γn(ρ+ βu).

In the following analysis, the Cartesian space U is equipped with the scaled norm ||·||U defined for
all u = (u,σ,ρ, û, ρ̂) ∈ U as

||u||2U := ||u||2L2(Ω) + `2Ω||σ||2L2(Ω) + `2Ωλ
−2
] ||ρ||

2
L2(Ω) + ||û||2

H
1/2
00 (∂Ωh)

+ `2Ωλ
−2
] ||ρ̂||

2
H−1/2(∂Ωh).
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Similarly, the space V is equipped with the inner product (·, ·)V defined for v = (v, τ ),w = (w,η) ∈ V
as

(v,w)V := λ2
]`
−4
Ω (v, w)H1(Ωh) + `−2

Ω (τ ,η)H (div;Ωh) .

With these norms in U and V , B is uniformly bounded. Owing to the following lemma, B is surjective
or, equivalently, B∗ is injective with closed range in U ′.

Lemma 4.2. ||B∗v||2U ′ ≥ cB ||v||2V for all v ∈ V with cB = cPS/2 and cPS the Poincaré-Steklov
constant from Lemma 3.1.

Proof. Let v ∈ V with v = (v, τ ) and note that

||B∗v||2U ′ ≥ ||β·∇v +∇·τ ||2L2(Ωh) + `−2
Ω ||τ ||

2
L2(Ω) + `−2

Ω λ2
] ||∇v||2L2(Ωh)

+ `−2
Ω λ2

]

(
sup

τ̂∈H−1/2(∂Ωh)

|〈τ̂ , γ(v)〉∂Ωh
|

||τ̂ ||H−1/2(∂Ωh)

)2

.

Then, using the Poincaré-Steklov inequality in H1(Ωh) from Lemma 3.1, it follows

||B∗v||2U ′ ≥ ||β·∇v +∇·τ ||2L2(Ωh) + `−2
Ω ||τ ||

2
L2(Ω) +

1

2
`−2
Ω λ2

] ||∇v||2L2(Ωh)

+
1

2
cPS`

−4
Ω λ2

] ||v||2H1(Ωh).

Hence, observing that ||τ ||2H (div;Ωh) ≤ ||τ ||
2
L2(Ω)

+ `2Ω||∇·τ +β·∇v||2
L2(Ωh)

+λ2
] ||∇v||2L2(Ωh)

by the triangle

inequality and assumption (15), it follows that

||B∗v||2U ′ ≥
1

2
`−2
Ω ||τ ||

2
H (div;Ωh)) +

1

2
cPS`

−4
Ω λ2

] ||v||2H1(Ωh).

Observing that cPS ≤ 1 in Lemma 3.1, the statement follows by definition of the norm in V .

Denoting by PB : U → N (B) the projector of U on N (B), the following lemma is consequence
of the boundedness of B and Lemma 4.2. In particular, assumption (ii) of Proposition 2.1 is satisfied.

Lemma 4.3. ||u−PBu||2U ≤ cB ||Bu||2V ′ for all u ∈ U , with the constant cB defined in Lemma 4.2.

Proof. By standard arguments the statement is equivalent to the statement of Lemma 4.2. Indeed,
by the continuity of B : U → V ′ and the boundedness below of B∗, B : N (B)⊥ → V ′ is injective
with closed range, i.e.,B∗ : V → (N (B)⊥)′ is surjective, so that

||Bu||V ′ = sup
v∈V

〈B∗v,u− PB(u)〉
||v||V

≥ c1/2B sup
v∈V

〈B∗v,u− PB(u)〉
||B∗v||U ′

= c
1/2
B ||u− PB(u)||U

for any u ∈ U .

The non-trivial kernel N (B) can be represented as the image of the map E : H1
0 (Ω)×H → U

defined, for all ψ ∈ H1
0 (Ω) and η ∈H = {v ∈H (div; Ω) | ∇·v = 0}, as

(20) E(ψ,η) =
(
ψ,∇ψ,η − βψ, γ(ψ), γn (η)

)
.

Lemma 4.4. The map E : H1
0 (Ω)×H → U satisfies

(21) cE ||E(ψ,η)||2U ≤ `2Ω||∇ψ||2L2(Ω) + `2Ωλ
−2
] ||η − βψ||

2
L2(Ω) ∀ψ ∈ H1

0 (Ω), η ∈H,
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with c−1
E = 4cPS,0 + 3 and cPS,0 the Poincaré-Steklov constant defined in Lemma 3.1. In addition,

E
(
H1

0 (Ω)×H
)

= N (B).

Proof. Estimate (21) is consequence of the Poincaré-Steklov inequality in H1
0 (Ω) and the triangle

inequality. Let us prove that E
(
H1

0 (Ω)×H
)

= N (B). Consider ψ ∈ H1
0 (Ω), η ∈ H and let w =

E(ψ,η). For any v = (v, τ ) ∈ V it follows that

〈Bw,v〉 = (ψ,∇·τ )Ωh
+ (∇ψ, τ )Ω + (η,∇v)Ωh

− 〈γn(η), γ(v)〉∂Ωh
− 〈γn(τ ), γ(ψ)〉∂Ωh

.

Hence, integrating by parts we obtain 〈Bw,v〉 = 0 so that w ∈ N (B). Conversely, assume that
u = (u,σ,ρ, û, ρ̂) ∈ N (B). Then, computing 〈Bu, (0, τ )〉 we deduce that u ∈ H1(Ωh) and that
σ|T = (∇u)|T for all T ∈ Ωh. We conclude that

0 = (u,∇·τ )Ωh
+ (σ, τ )Ω − 〈γn(τ ), û〉∂Ωh

= 〈γn(τ ), γ(u)〉∂Ωh
− 〈γn(τ ), û〉∂Ωh

,

so that γ(u) = û ∈ H1/2
00 (∂Ωh). Then, by definition of H

1/2
00 (∂Ωh), we infer that u ∈ H1

0 (Ω). Proceeding
similarly by testing with v = (v,0), we infer that βu + ρ ∈ H (div; Ωh) with (∇·(βu + ρ))|T = 0 for

all T ∈ Ωh. It follows that ρ̂ = γn (βu+ ρ) ∈ H−1/2(∂Ωh) so that βu + ρ ∈ H (div; Ω), and then
βu+ρ ∈H. As a result, there exists η ∈H such that ρ = −βu+η. To conclude, if u ∈ N (B), then
u ∈ H1

0 (Ω), ρ+ βu ∈H and u = E(u,ρ+ βu).

4.2. Nonlinear penalty term. In this section we devise a nonlinear penalty form to enforce
the closure relation ρ = λ(|σ|)σ and to control N (B). To simplify the presentation let us introduce
π : U → L2(Ω)×L2(Ω) by defining π(u) := (σ,ρ) for u = (u,σ,ρ, û, ρ̂) ∈ U . Then we define a
nonlinear operator C : U → U ′ by

(22) 〈C(u),v〉 := `2Ωλ
−2
]

(
λ(|σ|)σ − ρ, αλ[θ − η

)
Ω
∀u,v ∈ U ,

with π(u) = (σ,ρ) and π(v) = (θ,η). Here, α > 0 denotes a stability parameter that will be chosen
greater than λ2

]/[, with λ]/[ := λ]/λ[ the diffusive anisotropy ratio.
We start by establishing the Lipschitz continuity of C.

Lemma 4.5. ||C(u1)−C(u2)||U ′ ≤ cLip||u1−u2||U for all u1,u2 ∈ U , with cLip = 2max(αλ−1
]/[, 1).

Proof. Let u1,u2,v ∈ U such that π(u1) = (σ1,ρ1), π(u2) = (σ2,ρ2) and π(v) = (θ,η). Owing
to (22), it follows that

|〈C(u1)− C(u2),v)〉| ≤ `2Ωλ−2
]

∣∣(λ(|σ1|)σ1 − λ(|σ2|)σ2, αλ[θ − η
)

Ω

∣∣
+ `2Ωλ

−2
]

∣∣(ρ1 − ρ2, αλ[θ − η
)

Ω

∣∣ .
The Cauchy–Schwarz inequality and assumption (14c) yield

|〈C(u1)− C(u2),v〉|

≤ `2Ωλ−1
]

(
||σ1 − σ2||L2(Ω) + λ−1

] ||ρ1 − ρ2||L2(Ω)

)
||αλ[θ − η||L2(Ω).

Observing that ||αλ[θ − η||L2(Ω) ≤ 2λ]`
−1
Ω max(αλ−1

]/[, 1)||v||U , the desired estimate follows.

The next lemma verifies assumption (iii) of Proposition 2.1 for the model problem.
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Lemma 4.6. Assume that α > λ2
]/[. Then

cU ||PB(u1 − u2)||2U ≤ 〈C(u1)− C(u2),u1 − u2〉+ cV ||B(u1 − u2)||2V ′ ∀u1,u2 ∈ U ,

where cU and cV are given by

cU =
cE
2

min

(
1

2
, αλ−2

]/[ − 1

)
, cV =

cB
2

min

(
1

2
, αλ−2

]/[ − 1

)
+

5

2
cBλ

−2
]/[α

2,

with cB and cE the constants defined in Lemmata 4.2 and 4.4, respectively.

Proof. Let u1,u2 ∈ U be such that π(u1) = (σ1,ρ1) and π(u2) = (σ2,ρ2). By Lemma 4.4 there
exist ψ1, ψ2 ∈ H1

0 (Ω) and η1,η2 ∈H such that

PB(u1) = E(ψ1,η1) =
(
ψ1,∇ψ1,η1 − βψ1, γ(ψ1), γn (η1)

)
,(23a)

PB(u2) = E(ψ1,η1) =
(
ψ2,∇ψ2,η2 − βψ2, γ(ψ2), γn (η2)

)
.(23b)

Owing to the continuity estimate (21) from Lemma 4.4, it follows that

cE ||PB(u1 − u2)||2U ≤ `2Ω||∇ψ1 −∇ψ2||2L2(Ω) + `2Ωλ
−2
] ||η1 − η2||2L2(Ω),

where we have denoted ηi = ηi − βψi for i = 1, 2. By the triangle inequality we have

cE ||PB(u1 − u2)||2U ≤ `2Ω||∇ψ1 −∇ψ1 − (σ1 − σ2)||2L2(Ω) + `2Ω||σ1 − σ2||2L2(Ω)

+ `2Ωλ
−2
] ||η1 − η2 − (ρ1 − ρ2)||2L2(Ω) + `2Ωλ

−2
] ||ρ1 − ρ2||2L2(Ω).

Observing that ||σ1−σ2−(∇ψ1−∇ψ2)||2
L2(Ω)

≤ cB`−2
Ω ||B(u1−u2)||2V ′ and ||ρ1−ρ2−(η1−η2)||2

L2(Ω)
≤

cBλ
2
]`
−2
Ω ||B(u1 − u2)||2V ′ owing to Lemma 4.3, we obtain

(24) cE ||PB(u1 − u2)||2U ≤ cB ||B(u1 − u2)||2V ′ + `2Ω||σ1 − σ2||2L2(Ω) + `2Ωλ
−2
] ||ρ1 − ρ2||2L2(Ω).

It remains to prove that there exist constants c, c′ > 0 such that

(25) c
(
`2Ω||σ1 − σ2||2L2(Ω) + `2Ωλ

−2
] ||ρ1 − ρ2||2L2(Ω)

)
≤ 〈C(u1)− C(u2),u1 − u2〉+ c′||B(u1 − u2)||2V ′ .

Let F (u1,u2) = `−2
Ω λ2

] 〈C(u1)− C(u2),u1 − u2〉 and observe that

F (u1,u2) =αλ[
(
λ(|σ1|)σ1 − λ(|σ2|)σ2,σ1 − σ2

)
Ω

+
(
ρ1 − ρ2,ρ1 − ρ2

)
Ω

−
(
λ(|σ1|)σ1 − λ(|σ2|)σ2,ρ1 − ρ2

)
Ω
− αλ[

(
ρ1 − ρ2,σ1 − σ2

)
Ω
.

Owing to assumptions (14b) and (14c), it follows that

F (u1,u2) ≥ αλ2
[ ||σ1 − σ2||2L2(Ω) + ||ρ1 − ρ2||2L2(Ω)

− λ]||σ1 − σ2||L2(Ω)||ρ1 − ρ2||L2(Ω) − αλ[
(
ρ1 − ρ2,σ1 − σ2

)
Ω
.
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Hence, applying Young’s inequality, we conclude that

F (u1,u2) ≥

(
αλ2

[ −
λ2
]

2

)
||σ1 − σ2||2L2(Ω) +

1

2
||ρ1 − ρ2||2L2(Ω) − αλ[

(
ρ1 − ρ2,σ1 − σ2

)
Ω
.

The last term above can be bounded from below by using the representation (23) of N (B). First, we
observe that(
ρ1 − ρ2,σ1 − σ2

)
Ω

=
(
ρ1 − ρ2,σ1 − σ2 − (∇ψ1 −∇ψ2)

)
Ω

+
(
η1 − η2,∇ψ1 −∇ψ2

)
Ω

+
(
ρ1 − ρ2 − (η1 − η2),∇ψ1 −∇ψ2

)
Ω

=: T1 + T2 + T3.

Applying the Cauchy–Schwarz and triangle inequalities, and Lemma 4.3 for T1 and T3, it follows

|T1| ≤ c1/2B `−1
Ω ||B(u1 − u2)||V ′ ||ρ1 − ρ2||L2(Ω),

and

|T3| ≤ c1/2B λ]`
−1
Ω ||B(u1 − u2)||V ′ ||∇ψ1 −∇ψ2||L2(Ω)

≤ c1/2B λ]`
−1
Ω ||B(u1 − u2)||V ′ ||σ1 − σ2||L2(Ω) + cBλ]`

−2
Ω ||B(u1 − u2)||2V ′ .

Recalling the definition ηi = −βψi + ηi, i = 1, 2, with ηi ∈H = (∇H1
0 (Ω))⊥, we infer that

T2 = −
(
βψ1 − βψ2,∇ψ1 −∇ψ2

)
Ω
≤ 0

owing to assumption (14a). Collecting the previous estimates we obtain(
αλ2

[ −
λ2
]

2

)
||σ1 − σ2||2L2(Ω) +

1

2
||ρ1 − ρ2||2 ≤ F (u1,u2)

+ cBαλ
2
[λ]/[`

−2
Ω ||B(u1 − u2)||2V ′

+ c
1/2
B αλ[`

−1
Ω ||B(u1 − u2)||V ′ ||ρ1 − ρ2||L2(Ω)

+ c
1/2
B αλ2

[λ]/[`
−1
Ω ||B(u1 − u2)||V ′ ||σ1 − σ2||L2(Ω).

Young’s inequality and assumption α > λ2
]/[ yield

1

2

(
αλ2

[ − λ
2
]

)
||σ1 − σ2||2L2(Ω) +

1

4
||ρ1 − ρ2||2 ≤ F (u1,u2) +

5

2
cBλ

2
[`
−2
Ω α2||B(u1 − u2)||2V ′ .

As a result, multiplying by λ−2
] , we obtain

1

2
min

(
1

2
, αλ−2

]/[ − 1

)(
||σ1 − σ2||2L2(Ω) + λ−2

] ||ρ1 − ρ2||2L2(Ω)

)
≤ λ−2

] F (u1,u2)

+
5

2
cB`
−2
Ω λ−2

]/[α
2||B(u1 − u2)||2V ′ .

The statement follows multiplying (24) by 1
2 min

(
1
2 , αλ

−2
]/[ − 1

)
.
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4.3. Penalized variational formulation and well-posedness. We are now in a position to
present our penalized variational formulation of the model problem and to prove its well-posedness.

Let RV : V → V ′ be the Riesz operator, i.e., 〈RV v,w〉 = (v,w)V for v,w ∈ V , and, for κ ≥ 0,
let Tκ : U×V → U ′×V ′ be the nonlinear operator

(26) Tκ :=

(
C B∗

B − 1
κRV

)
.

Here, B : U → V ′ and C : U → U ′ are the linear and nonlinear operators defined by (18) and (22),
respectively.

Following Section 2, problem (13) has the variational formulations

(27) (u,v) ∈ U×V : Tκ(u,v) = (0, F ) in U ′×V ′

and

(28) u ∈ U : κ〈R−1
V Bu, Bv〉+ 〈C(u),v〉 = κ〈R−1

V F,Bv〉 ∀v ∈ U .

In addition, since R−1
V is self-adjoint, (28) can be reformulated as

(29) u ∈ U : κ〈Bu,Θv〉+ 〈C(u),v〉 = κ〈F,Θv〉Ω ∀v ∈ U .

Here, we have used the so-called trial-to-test operator Θ := R−1
V B : U → V , cf., e.g., [12].

Selecting κ sufficiently large, both problems are well posed and equivalent.

Theorem 4.7. Assume that α > λ2
]/[ and κ ≥ cV + cBcU with cB , cU , cV defined in Lemmata 4.2

and 4.6. Then
(a) problems (27) and (29) are equivalent,
(b) Tκ : U×V → U ′×V ′ defined by (26) is invertible with Lipschitz continuous inverse,
(c) the solution u ∈ U of (29) satisfies Bu = F in V ′ and C(u) = 0 in U ′.

Proof. Statement (a) is a direct consequence of Theorem 2.3 and the definition of Θ. The second
statement (b) follows from Proposition 2.1. Indeed, 〈Bv, R−1

V Bv〉 = ||Bv||2V ′ for all v ∈ V , so that
assumption (i) of Proposition 2.1 is satisfied with coercivity constant cR = 1. Since assumptions (ii)
and (iii) of Proposition 2.1 hold by Lemmata 4.3 and 4.6, we infer statement (b). Finally, statement
(c) is a consequence of Proposition 2.4. The operator B being surjective by Lemma 4.2, it remains to
prove that

〈C(u),v〉 = 0 ∀v ∈ N (B) =⇒ C(u) = 0 in U ′.

In (28) we select v = (0,0,η, 0, γn(η)) ∈ N (B) with η ∈H, giving

〈C(u),v〉U ′,U = −`2Ωλ−2
] (λ(|σ|)σ − ρ,η)Ω = 0,

since Θv = R−1
V Bv = 0. Therefore, λ(|σ|)σ − ρ ∈ H⊥ = ∇H1

0 (Ω) since ∇H1
0 (Ω) is closed in

L2(Ω). That is, there exists ψ ∈ H1
0 (Ω) such that ∇ψ = λ(|σ|)σ − ρ. Next, choosing v =

(ϕ,∇ϕ,−βϕ, γ(ϕ), 0) ∈ N (B) with ϕ ∈ H1
0 (Ω), it follows that (∇ψ, αλ[∇ϕ+ βϕ)Ω = 0 for all

ϕ ∈ H1
0 (Ω). As a result, owing to assumption (14a), we infer that ψ = 0, and then λ(|σ|)σ = ρ,

so that C(u) = 0 in U ′.
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5. Relaxed DPG scheme. With all the preparations at hand, the formulation of our DPG
scheme for the model problem is immediate and the proof of its quasi-optimal convergence is straight-
forward.

Considering the continuous problem (27), which is equivalent to (29) in the sense of Theorem 2.3,
we follow the presentation of Section 2 and consider two finite-dimensional spaces Uh and Vh with
Uh ⊂ U and Vh ⊂ V . Our discrete problem is

(30) uh ∈ Uh : 〈Ch(uh),wh〉+ κ〈Bhuh,Θhwh〉 = κ〈j∗hF,Θhwh〉 ∀vh ∈ Vh,

with

Ch := i∗hCih, Bh := j∗hBih, RVh
= j∗hRV jh, and Θh = R−1

Vh
Bh.

The well-posedness of this problem follows from Proposition 2.7.

Theorem 5.1. Assume that there exists a Fortin operator Π : V → Vh satisfying (11). Then,
for all κ ≥ (cV + cBcU )cΠ, with cB , cU , cV defined in Lemmata 4.2 and 4.6, (30) is well-posed and
converges quasi-optimally,

||u− ih(uh)||U ≤
(
1 + c−1

U

(
cLip + κ||B∗jhR−1

Vh
j∗hB||L(U ,U ′)

))
inf

wh∈Uh

||u− ih(wh)||U ,

with cLip > 0 defined in Lemma 4.5. Here, u ∈ U and uh ∈ Uh are the unique solution of (28)
and (30), respectively.

Proof. The well-posedness of (30) is a consequence of Proposition 2.7. Indeed, assumptions (ii)
and (iii) hold by Lemmata 4.3 and 4.6, respectively, and (i’) holds with cRh

= 1 since RVh
satisfies

||Bhvh||2V ′h = 〈Bhvh, R−1
Vh
Bhvh〉 for all vh ∈ Uh. The error estimate is finally a consequence of Theo-

rem 2.8 using the statement (c) from Theorem 4.7 and the Lipschitz continuity of C from Lemma 4.5.

6. Numerical example. In this section, we present some numerical results of a lowest-order
implementation of our nonlinear DPG scheme (30) for a model problem with and without advective
field β. The specific discretization including Fortin operator is presented in the first subsection, and
numerical results are reported afterwards.

6.1. Discrete setting and Fortin operator. We use lowest-order test and trial spaces Uh, Vh
defined by

Uh = P0(Ωh;R)×P0(Ωh;R2)×P0(Ωh;R2)×P0
1(∂Ωh;R)×P0(∂Ωh;R),(31a)

Vh = P2(Ωh;R)×P2(Ωh;R2).(31b)

Here, Pk(Ωh;Rd) denotes the spaces of Ωh-piecewise d-variate polynomials of degree k (meshes are
defined below) and P0

1(∂Ωh;R) ⊂ P1(∂Ωh;R) is the largest subspace of “continuous” functions satisfy-

ing the homogeneous Dirichlet condition, that is, γ
(
P0

1(∂Ωh;R)
)
⊂ H

1/2
00 (∂Ωh). The test space Vh is

chosen such that there exists a Fortin operator Π : V → Vh satisfying (11), ensuring that (30) is well
posed by Theorem 5.1.

Lemma 6.1. Let Uh and Vh be defined by (31), and consider β ∈ P0(Ωh;R2). Then, there exists
a Fortin operator Π : V → Vh satisfying (11).



DPG FOR MONOTONE OPERATORS 17

Proof. The statement is consequence of [23, Lemmata 3.2, 3.3]. Indeed, as proved in [23], there
are continuous operators Πg : H1(Ωh)→ P2(Ωh;R) and Πd : H (div; Ωh)→ P2(Ωh;R2) such that

〈γ(Πgv − v)|∂T , q〉∂T = 0 ∀q ∈ P0({F}F∈FT
;R),(32a) (

(Πdτ − τ )|T , q
)
L2(T )

= 0 ∀q ∈ P0(T ;R2),(32b)

〈γn(Πd
T τ − τ )|∂T , q̂〉∂T = 0 ∀q̂ ∈ P1({F}F∈FT

;R) ∩ C0(∂T )(32c)

for all v ∈ H1(Ωh), τ ∈ H (div; Ωh), and T ∈ Ωh. Here, FT denotes the set of faces of an element
T ∈ Ωh. The operator Π = (Πg,Πd) : V → Vh is continuous and satisfies assumption (11a). In fact,
considering uh = (uh,σh,ρh, ûh, ρ̂h) ∈ Uh, we have

〈Bihuh, jhΠv − v〉 =
(
uh,β·∇(Πg(v)− v) +∇·(Πd(τ )− τ )

)
Ωh

+
(
σh,Π

dτ − τ
)

Ωh

+ (ρh,∇(Πgv − v))Ωh
− 〈ρ̂h, γ(Πg(v)− v)〉∂Ωh

− 〈γn(Πd(τ )− τ ), ûh〉∂Ωh
.

Since β ∈ P0(Ωh;R2), it follows by integration by parts that

(uh,β·∇(Πg(v)− v))Ωh
= − (∇·(βuh),Πg(v)− v)Ωh

+ 〈γn(βuh), γ(Πg(v)− v)〉∂Ωh

= 0,

owing to (32a). Proceeding similarly for the other terms, we infer (11a).

The nonlinear discrete problem (30) is solved by using the standard Newton method. The ini-
tial iterate is defined as the solution of (13) with λ(|∇u|) = λ(0) (it is different from 0 in our
experiment). Numerical experiments are performed on a uniform refinement of a two-dimensional
triangular mesh sequence {Ωh}h, indexed by the level of refinement h := maxT∈Ωh

|T |, and satisfying

O(h) = O(dim(Uh)−
1
2 ). The numerical parameter κ is chosen equal to 1 and the stability parameter

α := λ2
]/[. Denoting by u = (u,σ,ρ, û, ρ̂) ∈ U and uh = (uh,σh,ρh, ûh, ρ̂h) ∈ Uh the exact and dis-

crete solutions, respectively, we depict the three errors ||u−uh||L2(Ω), ||σ−σh||L2(Ω) and ||ρ−ρh||L2(Ω).
In addition, from definitions (16) of the trace norms and Lemma 4.1, we depict, instead, the corre-
sponding upper bounds

||û− ûh||H1/2
00 (∂Ωh)

≤ ||u− Igh(ûh)||H1(Ω), ||ρ̂− ρ̂h||H−1/2(∂Ωh) ≤ ||ρ+ βu− Idh(ρ̂h)||H (div;Ω).

Here, Igh : P0
1(∂Ωh;R) → P1(Ωh;R) ∩ C0(Ω) denotes the P1-Lagrange interpolation operator, and

Idh : P0(∂Ωh;R2)→ RT0(Ωh) is the lowest-order Raviart–Thomas interpolation operator.

6.2. Example with and without advection. We consider the nonlinear example without
advection from [6] and a corresponding example with non-zero advection. The exact solution is given
by u(x, y) = cos(πx/2) cos(πy/2) on the domain (−1, 1)2. The nonlinear diffusive tensor is R-valued
and defined by λ(s) = 2 − (1 + s)−2 for s ≥ 0. Assumptions (14b), (14c) are satisfied with λ[ = 1
and λ] = 3. We also consider the case when the advective field β is different from zero, and given by
β(x, y) = (y,−x), satisfying assumption (14a). The approximation errors are depicted in Figure 1.

As expected, all the errors behave like O(h). Comparing the two plots of Figure 1, the presence
of the advective field does not impact the accuracy of our method for this test case. In addition, our
method delivers very similar result to those obtained with the approach proposed in [6].
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[2] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions, SIAM Journal on Numerical Analysis,
41 (2003), pp. 306–324.

[3] D. Broersen and R. Stevenson, A robust Petrov-Galerkin discretisation of convection-diffusion equations, Com-
puters & Mathematics with Applications, 68 (2014), pp. 1605–1618.

[4] D. Broersen and R. Stevenson, A Petrov-Galerkin discretization with optimal test space of a mild-weak for-
mulation of convection-diffusion equations in mixed form, IMA Journal of Numerical Analysis, 35 (2015),
pp. 39–73.

[5] T. Bui-Thanh and O. Ghattas, A PDE-constrained optimization approach to the discontinuous Petrov-Galerkin
method with a trust region inexact Newton-CG solver, Computer Methods in Applied Mechanics and Engi-
neering, 278 (2014), pp. 20–40.

[6] C. Carstensen, P. Bringmann, F. Hellwig, and P. Wriggers, Nonlinear discontinuous Petrov–Galerkin meth-
ods, arXiv: 1710.00529, 2017.

[7] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and
applications including Maxwell equations, Computers & Mathematics with Applications, 72 (2016), pp. 494–
522.

[8] J. Chan, L. Demkowicz, and R. Moser, A DPG method for steady viscous compressible flow, Computers &
Fluids, 98 (2014), pp. 69–90.

[9] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz, Robust DPG method for convection-dominated diffusion
problems II: Adjoint boundary conditions and mesh-dependent test norms, Computers & Mathematics with
Applications, 67 (2014), pp. 771–795.

[10] P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear
boundary value problems, Numerische Mathematik, 13 (1969), pp. 51–77.

[11] A. Cohen, W. Dahmen, and G. Welper, Adaptivity and variational stabilization for convection-diffusion equa-
tions, ESAIM. Mathematical Modelling and Numerical Analysis, 46 (2012), pp. 1247–1273.

[12] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part I: the transport
equation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), pp. 1558–1572.

[13] L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson problem, SIAM Journal on
Numererical Analysis, 49 (2011), pp. 1788–1809.

[14] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test
functions, Numerical Methods for Partial Differential Equations, 27 (2011), pp. 70–105.

[15] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj, and P. Sepúlveda, A spacetime DPG method for the
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